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The geological structure of the reservoir bank landslide is complex and intricate.
After deformation and damage, it causes river blockage, surges, and loss of
people’s lives and property, posing a huge threat. At present, in academia and
engineering applications, a large number of techniques such as inclinometers,
rain gauges, and surface GNSS deformation monitoring are still used for
monitoring landslides on reservoir banks. This type of monitoring method has
the problem of “point to surface” which can easily lead to missed detection
and reporting in some areas, some disaster points are close to water and
steep, difficult to reach, and equipment installation is difficult. This work
designs and implements a non-contact video quantitative monitoring system
for surface deformation of geological disaster. By constructing a deep learning
neural network, deformation area recognition and displacement quantitative
calculation are achieved; By obtaining continuous images for a long time,
draw the surface displacement-time curve, and output the surface deformation
data and landform changes of the disaster. Meanwhile, this work explores the
impact of different lighting conditions on the recognition results of target areas.
This work can provide non-contact monitoring methods and dynamic warning
support for large-scale monitoring of geological disasters.

KEYWORDS

geological hazards, non-contact monitoring, video monitoring, surface displacement,
machine learning, artificial intelligence

1 Introduction

China is a country with a vast territory and a dense population. Due to
the complexity of its geological structure, as well as the influence of factors
such as climate and mineral development, China often faces the threat of
geological disasters (Liu and Liu, 2012). Especially with the implementation of
many major engineering construction projects, it further affects the surrounding
geological environment and is more likely to lead to the occurrence of geological
disasters. Among them, the geological hazards caused by the construction of large
reservoirs on the reservoir banks have long been of concern to the academic
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community (Peng et al., 2006). Taking the Three Gorges Reservoir
Area as an example, since the impoundment of the Three Gorges
Project, many ancient (old) landslides have been deformed and
revived due to fluctuations in reservoir water level and rainfall
infiltration, posing a significant threat to the safety of people’s lives
and property in the reservoir area, as well as the stable operation of
waterways (Peng et al., 2004; Li et al., 2018; Tian et al., 2020).

Geological hazardmonitoring and early warning is an important
means of disaster prevention and reduction (He et al., 2019). In
2022, a total of 321 geological disasters were successfully predicted
nationwide, avoiding 7,226 potential casualties due to the disaster.
These successful cases of disaster prevention and reduction are
mainly achieved by installing geological hazard monitoring and
early warning instruments such as rain gauges (Rosone et al., 2018;
Yin et al., 2018), crack gauges, GNSS (Zhang et al., 2020; Cina
and Piras, 2015), inclinometers (Liu et al., 2020), and sound and
light alarm systems on the disaster body, which belong to the
contact based geological hazard monitoring method (Li et al., 2016;
Kotta et al., 2011; Iten et al., 2008). Some scholars have also adopted
advanced acoustic emission technology tomonitor the underground
deformation of landslides, which still faces challenges in data
interpretation and optimization applications (Deng et al., 2024).
Due to the steep slopes of some disaster areas, the construction
of cement foundation, monitoring upright pole, and installation
equipment on the disaster area will be constrained by the arrival
conditions and installation conditions. Especially when monitoring
the collapse of the reservoir bank, the installation method of spider
man lifting is often used, which is highly dangerous and difficult
to operate and maintain. Moreover, these contact monitoring
devices can only monitor deformation within a few meters of
the installation location. For disaster areas where monitoring
instruments are not installed, this type of method is often prone to
false alarms.

In recent years, with the development of technologies such
as radar (Rohrbaugh, 2015; Wang et al., 2021; Xiao and He,
2019), laser (Spreafico et al., 2016; Kovshov, 2017), and video

(Khairunniza-Bejo et al., 2004; Yang et al., 2019), non-contact
monitoring methods have also been widely used in geological
hazard monitoring. Interferometric Synthetic Aperture Radar
(InSAR) technology and wavelet analysis are used to conducted
a comparative analysis of the deformation processes of reservoir
and non-reservoir landslides in the Jilintai area between 2017 and
2022 (Ye et al., 2024). Through practical applications, it has been
demonstrated that the time-series InSAR method, LiDAR scanning
method, and image comparison method can detect the deformation
sequence of monitoring objects, verifying the effectiveness of
non-contact monitoring methods for deformation monitoring of
reservoirs, dams, buildings, disaster bodies, etc. The monitoring
range is wider than the contact based “single point monitoring”
and the monitoring range is wider. Smartphones have also been
applied in rock slope deformation monitoring, providing an easy to
implement and low-cost solution for non-contact video monitoring
(Fang et al., 2024).

This work focuses on the monitoring of geological hazards
on the reservoir bank caused by reservoir construction. Based on
the photos of the disaster body captured by cameras, a digital
image correlation method using artificial intelligence to solve the
displacement field of landslides is proposed. The advantage of non-
contactmonitoringmethods is that there is no need for construction
operations on the disaster body, and the monitoring range can
cover the entire disaster body, rather than the vicinity of a limited
number of contact monitoring equipment. This can avoid warning
omissions caused by improper equipment deployment, providing
technical support for non-contact geological disaster monitoring
and warning methods.

2 Overall system design

The non-contact video quantitative monitoring method is
a non-contact monitoring method aimed at monitoring the
deformation of the disaster body without installing any equipment

FIGURE 1
Overall architecture diagram of non-contact intelligent video quantitative monitoring system.
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FIGURE 2
Front end collection system schematic diagram.

TABLE 1 Typical camera control command format.

Instruction byte Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

meaning sync byte Address code Instruction code 1 Instruction code 2 Data code 1 Data code 2 Check Code

Example 0xff 0x01 0x00 0x08 0x00 0xff 0x08

function Pan tilt up

or cooperative targets. This work obtained on-site images of
disaster bodies through high-definition cameras, and identified
the displacement information of the disaster body by comparing
the differences in the images. Therefore, the system design has
the following requirements: (1) In order to achieve day and
night monitoring of disaster bodies, infrared laser compensation
devices need to be installed to obtain clear night vision images
of distant disaster bodies. (2) Due to the fixed resolution of
the camera, the detection accuracy of the system is closely
related to the size of the image. In some cases, image stitching
is required, so it is also necessary to introduce pan tilt and
slide rails. (3) In outdoor environments, solar power supply
is required for power management and low-power design. (4)
Long term image data takes up a large amount of space, and
hardware requirements are high based on artificial intelligence
and classical image solving algorithms. Therefore, it is necessary
to use servers for image data storage and calculation. Based
on the above requirements, the overall system design is shown
in Figure 1.

The non-contact video quantitative monitoring system first
obtains images from the camera, and then transmits them to
the server through the 4G network. Through the neural network
deployed on the server, the displacement changes are calculated,
and finally, warning information is issued through the warning
service software. The perception layer integrates high-definition
cameras, infrared laser compensation devices, gimbals, slides, and
data transmission chips to achieve visual perception of disaster

bodies. The transmission layer forms a complete closed loop
through the transmission chip, 4G mobile network, and fixed
IP of the server carried by the non-contact video quantitative
monitoring system, which is used for image transmission and
remote control. The data layer uses cloud servers for image storage,
forming a sequence of disaster body images with timestamps.
The application layer includes functions such as data solving,
data analysis, result display, and user message reminders. The
application layer is mainly completed through Cloud storage and
cloud computing. All on-site photos and neural networks used
for calculation are deployed in the cloud, and the calculation
results are pushed to the monitoring and warning platform
and users through the server. Through these four layers of
architecture, the system can achieve functions such as non-contact
perception, intelligent collection, quantitative calculation, and
intelligent warning.

3 Front end collection system design

The front-end acquisition system includes a high-definition
camera, infrared laser compensator, pan tilt, slide rail, and main
control circuit board. The high-definition camera and infrared laser
fill module are mounted on the gimbal and also receive logical
control from the main control board. The main control circuit
board mainly realizes functions such as image acquisition, image
storage and transmission, acquisition logic control, power supply
and low-power management. Due to the difficulty in providing
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FIGURE 3
485 communication circuit design schematic.

FIGURE 4
System data collection workflow.

electricity in the wild, this system uses a combination of solar panels
and batteries. The principle of the front-end collection system is
shown in Figure 2.

3.1 Microcontroller

The system adopts RK3568 as the core control chip, which
integrates a quad core Cortex-A55 processor and is equipped
with a new Arm v8.2-A architecture, effectively improving overall
performance. The GPU adopts the Mail G52 2EE dual core

architecture, supporting 4 K decoding and 1080 P decoding, CBR,
VBR, FixQp, AVBR, QpMap, and ROI encoding. The image
API supports OpenGL ES3.2 and Vulkan1.1. The chip adopts
advanced 22nm technology, with a main frequency of up to 1.8 GHz
and low power consumption and high performance. Supports
one click conversion of mainstream architecture models such as
Caffe/TensorFlow/TFLite/ONNX/PyTorch/Keras/Darknet.

The main control chip is used to build the main control
board, which has the following system characteristics: (1) High
performance: adopting the quad core A55 scheme, with a main
frequency of up to 1.8 GHz, supporting high-definition decoding
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FIGURE 5
Algorithm solving process.

in various formats such as 4KH.264/H.265. (2) Multiple network
interfaces: Supports 2.4 GHz/5 GHz dual band WiFi, wired
100 Mbps Ethernet, 4G wireless network. (3) Rich extension
interfaces: Supports USB, TTL, RS232, RS485, and I2C extension
interfaces. (4) SupportsAndroid andLinux systems, supports system
optimization, development customization, and is suitable for APK
development.

3.2 Communication protocol

High definition network cameras have the characteristics of
convenient and fast development, and are equipped with commonly
used camera communication protocols. The main control board
communicates throughRS485 and controls high-definition cameras,
infrared laser compensation devices, gimbals, slides, etc., in PELCO-
D protocol format. The movement parameters can also be set
and operated through the built-in operating system on the main
control board, using IE controls or client configurations. PELCO-
D communication data format: 1-bit start bit, 8-bit data, 1-bit stop
bit, invalid check bit. Default communication baud rate: 9600B/S,
default address 1.

All numerical values in the PELCO-D protocol are hexadecimal
numbers, and the synchronization byte is always FFH; The address
code is the logical address number of the camera, ranging from 00H

to FFH, and the instruction code represents different actions; Data
codes 1 and 2 represent horizontal and vertical velocities (00-3FH)
respectively, while FFH represents “turbo” velocity;The checksum is
MOD [(Byte 2 + Byte 3 + Byte 4 + Byte 5 + Byte 6)/100H]. A typical
control command is shown in Table 1.

RS-485 adopts balanced transmission and differential
reception, therefore it has the ability to suppress common
mode interference and is the preferred serial interface for long-
distance transmission and multi station communication. The
main control chip sends control commands and receives return
data through RS485. The design of the transmission circuit is
shown in Figure 3.

3.3 Power system design

The power system includes: solar photovoltaic panels, solar
charging control, battery and power management chip LM2596, to
provide functions such as charging and energy storage, power supply
stabilization, and low consumption management for the system.
The low-power control board serves as the power management
core, and in standby mode, all power consuming peripherals
(such as the slide, pan tilt, camera, and RK3658 motherboard)
will be disconnected from power to achieve complete zero power
consumption of the peripherals. Moreover, when the power control
board is in a non shooting state, it will enter a low power state,
allowing the entire system to maintain low power consumption.
The low-power control board will periodically wake up and provide
power to RK3568 and enter normal working mode. The low-power
control board carries a low-power 4G communication module
and maintains communication with the server at all times to
ensure that the entire workflow can be controlled through the
server at any time.

3.4 Data transmission module

The data module adopts the EC21 model for remote
communication. EC21 Mini PCIe is an LTE Cat 1 wireless
communication module designed for the transition from
teleportation to M2M and IoT fields, using the PCI Express
Mini Card standard interface. It can well meet the application
needs of customers for high cost-effectiveness and low power
consumption, and supports a downlink rate of 10 Mbps and a
maximum uplink rate of 5 Mbps. The EC21 Mini PCIe series
is suitable for stable and reliable LTE network connections.
EC21 Mini PCIe is equipped with rich network protocols,
integrates multiple industry standard interfaces, and supports
various driver and software functions (such as USB to serial
driver in Windows 7/8/8.1/10/11, Linux, Android and other
operating systems); Greatly expanding its application scope inM2M
and IoT fields.

3.5 Overall workflow

The system sets the monitoring frequency according to actual
needs. When the scheduled collection time is reached, the system
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FIGURE 6
Semantic segmentation principle diagram.

FIGURE 7
Monitoring area automatically extracted through semantic segmentation.

automatically recovers from a low-power state to a normal
working state. The system will turn on the power of peripheral
components such as the slide rail and gimbal, and the gimbal
will start self checking and the slide rail will begin to return
to its original position. After preparation, adjust the camera’s
horizontal and vertical posture, adjust the focal length to the
preset position, perform focusing, and start shooting. The night
system will automatically activate the infrared laser compensator.
After taking a set of photos, the system will decide whether
to start the next set of photos based on the settings until the
shooting is completed. After the shooting is completed, the external
device loses power, and the main control board packages and
uploads the captured image files to the server for algorithm
calculation as shown in Figure 4.

4 Design of quantitative displacement
calculation algorithm

4.1 Overall algorithm process

After the image is transmitted to the server, the solution
algorithm begins to perform quantitative displacement analysis on
the image. Firstly, the algorithm will evaluate the image quality,
including its clarity, jitter level, etc., Images that do not meet
the calculation requirements will be discarded. The image that
meets the calculation requirements will first undergo semantic
segmentation, cutting out interference areas such as vegetation and
sky in the image, and extracting features from the reserved areas
(Hsieh et al., 2011).Then, the algorithm analyzes the surface terrain,
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FIGURE 8
Working principle of local feature matching method.

FIGURE 9
The geographical location of the Qutang Xiakou Dangerous Rock Zone.

identifies differences in the surface, and performs feature matching
on manually selected monitoring areas to identify displacement in
key areas. Figure 5 shows the algorithm flowchart.

4.2 Semantic segmentation

In order to eliminate the interference of vegetation and
other factors on the measurement of the target area, a semantic
segmentation method based on deep learning is adopted
to automatically extract effective monitoring areas. Semantic

segmentation is a classification at the pixel level, where pixels
belonging to the same class are grouped together. Semantic
segmentation is a method of understanding images from the
pixel level. DeepLab v3 is currently a widely used semantic
segmentation method, which is a semantic segmentation model
based on deep convolutional neural networks, proposed by the
Google Brain team in 2017 (Chen et al., 2017) as shown in Figure
6. The main feature of DeepLab v3 is its ability to effectively
utilize multi-scale contextual information and low-level features
for semantic segmentation, achieving excellent performance on
multiple datasets.
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TABLE 2 Template for monitoring areas of disaster bodies (working
condition 1).

Zone 1 template Zone 2 template Zone 3 template Zone 4 template

Zone 5 template Zone 6 template Zone 7 template Zone 8 template

DeepLab v3 uses deep convolutional neural networks such as
ResNet or Xception as its backbone network to extract features
from input images. After the backbone network, DeepLabv3 uses
the ASPP module to extract multi-scale features from feature
maps. The ASPP module includes multiple parallel convolutional
layers, each of which uses different sizes of dilated convolution
kernels to convolve feature maps to capture contextual information
at different scales. After the ASPP module, DeepLabv3 uses the
Decoder module to upsample and fuse feature maps to obtain
more refined semantic segmentation results. The Decoder module
includes an upsampling layer and a fusion layer, where the
upsampling layer upsamples the feature map to the same size
as the input image, and the fusion layer fuses the upsampled
feature map with low-level features in the backbone network to
improve the accuracy of semantic segmentation. Figure 7 shows
the effect of removing some interference areas through semantic
segmentation algorithm.

4.3 Feature extraction and matching

Most existing matching methods include three independent
stages: feature detection, feature description, and feature matching.
In the detection stage, prominent points such as corners are first
detected from each image as points of interest. Then extract local
descriptors around the neighborhood of these interest points.
The feature detection and description stage generates two sets of
interest points with descriptors, and then finds their point-to-
point correspondence through nearest neighbor search or more
complex matching algorithms. However, in low texture areas or
when repetitive patterns occupy most of the field of view (especially
in large soil cover layers, similar rock surfaces), the feature detector
may not be able to extract enough points of interest. Research has
found that compared to machine learning, humans are better at
discovering corresponding relationships in areas with less distinct
features, not only based on local neighborhoods, but also on larger
global backgrounds. Therefore, the large receptive field in feature

TABLE 3 Template for monitoring areas of disaster bodies (working
condition 2).

Zone 1 template Zone 2 template Zone 3 template Zone 4 template

Zone 5 template Zone 6 template Zone 7 template Zone 8 template

extraction networks is crucial (Choy et al., 2016; Rocco et al., 2018;
Sun et al., 2021). This work adopts a new detector free local feature
matching method, which provides a global acceptance domain that
enables dense matching in areas with fewer textures.Its working
principle is shown in Figure 8.

5 Experimental testing

5.1 Test area

TheQutangxia ancient boardwalk dangerous rock zone is widely
distributed with a large number of small-scale loose dangerous rock,
surface fractured zones, and dangerous rock masses as shown in
Figure 9.There is a possibility of small-scaleweathering and collapse,
loose block collapse, and dangerous rock collapse. This time, non-
contact surface deformation measurements were conducted on
dangerous rock masses located in Groups 14 and 15 of Qutangxia
Community, Kuimen Street, which have a certain scale and may
form surging waves. The monitoring object is WY08, with the top
elevation is 219 m, the bottom elevation is 168 m, and the overall
slope is about 83°. The dangerous rock is 15 m wide, 62 m high, and
13 m thick, with a total area of about 930 m2 and a total volume of
about 12090 m3. The terrain in the area is steep cliffs, with a steep
slope on the banks of the Yangtze River.The cracks in the dangerous
rock mass are well-developed and cut into blocks by cracks. The
cracks are interconnected, and rainfall infiltration has a significant
impact on the stability of the dangerous rock mass. Under rainfall,
earthquakes, or artificial disturbances, it is prone to collapse and
falling blocks, with potential threats to the Yangtze River waterway
and some scenic boardwalks below, which may cause economic
losses of about 6 million yuan (CNY).

5.2 Data analysis

In order to improve the calculation accuracy of non-contact
video intelligent monitoring systems, this work adopts a dual
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FIGURE 10
Comprehensive template matching improves matching success rate.

FIGURE 11
Calculation results of displacement in various monitoring areas.

template matching method, which establishes matching templates
for different working conditions, and the algorithm automatically
calculates the optimal matching result, thereby minimizing the
impact of interference conditions. Tables 2, 3 show the matching
templates for each monitoring area under different working
conditions (Among them, Condition 1 is the template under
morning lighting conditions, and Condition 2 is the template under
afternoon lighting conditions. Due to different lighting angles,
disasters will produce shadows of different sizes, which will affect
the accuracy of monitoring area matching), and Figure 10 shows
the matching results for each area in the actual photos taken. Left
image of Figure 10 shows the region matching result after applying
the template for working condition 1, and it can be seen that due
to the influence of lighting, there are shadows in some areas. When
applying the template of working condition 1, areas 1, 2, 4, and
7 all have deviations in the center coordinates of the identified
areas. The actual situation is that there is no overall displacement
of the disaster body, and the system has generated false alarms. The
right figure in Figure 10 shows the matching result of the system
automatically calling the template for working condition 2, and all
8 areas are successfully matched within the fluctuation range of 4

pixels, indicating that there is no displacement change in the target
area, consistenting with the actual situation.

In practical applications, disaster bodies may produce shadows
of different sizes and positions due to different angles of sunlight
exposure. This is an unavoidable phenomenon, namely the different
working conditions mentioned earlier. These varying degrees of
shadows can affect the accuracy of regionmatching work.This work
establishes multiple sets of lighting condition templates for different
monitoring areas, selects the best matching results, and improves
the robustness of the recognition algorithm, which can effectively
overcome the impact of different lighting conditions.

The system uses an 8-megapixel camera as the image acquisition
tool, with an image resolution of 3,840∗ 2,160.The camera is 450 m
away from the dangerous rock mass and sampling interval is 1 hour.
After region matching, calculate the distances between each region
separately and use this distance array as the initial monitoring
value. In the subsequent monitoring process, if a certain distance
changes, the specific deformation area can be analyzed based on the
relative distance relationship.Thismethod is particularly suitable for
disaster body dumping, displacement, and regional displacement, as
shown in Figure 11. We analyzed 72 sets of images from November
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6th to 8 November 2023, for a total of 3 days, and the solution
results were basically stable within 5 pixels. Despite all this, there
are fluctuations near the 38th group of data. Based on the analysis of
on-site photos, it should be caused by rock color changes caused by
rainfall and imaging conditions changes caused by water mist in the
air. After 6 h, the calculation results returned to normal levels.

6 Conclusion

This work designed and implemented a non-contact
measurement system for geological hazard surface deformation
based on video technology, detailed the design scheme and
application process of the system, and implemented multi
monitoring area matching and identification of displacement. The
work has achieved the following results:

(1) By using artificial intelligence methods, disaster body
features are automatically extracted and matched, without
the need to install monitoring targets on the disaster
body, achieving more thorough displacement monitoring
without cooperative targets. Compared to traditional contact
monitoring methods, using non-contact measurement
methods can avoid construction and equipment debugging
on disaster bodies, effectively reduce construction difficulty,
save monitoring costs, and ensure personnel safety.

(2) Multiple displacement monitoring areas can be set up, and
identify and match the monitoring areas in the captured
images at different time periods, while returning the center
coordinates of these areas. At present, the accuracy of the
system is 5 pixels (pixel to actual distance calibration has not
yet been carried out).

(3) Disaster photos can be transmitted in real-time to the data
management server for synchronous calculation, providing
effective data reference for geological disaster management
personnel and emergency experts, reducing casualties and
property losses.

Meanwhile, in subsequent research, there is room for further
improvement in the system, mainly manifested in the following
aspects:

(1) Changes in field lighting conditions can easily affect the
imaging of disaster bodies, especially the shadows of rock
masses, which pose great difficulties in image feature
matching. This work proposes a comprehensive matching
method using multiple templates to effectively overcome the
influence of lighting, but reducing the mismatch of shadow
areas on displacement calculation will still be an important
research direction.

(2) The resolution, shooting distance, and focal length of the image
can all affect the calculation results. The shooting distance is
determined by objective monitoring of the scene. The image
resolution is determined by the shooting camera and is a
fixed parameter. Therefore, the larger the focal length, the
larger the image field of view, and the lower the displacement
measurement accuracy.Therefore, the selection of focal length
during shooting is also a crucial parameter.

(3) In rainy and foggy environments, the clarity of the obtained
images will significantly decrease. In this working condition,
how to improve the system’s solving ability is also the main
problem to be solved in the future.

More and more non-contact monitoring methods are being
used for monitoring surface deformation. For example, using
satellite images and interferometric synthetic aperture radar to
analyze the retrogressive saw slump (RTS) activity of permafrost
(Liu et al., 2024), as well as using unmanned aerial vehicle
conducted four unmanned aerial system (UAS) surveys and created
corresponding high resolution digital elevation models (HRDEMs)
and telephotos in the Heifangtai loss tableland (Yang et al.,
2021).These are successful cases of using non-contact measurement
methods for surface deformation. The video monitoring method
can conduct all-weather surface deformation monitoring, with
advantages in data volume and frequency of data acquisition, strong
timeliness, and is very suitable for monitoring and early warning of
geological disasters. The monitoring area recognition and matching
algorithm proposed in this work can improve traditional video
monitoring into quantitative calculation, and has certain market
application prospects.
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