
TYPE Original Research
PUBLISHED 27 September 2024
DOI 10.3389/feart.2024.1376605

OPEN ACCESS

EDITED BY

Amit Kumar Mishra,
Jawaharlal Nehru University, India

REVIEWED BY

Shani Tiwari,
Council of Scientific and Industrial Research
(CSIR), India
Alok Pandey,
University of Delhi, India

*CORRESPONDENCE

Andrew M. Thomas,
Andrew.thomas@srnl.doe.gov

RECEIVED 25 January 2024
ACCEPTED 05 September 2024
PUBLISHED 27 September 2024

CITATION

Thomas AM and Noble S (2024) A
physics-based ensemble machine-learning
approach to identifying a relationship
between lightning indices and binary lightning
hazard.
Front. Earth Sci. 12:1376605.
doi: 10.3389/feart.2024.1376605

COPYRIGHT

© 2024 Thomas and Noble. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A physics-based ensemble
machine-learning approach to
identifying a relationship
between lightning indices and
binary lightning hazard

Andrew M. Thomas* and Stephen Noble

Savannah River National Laboratory, Department of Energy, Aiken, SC, United States

To convert lightning indices generated by numerical weather prediction
experiments into binary lightning hazard, a machine-learning tool was
developed. This tool, consisting of parallel multilayer perceptron classifiers, was
trained on an ensemble of planetary boundary layer schemes and microphysics
parameterizations that generated four different lightning indices over 1 week. In
a subsequent week, the multi-physics ensemble was applied and the machine-
learning tool was used to evaluate the accuracy. Unintuitively, the machine-
learning tool performed better on the testing dataset than the training dataset.
Much of the error may be attributed to mischaracterizing the convection.
The combination of the machine learning model and simulations could not
differentiate between cloud-to-cloud lightning and cloud-to-ground lightning,
despite being trained on cloud-to-ground lightning. It was found that the
simulation most representative of the local operational model was the most
accurate simulation tested.
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1 Introduction

While lightning risk has been steadily decreasing in the United States (Holle, 2016),
exposure to lightning is projected to increase in a warming climate (Romps et al.,
2014; Romps, 2019). Lightning indices, which quantify lightning hazards derived from
numerical weather prediction models, are an important means of alerting those exposed
to the hazard (Price and Rind, 1994; McCaul et al., 2009; Romps et al., 2014). The
lightning potential index (LPI) (Yair et al., 2010) is one index that is useful for cloud-
resolving models and is well-correlated with lightning strikes (Lynn and Yair, 2010;
Gharaylou et al., 2019). The LPI quantifies the charge separation within the charging
zone using model state variables via integrating the vertical velocity squared and a
microphysical scaling parameter through the charging zone (the vertical column between
0°C and −20°C). While there are more sophisticated methods of predicting lightning
(Lynn et al., 2012; Gharaylou et al., 2020), the computational efficiency of the LPI makes
it more useful in an operational setting. One alternative to the LPI is the product
of convective available potential energy (CAPE) and convective precipitation (hereafter
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FIGURE 1
Location of the parent domain (D01) and nested domain (D02) which makes up the area of interest. The boundary of the Savannah River Site (SRS),
located in the Southeastern United States, is plotted in yellow.

referred to as CAPE-P). CAPE-P relies under the assumption
that if there is convective precipitation, then lightning should
be generated. This seems to perform better in some areas, such
as the boreal region (Mortelmans et al., 2022), and over land
(Romps et al., 2018). Twomore useful indices areMcCaul’s lightning
threat index (McCaul et al., 2009) (LTI) and the index proposed
by Price and Rind (1994) (PR92W). The LTI combines the vertical
movement of graupel at −15°C and the vertical integral of cloud
ice and hydrometeors. PR92W relies on correcting the maximum
updraft velocity for resolution. PR92W and CAPE-P were originally
designed for climate models, where resolution requirements forced
parameterization of convection, and both indices were used to
make inferences for lightning. While the LPI has been shown to
be a better indicator of lightning than some of the other indices
described (Saleh et al., 2023), the consideration ofmultiple lightning
indices may be more informative than any one lightning index.

Previous studies of lightning index skill focus on particular
case studies. Malečić et al. (2022) examined three cases with a
large amount of hail and found systematic underprediction in the
amount of lightning predicted using an ensemble of microphysics
and planetary boundary layer (PBL) schemes by using the LPI.
Lynn and Yair (2010) used two cases where there was a significant
amount of lightning and found that the time-averaged LPI was

TABLE 1 Shared configuration of all experimental simulations.

Setting D01 D02 References

Resolution 4 km 1.3 km N/A

Radiation RRTMG Iacono et al. (2008)

Output time interval 15 min N/A

Land-surface model Unified NOAH
Land Surface

Model

Tewari et al. (2004)

Initial and Boundary Conditions North American
Model

Output interval 15 min N/A

well correlated with accumulated lightning flash density over
space. The examination of the most significant lightning events
may favor model performance, whereas the “garden variety”
thunderstorm may be overlooked. These types of unorganized, non-
severe storms tend to lead to the most lethal lightning incidents
(Ashley and Gilson, 2009). Some studies examine the global
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TABLE 2 Naming convention and physics parameterizations for experimental simulations.

Microphysics Parameterizations

WSM6 (Hong
and Lim, 2006)

Thompson
(Thompson et al.,

2008)

Morrison
(Morrison et al.,

2009)

PBL/Surface Layer
Parameterizations

YSU (Hong et al., 2006) YSU_WSM6 YSU_Thomp YSU_Morr

MYJ (Mesinger, 1993; Janjić, 1994) MYJ_WSM6 MYJ_Thomp MYJ_Morr

2.5 order MYNN (option 5)
Nakanishi and Niino (2006), 2009;

Olson et al. (2019)

MYN2_WSM6 MYN2_Thomp MYN2_Morr

3rd order MYNN (option 6)
Nakanishi and Niino (2006), 2009;

Olson et al. (2019)

MYN3_WSM6 CTRL MYN3_Morr

FIGURE 2
Number of Lightning strikes within a 15 min period inside D02 during the period of interest from the National Lightning Detection Network (NLDN) (A)
and Geostationary Lightning Mapper (GLM) (B).

distribution of lightning through climate change (Price and Rind,
1992; Finney et al., 2014; Romps et al., 2014).

These “garden variety” or “pulse thunderstorms” are regular
occurrence to the southeastern United States (Miller and Mote,
2017) with topography influencing the spatial variability (Miller and

Mote, 2017). The observed positive feedback mechanism between
the soil moisture and atmosphere (Findell and Eltahir, 2003)
resulting in high precipitation recycling (Dominguez et al., 2006)
and a subtropical climate promote these non-severe thunderstorms.
Therefore, the southeastern United States during the warm season

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1376605
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Thomas and Noble 10.3389/feart.2024.1376605

TABLE 3 Choices for qualitative and unbounded hyperparameter selection.

is a suitable environment to study non-severe thunderstorms.
This study will establish relationships between the four previously
mentioned lightning indices, as computed by a physics-based
ensemble of Weather Research and Forecasting (WRF) model
simulations and observations of lightning through the use of a
multilayer perceptron classifier.

There is some regional and event-specific variation to the
relationship between lightning indices and lightning flashes
(Yair et al., 2010). For example, while the LPI is clearly indicative
of lightning, there is currently no universal relationship between
the two. One method for mitigating this is to form a regression on
the sorted values (Brisson et al., 2021; Mortelmans et al., 2022). This
disregards amplitude error, favoring smoothing out spatiotemporal
errors associated with the model. Other circumstances, such as the
seasonality or event-specific nature of lightning, are also outstanding
factors. Lead time or model configuration may be influential in
identifying the predictability of lightning strikes in a future study.
Disentangling the diagnostic capacity of lightning indices from
model error is a prerequisite for identifying a generalizable, albeit
local, relationship for predicting lightning.

We hypothesize that identifying a mean classification
relationship from a physics-based model ensemble should reduce
the bias associated with individual simulations. To this end, we
trained a series of machine-learning based tool on a physics-based

ensemble that will test different configurations of the microphysics
and PBL schemes. The tool should combine lightning indices to
identify a probability of cloud-to-ground lightning. This tool should
not be reliant of model configuration, as to compare the model
performance. The microphysics schemes should address variances
in knowledge concerning microphysical development, while PBL
schemes concern variances in the development of convection and
the supply of moisture. Both are important to the development of
convection, and especially lightning.This should lead to an ensemble
average of probabilities based on indices that had variations from
microphysics and PBL parameterizations. The effectiveness of this
ensemble averaged probability will be tested on a subsequent period
on eachmodel run to comparemodel configurations for optimal use.
The metrics to be evaluated include correlation coefficient, elements
of confusion matrices, and the standard deviation normalized by
the observations.

2 Methods

Operational forecasts are issued by the Atmospheric
Technologies Group (ATG) of the Savannah River National
Laboratory (SRNL) to protect workers at the Savannah River Site
(SRS). SRNL and SRS have a wealth of meteorological observations
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FIGURE 3
Flowchart showing part of the ensemble of machine learning tools in an abridged format (with only two variables and two members of the ensemble).

for the southeastern United States, which is a region of increasing
research interest regarding convection (Rasmussen, 2015; Kuang,
2023; Kosiba et al., 2023). SRS is a vast industrial facility with a
large contingent of outdoor workers (over 1,000). ATG provides
tailored hyper-local forecasts to assist in both weather-sensitive
operations and worker safety. ATG is interested in producing
guidance regarding lightning forecasts. Daily numerical weather
model predictions from the Weather and Research Forecasting
model (WRF) (Skamarock et al., 2019), with 36 h of lead time,
are used to assist forecasters (Figure 1). The nested domain (D02)
(Figure 1) is our area of interest. To test the implementation of
the lightning indices into routine forecast operations, we have
adopted the configuration described in Table 1. To create our
12-member set of experiments, we adjusted the microphysics
parameterization, the boundary layer parameterization, and the
surface layer parameterization (Table 2).

For some lightning indices, namely, the LPI and LTI, the
microphysical mixing ratios are crucial for calculation. The
microphysics parameterization modulates latent heating, which
is a requirement for moist convection. The PBL parameterization
is also an important feature, as it modifies the vertical
transfer of heat and moisture that triggers convection. Vertical
fluxes of moisture and heat have an important role in the
development of convection and supply moisture from the surface.
This is relevant, since the eastern US experiences a positive

feedback mechanism between surface moisture and precipitation
(Findell and Eltahir, 2003).

The specific parameterizations (Table 2) were chosen to describe
commonly used PBL andmicrophysics parameterizations according
to a WRF Physics Use survey from August 2015. The control
run (CTRL) for this experiment most resembles the operational
configuration, which uses the Thompson microphysics scheme
(Thompson et al., 2008) and the third order Mellor-Yamada-
Nakanishis-Niino (MYNN) scheme (Nakanishi and Niino, 2006;
2009; Olson et al., 2019). The other microphysics schemes tested
include the Morrison (Morrison et al., 2009) and WRF Single
Moment 6-Class (WSM6) (Hong and Lim, 2006) schemes. The
other PBL schemes examined include the Yonsei University (YSU)
(Hong et al., 2006), the Mellor-Yamada-Janjic (MYJ) (Mesinger,
1993; Janjić, 1994) and MYNN scheme (Nakanishi and Niino, 2006;
2009; Olson et al., 2019), including the 2.5 (denoted as MYN2)
and third order scheme (MYN3). The YSU scheme is a nonlocal
PBL scheme, while the MYJ is a 1.5-order turbulence closure
model, and the MYN2 and MYN3 use a 2.5 and third order
local turbulence closure. WSM6 is the only single moment (bulk
mixing ratios only) microphysics scheme considered, while the
Thompson and Morrison are both double-moment (mixing ratios
and concentrations) microphysics parameterizations.

Two weeks of 36 h simulations were conducted for each
experiment, with the first initialization on 7 July 2022 at 6
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TABLE 4 Absolute values of the coefficients for the Principal Component Analysis divided by the sum of the coefficients for each standardized
lightning index.

UTC and the last simulation initialized 20 June 2022 at 6
UTC. One slight difference between the experimental setup
described and the operational settings is that operationally,
nudging of in situ temperature, humidity, and wind observations
at the SRS is implemented. Although observations are available
for the entirety of this study, incorporating observations via
nudging may reduce the differences between experiments, and
thus dilute our result. While routine simulations are conducted
every 6 h, only simulations initialized at 6 UTC were conducted
for this study. The reasoning for this is that a forecaster may
place more weight on recent initializations rather than previous
initializations and 6 UTC runs are the most current to issue the
morning forecast. During this period, lightning was abundant
and occurred on most days (Figure 2). The National Lightning
Detection Network (NLDN) (Murphy et al., 2021) was chosen
since it measures cloud-to-ground lightning strikes, which is
more relevant to the safety of outside workers. The number of
lightning strikes varied during this period, with a peak exceeding
400 strikes, as well as a single strike in a 15 min period. There
were some time periods where lightning was not observed in
the NLDN but observed by the Geostationary Lightning Mapper
(GLM), namely, 18 and 19 July 2022. That is, if lightning was
observed by the GLM, which observes all lightning by detecting
flashes in the visual range on the Geostationary Operational
Environmental Satellite, but not reported by the NLDN, which
observes cloud-to-ground lightning, then discrepancies between
the two may be caused by cloud-to-cloud or cloud-to-air
lightning. While we primarily used the NLDN for training the

model, the GLM was useful for independent verification in
the analysis.

We used four lightning indices to diagnose lightning. The
Lightning Potential Index (LPI) was calculated by WRF’s internal
implementation and is computed by integrating the product of the
vertical velocity squared against the ratio of the geometric mean
to the arithmetic mean of liquid and frozen hydrometeors. The
product of CAPE and precipitation rate (CAPE-P) was computed
by multiplying the precipitation rate, which was calculated by
applying centered finite differencing to accumulated precipitation,
by the CAPE as computed by WRF-Python (Ladwig, 2017).
The PR92W index uses the maximum vertical velocity, similar
to that found by Price and Rind (1992), but scaled by the
resolution (Wong et al., 2013). The McCaul’s Lightning Threat
index (LTI) uses a combination of vertical graupel flux and total
hydrometeors. LTI, LPI, and PR92W all use the vertical velocity,
while CAPE-P simply uses CAPE as a proxy for the vertical velocity.
LTI and LPI directly use the 3Dmixing ratios of microphysics, while
CAPE-P uses the precipitation rate to infer the convection being
generated and PR92W does not consider the microphysical state.
While both LPI and PR92W can be computed internally within
WRF, all calculations of the lightning indiceswere performed offline.

Model errors in convective initiation were accounted for by
both smoothing and sorting. First a 3 h moving average was
applied to both lightning indices and gridded binary NLDN
observations. Then the model and observed values were sorted at
each timestep, retaining chronological relevance. This is similar
to Brisson et al. (2021) and Mortelmans et al. (2022) which sorted
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FIGURE 4
Taylor diagram of the composite machine learning model as applied to the training dataset.

all values in space and time, but is altered for operational value
since each model run comprises 36 h of predictions. While this
method of spatiotemporal reorganization may result in less pristine
relationships between lightning indices and lightning observations,
it will prevent associating lightning indices with observations
potentially 36 h prior. Moreover, it should be more analogous to
how lightning would be operationally evaluated than absolutely
sorting time and space. Indices are still sorted in space to account
for discrepancies in location of model convection, but smoothing
and temporal sequencing retains the temporal relevance. This
processing was only applied to the data ingested by a machine-
learned (ML) member.

Each experiment was divided into two datasets. Simulations
initialized between 7 and 13 July 2022 were designated as a training
dataset, while simulations initialized between 14 and 20 July 2022
were designated as a testing dataset. The testing dataset may then be
a mostly independent dataset, with the exceptions of being closely
related in time as well as the 12 h overlap between the experiments
initialized on the 13 July and 14 July. The lightning indices of
the training dataset of each experiment were converted into the
standard score (subtracted by the mean and divide by the standard
deviation) by the Standard Scaler, and then underwent Principal

Component Analysis (PCA) via scikit-learn (Pedregosa et al., 2011).
Each principal component is a linear combination of the four
lightning indices that is orthogonal to the other components.
Orthogonality is important for reducing the multicollinearity that
arises when several indices are related on a similar physical process-
namely, the generation of lightning. The first two components of
the PCA were then used to train a multilayer perceptron classifier-
type of neural network on binary observations of lightning. The
pipeline of the StandardScaler, which divides the mean-subtracted
variable by its trained variance, to PCA to multilayer perceptron
classifier (MLPClassifier) is denoted a ML member, with each
experiment associated with a ML member. The MLPClassifier can
provide not just a classification, but also a probability for each
classification by applying a forward pass. Some hyperparameters,
shown in Table 3, were chosen via an exhaustive grid search with
cross-validation (GridSearchCV), maximizing the equitable threat
score. The other hyperparameters, some of which were dependent
on the results of GridSearchCV, were found by testing randomly
selected values on a normal distribution (RandomizedSearchCV)
to further optimize the equitable threat score. Details regarding
the final hyperparameters and the mean equitable threat score as
applied to the (processed) training dataset of the MLPClassifiers
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FIGURE 5
Taylor diagram of the machine-learning tool as applied to the testing dataset of each experiment.

are found in Supplementary Table S1. Thus with 12 ML members
available, a composite mean of probabilities of lightning can
be attained.

After a ML member was trained on each experiment during
the training period, the ensemble of ML members was applied
to each experiment within the testing dataset. The average of the
probabilities was used, which ideally would make a composite
estimator for determiningmodel performance, creating an impartial
post processed binary lightning product for identifying model
performance. This process is depicted in Figure 3. One advantage
to this is the generation of multiple probabilities gives a possible
range and confidence to the estimate, but we do not explore this
aspect in any detail. There are several weaknesses to this, such
as biases in the training data leading to biases in the estimator.
While taking an average of the probabilities should lead to an
impartial probability and attempts to avoid overfitting, the biases
in each trained dataset can lead to biases in evaluating the testing
dataset. Additionally, the composition of several neural networks
and training on a recurrent phenomenon limits the scope of the
usability and portability of this composite of ML members. One
other downside of having different PCAs associated with different

experiments brings up an issue of not being able to intercompare the
components of each PCA.

3 Results

3.1 Fittedness of ML members on training
data

Table 4 shows the percentage of the contribution, which we
define as the absolute value of the coefficients normalized by the
sum of the absolute values. Since the variables are standardized
by subtracting the mean and dividing by the standard deviation,
the absolute values depict the total contribution to each Principal
Component (PC). For the first component, each of the indices
have similar contributions, though both CAPE-P and PR92W have
slightly more of a contribution than LPI or LTI. For PC2, the LPI is
most influential in the Morrison and WSM6 microphysics schemes,
while the LTI is most influential in the Thompson microphysics
scheme. The approximate weighting of PC1 between all 4 indices,
with slight weighting towards CAPE-P and PR92W suggests that
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FIGURE 6
Maximum probability of lightning in the model domain for the simulations initialized 14 July 2022.

PC1 represents the presence of convection. For PC2, the LPI
and LTI both rely heavily on microphysics, suggesting secondary
importance on the microphysical state as compared to the presence
and activation of convection. In short, PC1 is indicative of the
presence, or at least the conditions conducive of, convection, while
PC2 describes the sufficiency of the microphysics for generating
lightning. This assessment of the similarity in performance, but
with weighting toward the inclusion of microphysical processes, is
consistent with the findings of Saleh et al. (2023).

Taylor diagrams (Taylor, 2001) can map out the accuracy of
the composite mean of ML members applied to each experiment,
relative to the observed mean. On the radial axis is the normalized
standard deviation (relative to observations), while the azimuth
contains the correlation coefficient. The distance from a “Perfect”
prediction is proportional to the root mean squared error. For a
timeseries, the angle along the arc connecting the observed mean
to the perfect prediction (which will be referred to as the critical

arc) denotes phase error. The corollary for a spatiotemporal dataset
is differences in timing or space. By contrast, the radial distance
from the arc is indicative of an under- or over-amplified signal.
As applied to our problem regarding lightning prognostication, the
Taylor diagram is advantageous as it may assess the probabilities
of lightning to the boolean observations, as compared to other
diagrams that may require a threshold that could be considered
arbitrary or subjective based on allowable risk. To summarize,
Taylor diagrams are a useful way of comparing the variability
(radial coordinate) and correlation (angular coordinate), relative to
observations, for members of an ensemble.

Figure 4 shows a Taylor Diagram for the spatial maximum
probability from the composite mean of the ML members, as
applied to the unprocessed training dataset. The clustering of the
experiments suggest consensus. All of the experiments show over
predictions in the variability. The departure from the “Observed
mean” indicates some informedness regarding the timing of the
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FIGURE 7
Similar to Figure 6, but for 18 July 2022.

lightning. The departure from the critical arc (bolded) may be the
result of errors in convection production (i.e., lightning indices
are high before or after lightning was produced), the result of the
processing applied to the training dataset prior to the fitting of
the data, or the production of either cloud-to-ground or cloud-
to-air lightning within the model. Although this performance is
drastically improved when applied to the processed training dataset
(not shown) applying this to the unprocessed dataset is more
representative of the accuracy a forecaster at SRS gauging lightning
potential may experience.

3.2 Performance of the composite mean of
ML members and experiments

Figure 5 applies the same concept of the Taylor diagram to the
spatial maximum probability of the testing dataset. As expected,
the composite mean probability of the ML members was not as

accurate for the testing dataset as the training dataset.The composite
mean probability of the ML members was far more variable for the
testing dataset than the training dataset. This increase in variability
may be the result of forecast periods where all of the lightning
generated was not cloud-to-ground. This is reinforced by the ratio
of cloud to ground lightning to total lightning, which can be
inferred by Figure 2.

In order to reduce the influence of spatial error, the maximum
probability of lightning was compared to the presence of lightning
in the domain. Figure 6 shows a timeseries of what a forecaster
may expect out of each experimental configuration on 14 July
2022. All of the experiments were able to show high probability
of lightning for the period with long periods of cloud-to-ground
lightning, though with some timing issues. The MYN2 experiments
with double moment microphysics (MYN2_Thomp, MYN2_Morr)
were the only experiments that produced high probabilities for
the lightning event near 15 July at 04 UTC, though those also
had timing issues. The WSM6 experiments also seem to be overly
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TABLE 5 The confusion matrix (percentages of true and false positives and negatives) using the maximum probability in D02 for each experiment in the
testing dataset, as compared to binary lightning observations. Incorrect predictions (false positives and false negatives) are shaded in brown.

conservative with lightning probabilities in the YSU, MYN2, and
MYN3 experiments leading to more underestimates of lightning.

Figure 7 shows a forecast period, initialized 18 July 2022 06
UTC, where no cloud-to-ground lightning was observed, making
all predictions of lightning false positives. Yet high probabilities
of cloud-to-cloud or cloud-to-air lightning were observed by
the GLM. This suggests that the composite mean of the ML
members is incapable of discriminating cloud-to-ground lightning,
which impacts workers on the ground, from lightning that may
not impact workers. Figure 7 also shows how much erroneously
predicted thunderstorms may impact forecast accuracy. All of the
experiments indicate high probabilities of lightning over a long
period for a brief duration of observed lightning. By 19 July at
04 UTC, all of the experiments indicate that the lightning event,
which observations suggest wasmore succinct than the observations
suggest, spurious convection then increased the probability at
approximately 19 July at 08 UTC. Here, WSM6 experiments
predicted higher (more erroneous) probabilities than the Morr
or Thomp experiments. Towards the end of the forecast period,
at near 16 UTC on 19 July, all the experiments except for
MYN3 predict non-negligible probabilities of lightning, leading to
false positives.

If the probabilities are used to decide on lightning or no
lightning, a confusion matrix may be computed. We applied a
threshold of 50% to the composite mean probability of the ML
members as applied to the testing dataset to make confusion
diagrams for each experiment, as shown in Table 5. Although
intuitive, true negatives are themost frequently observed occurrence

with probabilities ranging from 63%–71%. WSM6, which is the
only representative of the single moment microphysics schemes
evaluated in our choice of parameterizations, has the lowest true
positive rate, with MYN3_WSM6 having more false positives than
true positives. The CTRL (represented as MYN3_Thomp) not only
has more true negatives than any of the other experiments, CTRL
has more true negatives than some experiments have total correct
predictions (such as MYJ_Morr or MYN2_Thomp).

4 Discussion

Identifying the relationship between lightning indices and
lightning is not a trivial task. Research is available for guidance,
but there is currently no known universal relationship for
multiple lightning indices. Previous research has generated
possible relationships between the two, but those relationships
were formed using spatiotemporal sorting which presumes
perfect matching of distributions and disregards the potential
for model error. Those studies also focus on cases where vast
quantities of lightning occur, which occur in scenarios where
lightning fatalities may not be as representative of lightning
events that are likely to cause injuries. In “garden variety”
thunderstorms, lightning may still be present, despite weakly forced
convection, resulting in lower lightning indices, and more risk to
outdoor workers.

There are also several indices that may be used to aid in
lightning prediction. And yet these indices are confounded with
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multicollinearity, suggesting that they diagnose a similar attribute,
namely, convection. Within our training dataset, we identified
a maximum variance inflation factor of 24 for one experiment.
The use of Principal Component Analysis to form a regression
relationship (called Principal Component Regression or PCR)
was therefore applied to reduce not just the dimensionality, but
also the multicollinearity of the indices. This PCR was used
to train a classification mechanism to determine the probability
of lightning for each model. With a probability of lightning
attained, each model was evaluated according to the results
of the probabilities generated during the testing dataset, which
were simulations conducted during the latter half of the period
of interest.

One reasoning behind the choice to examine the combination
of microphysics and PBL schemes was to identify possible changes
to CTRL to optimize the prediction of lightning. The results of
this study suggest that no deviations regarding the microphysics
or PBL scheme are necessary but reinforce the initial choice of
model settings. Moreover, this study provides guidance regarding
accuracy of this tool for lightning prediction. However, using
methods to generate ensembles that may attempt to change the
timing or distribution of convection, such as perturbing the initial
and boundary conditions, may be more beneficial for training ML
members than preprocessing or physics-based ensembles.

Despite of the ability of the composite mean of ML members
to produce probabilistic estimates of lightning, false positives
resulted from an overproduction of convection and/or the
generation of lightning that was not cloud-to-ground. One
way to improve upon this is to apply machine learning to
spatial distributions of convection to try to discern between
lightning trajectories. This would require a study over a longer
period. The idea would be to describe the ratio of cloud-
to-ground to total lightning through spatial distributions of
convection.

Another avenue of research is to extend this analysis to
timescales of a year or longer, which will have a variety of mesoscale
drivers for lightning. Training a ML member on an extended period
should provide a diverse set of environments, whereas this study
focused on a consistent environment. Testing the composite ML
tool formed from this study may be a suitable control compared
to the machine learning tool formed from the proposed study.
Besides the amount of data required to be stored, another downside
may be choosing separate training and testing datasets that do not
have a seasonal bias. This may be remedied by choosing systematic
sampling, such as conducted in this study.
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