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Laboratory of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences
(CAS), Chengdu, China, 4Chengdu Hikvision Digital Technology Co., Ltd., Chengdu, China

Neural networks have become integral to remote sensing data processing.
Among neural networks, convolutional neural networks (CNNs) in deep learning
offer numerous advanced algorithms for object detection in remote sensing
imagery, which is pivotal in military and civilian contexts. CNNs excel in
extracting features from training samples. However, traditional CNN models
often lack specific signal assumptions tailored to remote sensing data at the
feature level. In this paper, we propose a novel approach aimed at effectively
representing and correlating information within CNNs for remote sensing object
detection. We introduce object tokens and incorporate global information
features in embedding layers, facilitating the comprehensive utilization of
features across multiple hierarchical levels. Consideration of feature maps
from images as two-dimensional signals, matrix image signal processing is
employed to correlate features for diverse representations within the CNN
framework. Moreover, hierarchical feature signals are effectively represented
and associated during end-to-end network training. Experiments on various
datasets demonstrate that the CNN model incorporating feature representation
and association outperforms CNN models lacking these elements in object
detection from remote sensing images. Additionally, integrating image signal
processing enhances efficiency in end-to-end network training. Various signal
processing approaches increase the process ability of the network, and the
methodology could be transferred to other specific and well-defined task.

KEYWORDS

object detection, remote sensing imagery, convolutional neural networks, feature
mining, dynamic association

1 Introduction

The advancement of various technologies, including telecommunications, control
systems, sensors, and manufacturing, has led to the emergence of unmanned aerial vehicles
(UAVs) in themarket. Sensors of various types have been equipped onUAVs (Linchant et al.,
2015), encompassing radar, radio-frequency sensors, Lidar, and cameras ranging from
simple visible light to advanced systems such as multispectral, hyperspectral, or thermal
infrared cameras (Jennifer et al., 2022; Panthi and Iungo, 2023; Tian et al., 2024). From
remote sensing data collected by those sensors, automatic detection and identification of
objects have been widely used in the operation and monitoring of those UVAs. These data
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imageries by visible-light cameras are of great significance for their
abundant information, accessible high resolution, and low costs.

Nowadays, UAVs are being designed tomeet the requirements of
communication, connectivity, speed, and flight time (Mohsan et al.,
2023) in specific scenarios. An important trend is to make UVAs
smarter and more intelligent. It is evident that vision tasks play a
crucial role in the journey toward machine intelligence. Remote
sensing-based approaches demonstrate their significance in the
vision tasks for the operation of unmanned aerial vehicles (Aldea
and Le Hégarat-Mascle, 2015; Jingyu et al., 2022; Kulkarni et al.,
2023). Despite the longstanding existence of this domain, numerous
issues and aspects persist, necessitating further study and discussion,
especially in light of advancements in machine learning. In
analyzing aerial vehicle imagery for vision tasks, the learning
mechanism of convolutional neural networks is paramount. These
approaches leverage image processing, endowing aerial vehicles
with the capability to identify desired targets (Tellaeche et al., 2011;
Wu et al., 2021; Al-Badri et al., 2022). Additionally, the availability
of pretrained deep neural networks facilitates the study of the
underlying mechanisms involved in vision tasks.

Numerous efforts have focused on feature extraction primarily
through manual feature engineering (Lv et al., 2019; Lei et al.,
2021; Ma and Filippi, 2021). In addition to these established
methods, some studies have advanced this approach further. For
instance, Xiao et al. (2014) employed the elliptic Fourier transform
(EFT), enhancing invariance compared with the histogram of
oriented gradients (HOG) features.

Local features constitute the most commonly employed
foundation for capturing the attributes of items, for instance, the
scale-invariant feature transform (Han et al., 2015), HOG (Shao et al.,
2012), and saliency (Han et al., 2014; Zhang et al., 2015). Although
these methods exhibit a degree of adaptability and certain invariance,
they fall short when confronted with intricate scenarios and
heightened performance demands. This limited invariant capability
proves insufficient for practical feature extraction requirements.
Consequently, for aerial vehicles, the imperative to bolster feature
extraction capabilities when addressing diverse objects in remote
sensing imagery becomes increasingly evident.

Traditional handcrafted feature approaches (Xiao et al., 2015;
Li et al., 2020) often falter in remote sensing object detection
due to inherent signal assumptions. Local features represent
the foundational attributes of images, whereas object detection,
conversely, pertains to higher-level semantic analysis. Cheng and
Han (2016) provide an overview of recent advancements in object
detection within remote sensing imagery. In contrast to local
features, part-based models (Huang et al., 2010; Li et al., 2012;
Cheng et al., 2014; Zhang et al., 2014; Cheng et al., 2015) have
gained traction as popular mid-level features. Moreover, some
studies have embraced semantic models for extracting semantic
information rather than relying on superficial features (Sun et al.,
2012; Cheng et al., 2013; Yao et al., 2016).

Considering that traditional image processing approaches rely
heavily on feature extraction operators and are not robust enough,
we conduct a detailed study of convolutional neural networks. In
object detection from aerial vehicle imagery, we focus on the latent
mechanism of feature representation and association, aiming at
broadening the use of image processing for intelligent aerial vehicles,
which may be publicly available and developed for various uses

after further studies. Additionally, neural networks mitigate the
need for stringent data signal assumptions and can be regarded
as a versatile signal model. Through training optimization, these
networks adeptly capture the intricate input–output relationships.

In this paper, we delve into the inner functions of feature
representation and association in object detection from remote
sensing imagery, with the aim of expanding the scope of image
processing for intelligent aerial vehicles. These advancements are
intended to be publicly accessible and adaptable for diverse
applications and future research. The main contributions are
summarized as follows:

(1) We represent object tokens using embedding structures,
whereas global information features are encoded using multi-
head attention. Both methodologies draw inspiration from
natural language processing, enabling the extraction of task-
oriented features across various hierarchical maps.

(2) Image signal processing is employed to associate features from
various perspective representations. This operation involves
correlating target features and global features of remote sensing
data in a pertinent and iterative manner.

(3) Various hierarchical feature signals are represented and
associated to ensure adaptability to convolutional neural
network (CNN) models during training and inference stages.
This signal processing enhances the learning capabilities of
convolutional networks in remote sensing object detection.

2 Related work

Some recent works (Kussul et al., 2017; Long et al., 2017;
Li et al., 2022; Qingyun and Zhaokui, 2022; Ahmed et al., 2023;
Ayesha et al., 2023) have successfully applied deepmodels to remote
sensing object detection. Based on various CNN structures, these
models achieved some performance improvements on these tasks.
From data-driven point of view, the quality of data determines
the performance of the model, and the effect of signal processing
on object detection is ignored. However, for a specific task, when
patterns of the task are already known as exactly true, any approach
based on data-fitting to describe a task can only be a suboptimal
solution. Remote sensing object detection is a typical well-defined
task, which is relatively fixed in imaging scope and types of targets.
For such a well-defined task, common CNN models are not targeted
on how they perform signal processing (Cheng et al., 2015) using
neural network feature maps.

3 Proposed models

In this section, we first introduce the overall pipeline used for the
processing and describe the processingmechanisms. After this, signal
processing to feature maps in the CNN model is analyzed in detail.

3.1 The proposed pipeline of remote
sensing object detection

The overall architecture of our detector is shown in Figure 1.
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FIGURE 1
Pipeline and analysis of our proposed approach.

The first part extracts features for later use, just like the classical
and popular CNN detectors in which convolutional layers are
used as a backbone. The backbone usually is for deep mining and
abstraction in multi-feature semantically. In the part of feature
extraction, we use the residual structure of the famous and efficient
backbone named ResNet50. To problems in the gradient descent
when the model is trained, not only the skip connections are
contained in the backbone but also features of varying depth and
richness are provided as the features are pooled for later use.

The second part in the figure explains the representation block.
The purpose of this block is to let the CNN focus on the features of
interest and extract the important task-oriented features in various
depths dynamically and fully.

The dynamic association part is designed to associate the ROI
(region of interest) features with the attentive global features, which
aims to get information about the remote sensing object. Finally,
the processed information in various depths is added with the
attentive feature maps from multi-head attention and then sent to
the prediction network, and the outputs of classes and locations are
obtained.

3.2 Representation block

Beyond the feature extraction of the backbone, we create two
embedding layers per feature map in the top–down structure. The
function of embedding layers in this paper is shown as Figure 2.
One embedding layer is to get the tokens of proposal boxes, which
can acquire the location of the target determined by the learnable
weights, the other is to learn the tokens for the features per proposal
box. These represent the various features of the objects in images.

In this block, the embedding layers play important roles when
the whole model is trained. In the beginning, features in the features
pool are analyzed by these.The tokens in embedding layers represent
attentive features to our input images. Following these, ROI pooling
and multi-head attention provide the global features and the target
features perspectively for later use. This block is shown as Figure 3.

3.3 Association block

The previous block generates the ROI features and attentive
feature maps. Based on these, the association module generates

FIGURE 2
Embedding layer reduces the data dimension and makes the distance
of feature attributes more reasonable.

new feature maps, which correspond to different kinds of objects
in various inputs. The internal structure of this module is shown
in Figure 4. The input features consist of ROI features (features
of interest) and attention features provided by the attentive feature
maps.

The association operation is essentially made up of
multiplication and addition with nonlinear transformation. In order
to have the ability to adjust dynamically based on the characteristics
of inputs and targets, the attention features containing the highly
important targets and the information generate parameters that can
be used as a basis for the dynamic attention of targets.

To make the whole dynamic mechanism have the properties of
validity and accuracy, this module contains three main operations:

3.3.1 Coefficient matrix (CM)
We designed trainable linear layers and a series of subsequent

operations to get parameter tensors. For input featuremaps,wemake
it a vector in order, Finput = {x1,x2⋯xw∗h}; we define:

Linear(Finput,W∗) = Finput ⋅W (1)

W represents the parameter matrix (wi,j), 0 < = i < = w ∗ h,
0 < = j < = c, and then, we get vector F1.

In this way, given input feature maps Finput and Finput ∈ RH1,W1

are transferred to F1 ∈ RH1∗W1 , F1 ∈ R1,C,H1∗W1 , to channel C = c,
I(x,y) = F1,c,x∗y

1 ; we define factor η, and then, we get the new region:

I (x,y) =
{
{
{

F1,c,x∗y∗η
1 , i f (x ∗ y)//η = 0

0, Otherwise
(2)
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FIGURE 3
Diagram of the representation block.

FIGURE 4
Diagram of the association block.

FIGURE 5
Diagram of matrix multiplication.

To ensure that the size of the tensor is effective and seamless
in different situations, the parameter generation inside the dotted
box is not the same as those outside. We can visually see the
difference between the two from the diagram below.The structure of
parameter generation inside the dotted box is shown in Figure 4.The
structure of parameter generation outside the dotted box is shown
in Figure 5.

We select the non-zero elements in order from I(x,y) and get
tensor Fouput ∈ Rc,h∗w. If the feature maps are not suitable for the
following layers, we can reorganize this to get the coefficient matrix
with the various shapes we want.

The whole process can be summarized as follows:

P = CM (F) . (3)

FIGURE 6
Diagram of association transformation.

3.3.2 Association transformation (AT)
As shown in the dotted box of the figure, nonlinear

transformation is essential and effective. “Norm” represents the
normalization in the neural network; the module generates a feature
map set B = {F1,F2⋯Fm}, B ∈ RH,W,C.

In set B, there are m feature maps, where m is the number of
channels, xij is the i-th pixel value of feature map Fj, and first μb is
calculated.

μB =
1

w ∗ h ∗ m

m

∑
j=1

w∗h

∑
i=1

xij. (4)

w and h represent the width and height of feature maps,
correspondingly.

σ2
B =

1
w ∗ h ∗ m

m

∑
j=1

w∗h

∑
i=1
(xij − μB)

2 (5)

Xi
j =

xij − μB

√σ2
B + ϵ

(6)

Xi
j represents the i-th pixel value of featuremap foutj, in order to have

a better value distribution, we scale this as

Xout
i
j = γX

i
j + β. (7)

γ and β are parameters to be learned.
For two sets B1 = {F11,F12⋯F1m}, B2 = {F21,F22⋯F2m},

we can get two groups of outputs in this way, Bout1 =
{Fout11,Fout12⋯Fout1m} ,Bout2 = {Fout21,Fout22⋯Fout2m}.

Matrix multiplication is used:

Foutm=i = relu(Fout1m=i) ⋅ relu(Fout2m=i) (8)
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FIGURE 7
Diagram of dynamic association.

FIGURE 8
Samples in datasets.

The function relu()mentioned above is defined as follows:

relu (x) =Maximum (x,0) (9)

This part is shown in Figure 6. The whole process can be noted
as follows:

Bout = AT (B1,B2) . (10)

3.3.3 Feature association (FA)
When we get features of interests F1 ∈ Rh1,w1 and attention

features F2 ∈ Rh2,w2 , the network generates parameter tensors:

Bout1 = CM (F2) . (11)

We reshape Bout1 to B1 ∈ Rw1,w3

Then, F1 and Bout are processed as follows:

F3 = AT (F1,B1) ,F3 ∈ Rh1,w3 . (12)

We repeat the first step to generate another coefficient matrix:

Bout2 = CM (F2) (13)

Then, reshape Bout2 to B2 ∈ Rw3,w1 :

F4 = AT(F3,B2) ,F4 ∈ Rh1,w1 (14)

Notably, the input F1 and output F4 are tensors of the same
size, and it is a plug-and-play-in section. Therefore, it can be added
directly later to get a deeper dynamic association module. The
experiments prove that two of these works are better than one.

The whole process can be noted as follows:

F4 = FA (F2) (15)

3.4 Dynamic association

From every embedding layer in the representation block, we get
a group of feature maps with various sizes, B = {F1,F2⋯Fm}, Fi ∈
Rhi,wi . Processed by ROI pooling, we get a series of feature maps with
the same size from B called B1, B1 = { f11, f

1
2⋯ f1m}, f

1
i ∈ R

h1,w1 .
To the classification and regression of remote sensing data,

another group of attentive feature maps is generated by multi-head
attention, and we name them as B2, B2 = { f

2
1, f

2
2⋯ f2m}, f

2
i ∈ R

h2,w2 .
For f2i ∈ R

h2,w2 , we can get coefficient matrix, Pi:

Pi = CM( f2i ) (16)

Then, the features of interest are processed based on the
coefficient matrix:

f3i = AT( f
1
i ,Pi) (17)
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TABLE 1 Image resolution of RSOD.

Category Oil tank Aircraft Overpass Playground

Resolution (m) 0.3 ∼ 1 0.5 ∼ 2 1.25 ∼ 3 0.4 ∼ 1

TABLE 2 Ablation study.

Method Representation block Association block Dynamic association mAP

1 65.4

2 ✓ 65.8

3 ✓ ✓ 66.0

4 ✓ ✓ ✓ 68.6

TABLE 3 Comparison with popular deep learning detection models on RSOD.

Method AP AP50 APs APm APl

Sparse-RCNN (Sun et al., 2021) 64.6 94.7 37.2 69.6 69.8

Yolo-v8 (Reis et al., 2023) 55.0 90.1 48.8 68.8 58.1

Yolox (Song et al., 2022) 53.6 91.1 47.2 65.8 57.0

Faster-rcnn (Ren et al., 2015) 67.9 95.2 52.3 71.5 71.8

Retinanet (Lin et al., 2020) 65.2 95.8 46.1 70.7 69.4

DETR (Carion et al., 2020) 57.4 90.7 8.4 57.1 63.9

ours 68.6 96.6 42.0 62.2 74.4

The highest performance results are shown in bold black.

TABLE 4 Comparison with popular deep learning detection models on
NWPU VHR-10.

Method AP AP50 APs APm APl

Sparse-RCNN 48.8 75.0 26.8 51.9 52.3

Yolo-v8 55.4 85.3 37.4 56.8 61.1

Yolox 53.2 78.7 31.3 55.2 58.8

Faster-rcnn 54.5 81.7 44.7 58.9 53.0

Retinanet 54.5 90.4 20.5 56.2 49.5

DETR 46.5 87.1 16.8 47.2 44.9

Ours 62.7 91.9 35.0 62.1 61.1

The highest performance results are shown in bold black.

Different features processed for the probable objects are inter-
correlated by the dynamic associationmodule. Dynamic association
is shown in Figure 7. The approach of inter-attention makes these
features fully distinguished and compared. We do the operation
below:

f 4
i = {FA( f

3
i )}N1

(18)

{⋅}N1
means that the operation is repeated N1 times. The usual

way is to set fixed anchor boxes to class and regress. Instead, the
approach pays attention to the probable information at the feature
extraction level and compares dynamically from the global attentive
feature maps.

f 5
i = f

4
i + f

2
i (19)

So B5 = { f
5
1 , f

5
2⋯ f 5

m}; for the feature map of the i− th
channel, elements in f 5

i are extracted in order to get a 1D
vector and then classifier and regression layer, which is followed
by the calculation of the final results. The loss function is
calculated as follows:

L = λcls ⋅ Lcls + λL1 ⋅ LL1 + λgiou ⋅ Lgiou (20)

Here, Lcls is the focal loss (Chen, 2009) of predicted
classifications and ground truth category labels, and LL1 and Lgiou
are L1 loss and generalized IoU (intersection over union) loss
(Tianditu, 2016) between normalized center coordinates and height
and width of predicted boxes and ground truth box, respectively.
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TABLE 5 Performances of various categories on RSOD.

Category Aircraft Playground Oil tank Overpass

AP 62.0 88.3 78.0 46.0

TABLE 6 Performances of various categories on NWPU VHR-10-1.

Category Airplane Ship Storage tank Baseball diamond Tennis court

AP 70.8 64.0 43.2 71.6 64.9

TABLE 7 Performances of various categories on NWPU VHR-10-2.

Category Basketball court Ground track field Harbor Bridge Vehicle

AP 77.3 85.0 42.4 42.8 64.4

4 Experiments

In this section, we select various datasets with practical
significance. Through the ablation study, we verify the
innovation and effectiveness of our method. Through a series
of evaluation metrics, we compare our proposed method with
the current mainstream and high-performance neural network
detectors.

4.1 Datasets

All datasets were divided into training sets and test sets
according to the ratio of 4:1. After models were fully trained
on training sets, the untrained test sets were used to verify
the performances of models. Samples in datasets are shown
in Figure 8.

RSOD (Tianditu, 2016): It collected 2326 images downloaded
from Google Earth and Tianditu (Han et al., 2023) and labeled
the objects in these images with four categories: oil tank,
aircraft, overpass, and playground. The image resolution for
each class, representing image size and clarity under different
imaging conditions, is listed in Table 1. The sensors involved are
panchromatic and multispectral due to the various sources of the
image data sets. In this way, the diversity of the data set poses
comprehensive performance challenges.

NWPU VHR-10 (Cheng et al., 2016): It contains 800 high-
resolution satellite images cropped from the Google Earth and
Vaihingen datasets and was annotated by experts manually. The
dataset was divided into 10 categories (airplanes, ships, storage
tanks, baseball diamonds, tennis courts, basketball courts, ground
track fields, harbors, bridges, and vehicles).

4.2 Evaluation metrics

The dataset was divided into a training set and a test set; we used
mAP (mean average precision) to assess the overall performance

of the test set. The confidence of the IoU (intersection over union)
threshold for AP50 calculation is 0.5. The confidence of the IoU
threshold for AP75 calculation is 0.75; when confidence is set
from 0.5 to 0.95 and calculated once every 0.05 interval, we can
get various results and calculate their average value to get the
evaluation of AP.

AP was divided into APs, APl, and APm based on
targets, with areas less than 32 square pixels, more than
96 square pixels, and in the middle of the two situations,
respectively.

4.3 Parameter settings

The backbone of the network is ResNet-50. The optimizer
is AdamW with a weight decay of 0.0001. Setting batch size
to 16, we train models on 3080-Ti. The initial learning rate
is set to 2.5 × 10−5, divided by 10 at epochs 27 and 33,
respectively. The whole schedule of training contains 36 epochs. The
backbone is initialized with the pretrained weights on ImageNet,
and other newly added layers are initialized with Xavier. Data
augmentation includes randomhorizontal, scale jitter of resizing the
input images.

4.4 Ablation study

To evaluate the effectiveness of the signal processing in the
feature maps in CNNs, we conducted the ablation study on the
processing pipeline and proved the effectiveness.

To show that the proposed processing varies from previous
CNN models and prove its effectiveness in remote sensing object
detection, ablation experiments on various datasets are conducted.
In experiments, we compare famous CNN models with our
proposed pipeline. Our pipeline and CNN models are fully trained
in the same way. The results of the ablation study are shown in
Table 2. There are various methods in the table. Method 1 refers
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FIGURE 9
Detection results on NWPU VHR-10.

to the only use of ResNet and the prediction module in Figure 1,
not considering other approaches or modules we proposed in
this manuscript. Different from Method 1, Method 2 adopts the
representation block we proposed based onMethod 1. Furthermore,
an association block is added to Method 2, which comes into
being the Method 3. We can see that the representation block and
association block prove the performance of CNN models slightly
and consistently. Lastly, we combine Method 3 with the dynamic

association and represent Method 4 in essence, which greatly
improves the detection performance.

4.5 Comparison with other CNN models

Our pipeline focuses on feature signal representation and
association, and we compared it with other popular CNN models.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1381192
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Rao et al. 10.3389/feart.2024.1381192

FIGURE 10
Detection results on RSOD.

All models are trained on these same datasets for detection. In
Tables 3, 4, the performances of ours and others are shown in detail.
TheAPs of each category in the two datasets are shown inTables 5–7,
the detection performances are shown in Figures 9 and 10. Given
the correct category labels, objects of different scales in various
backgrounds can be accurately detected.

Diverse detection models perform differently on targets of
various sizes. Overall, our method takes better care of distinct

targets of various sizes. Compared with other detection models, our
approach achieved a better performance.

5 Conclusion

In this paper, the feature signal processing of remote sensing
object detection within CNNs is discussed. In the feature level of
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neural networks, signal processing focused primarily on feature
representation and association is studied. Within CNNs, the
representation and association pipeline we proposed suits end-
to-end network training effectively. Compared with several CNN
models lacking this kind of processing on various datasets, our
approach enhances the handling of features and outperforms other
approaches on remote sensing object detection. However, the scope
of the application and deeper reasons remain to be revealed after
further exploration. A better signal processing analysis of features
of CNNs, which may combine various signal processing approaches
and increase the process ability of the network, could be the central
idea in future works for a specific and well-defined task.
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