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The spatial and temporal variation of the seasonal snowpack inmountain regions
is recognized as a clear knowledge gap for climate, ecology andwater resources
applications. Here, we identify three salient topics where recent developments
in snow remote sensing and data assimilation can lead to significant progress:
snow water equivalent, high resolution snow-covered area and long term snow
cover observations including snow albedo. These topics can be addressed in the
near future with institutional support.
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Introduction

Every year, the seasonal snow covers up to 40% of the Earth’s land surface, including
45% of the global mountain area (i.e. 21 millions km2, Figure 1). As a result, the snow
cover is a key driver of ecological, atmospheric, and hydrological processes in mountain
environments. In addition, snowmelt from mountain regions represents an important
contribution to river flow and groundwater recharge in many anthropized catchments,
providing water resources to billions of humans (Mankin et al., 2015; Sturm et al., 2017;
Qin et al., 2020). Consistent and reliable observations on the physical properties of the
mountain snow cover are needed both for understanding mountain ecosystems but also
in an operational context for water resources management and weather forecasting. Given
the high spatial and temporal variability of seasonal snow in mountain regions, satellite
observations have become an irreplaceable asset to monitor snow cover in complement to
in situ observations and model simulations especially in data scarce regions (Fayad et al.,
2017; Dong, 2018). In addition, long term observations of the seasonal snow cover are
critically needed to evaluate the pace and the impact of climate change in mountain
regions. Yet, the spatial and temporal variation of snow cover was listed as one of the
clear knowledge gaps in the High Mountain Areas chapter of The Ocean and Cryosphere in
a Changing Climate Special Report of the Intergovernmental Panel on Climate Change
(2022). In NASA’s Decadal Survey, “Quantify rates of snow accumulation,
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FIGURE 1
Spatial distribution of the snow cover duration and the evolution of the snow-covered area at global scale as observed from space over the past
2 decades. The snow cover area time series was computed in four land classes (Greenland, Antarctica, mountains regions and flat areas) to highlight
the significance of the seasonal snow in mountain regions. The snow-covered area was obtained from MOD10C1 monthly products (Hall and Riggs,
2021) and post-processed to fill missing values using a linear interpolation in the time dimension. Mask of the mountain areas sourced from
Viviroli et al. (2020). The snow cover area time series indicate that the interannual variability is low in comparison with the seasonal variability.

snowmelt, ice melt, and sublimation from snow and ice
worldwide at scales driven by topographic variability”
was prioritized as one of the most important objectives
(National Academies of Sciences, Engineering, and Medicine,
2018). Snow-related variables in the Decadal Survey are “snow
depth and snow water equivalent, including high spatial resolution
inmountain areas,” and “snow reflectivity” is also mentioned among
the “surface biology and geology” observables.

Acknowledging the importance of monitoring the snow cover
evolution across our planet, the Global Climate Observing System
(GCOS) stated the snow-covered area, snow water equivalent and
snow depth as essential climate variables (ECVs) for monitoring
through satellite remote sensing, in alignment with Committee
on Earth Observation Satellites (CEOS) agencies. Space agencies
currently distribute a variety of datasets on the snow cover derived
from remote sensing observations. CEOS maintains a list of
operational snow products accompanied with their spatial and
temporal coverage, spatial and temporal resolution and a link to
validation information (CEOS, 2023). Some of them are already
widely used for scientific studies and operational water resource
management (Awasthi and Varade, 2021). Operational products
currently belong mostly either to the category of optical remote
sensing of the snow cover extent or to snow water equivalent
products generated by assimilating in situ snow measurements
with passive microwave satellite. Snow-covered area products can

be either binary (snow cover absence or presence), or fractional
(provides the fraction of a pixel which is covered by snow).
Binary snow cover and fractional snow cover products are the
only snow products to have reached validation stage 2 (CEOS,
2023). In particular, the collection of MODIS/VIIRS snow products
distributed by the NASA since the early 2000’s (Hall et al., 2002)
offers the best tradeoff in terms of coverage (global), revisit (daily),
resolution (500 m) and accessibility (open data policy) formountain
snow studies.

Other available operational products include snow-covered
area from low resolution optical and microwave sensors aboard
geostationary and polar-orbiting meteorological satellites (GOES,
MSG, MetOp), wet/dry snow derived from passive microwave
sensors (AMSR-E, SSM/I), snow albedo and grain size fromMODIS,
and high resolution snow-covered area from Landsat 8/9 and/or
Sentinel-2 over specific regions (United States, Europe). However,
as detailed below, this portfolio of products remains insufficient in
the specific context of the mountain regions for three main reasons:
1) lack of snow water equivalent observations, 2) lack of systematic
and regular high resolution observations and 3) lack of long term
observations.

1. Operational satellite remote sensing approaches to retrieve
the snow water equivalent (SWE) in mountain terrain at
high spatial resolution are still lacking (Dozier et al., 2016;
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Tsang et al., 2022). This constitutes a key shortcoming as an
accurate knowledge of SWE spatial distribution is essential to
predict streamflow in snow dominated mountain catchments
(Freudiger et al., 2017). A possible approach to reconstruct
high resolution SWE over large mountain regions relies
on the assimilation of snow-covered area products in a
snowpack model (Girotto et al., 2020; Liu et al., 2021). This
approach enables to generate accurate snow reanalyses once
the snow season is over, but is less suitable to retrieve SWE
distribution in near real time. Direct methods based on active
microwave remote sensing are being developed since the 2000’s
but more research is still needed to reach the user needs
(Guneriussen et al., 2001; Tsang et al., 2022). Acknowledging
the lack of an operational concept or sensor to measure the
spatial distribution of SWE from space, NASA developed
the airborne snow observatory using lidar to fulfill the need
to estimate water resources in the western United States
(Painter et al., 2016). Yet, lidar does not measure snow water
equivalent but snow depth, so it can only fulfill this need in
conjunction with modeled snow density.

2. Near-daily observations of the snow-covered area are available
but their spatial resolution can be too coarse for a range
of studies in mountain hydrology and ecology, or even
operational needs (Malnes et al., 2015). This is because the
snow cover variability has a typical length scale on the order
of 100 m in mountain regions (Blöschl, 1999). In particular,
the widely-used MODIS snow products have a resolution of
approximately 500 m which can fail to capture the spatial
heterogeneity of snow cover induced by solar radiation in
steep terrain (Bouamri et al., 2021). A high spatial resolution
(∼10 m) is also useful for ecologists to characterize habitats of
mountain plants and animals (Dedieu et al., 2016; Alba et al.,
2023; Niffenegger et al., 2023). Whereas a remotely sensed
SWE is the holy grail of snow hydrology, ecologists have
shown that the snow cover duration or melt out date are
important predictors of alpine plants productivity, distribution
and diversity (Galen and Stanton, 1995; Jonas et al., 2008;
Carlson et al., 2015; Choler, 2015; Revuelto et al., 2022). These
indicators can be easily derived from existing remote sensing
technology, but the challenge is to get the information at high
spatial and temporal resolutions to capture the snow cover
phenology at the relevant scales and with sufficient precision.

3. Long term snow cover observations are necessary to
characterize the impact of climate change on land-atmosphere
feedbacks, water resources and ecosystems especially in
mountain regions where the warming trend often exceeds
the global average (Pepin et al., 2022). Existing long term
(>30 years) remote sensing datasets are an invaluable source
to study global or regional snow cover changes in the
context of climate change (Hüsler et al., 2014) but may be
inadequate in some cases due to their coarse resolution
(Bormann et al., 2018). The MODIS dataset is increasingly
used to determine trends in snow cover extent and duration
(Saavedra et al., 2018; Notarnicola, 2020; Shi et al., 2022). Yet,
its relatively short duration (23 years) makes it difficult to
separate a long term trend from natural climate variability
(Bormann et al., 2018; Fugazza et al., 2021). This is because
snow cover changes not only reflect temperature changes

but also precipitation variations which may be subject to
multidecadal climatic oscillations (Monteiro and Morin, 2023;
Gottlieb and Mankin, 2024).

The snow remote sensing community is actively working to
adapt existing algorithms to new spaceborne sensors or to develop
algorithms to retrieve new variables from space. A broad review of
the remote sensing techniques for estimating the snow geophysical
properties in mountain regions is already available (Awasthi and
Varade, 2021), updating a previous review on a similar scope
(Nolin, 2010). More specifically, a review of fundamental advances
towards the global monitoring of SWE using high-frequency radar
remote sensing has been published recently (Tsang et al., 2022).
Complementary reviews of snow cover remote sensing methods
using spaceborne synthetic aperture radar (SAR) (Tsai et al., 2019)
or optical sensors (Dumont and Gascoin, 2016) are also available.
New sensing concepts are supported by space agencies and may
lead to solve the above issues in the long term (after 2030).
A mission dedicated to snow depth and snow water equivalent,
including high spatial resolution in mountain areas was listed
as a priority for a new program element in the 2017 Decadal
Survey and the Canadian Space Agency is developing the Terrestrial
Snow Mass Mission for the same objective (Derksen et al., 2019;
L. Wang et al., 2022). Here, we focus on recent advances that have
the potential to specifically address the above three issues in the
short term. First, we argue that progress can be made by applying
existing algorithms to recent Earth Observation missions. Second,
we highlight recent methodological progresses which have the
potential to go beyond the current status. Then, we summarize
current challenges to be addressed to go beyond the current
status. We conclude by outlining a series of recommendations
targeted at international organizations and space agencies. These
recommendations are based on the consultation of a multi-national
community of experts at the Mountain Snow Workshop held by the
WorldMeteorological Organization and EUMETSAT inDarmstadt,
Germany in 2023.

Recent advances

Application of existing algorithms to recent
missions

The Copernicus Earth Observation programme offers the
opportunity to monitor the snow cover at high resolution and
global scale. Sentinel-1 and Sentinel-2 observations now span
nearly a decade. The datasets are freely distributed and tools
are available to process them. Following a method developed
for ERS-1 data (Rott and Nagler, 1995; Nagler and Rott, 2000),
wet snow can be detected from Sentinel-1 C-band backscatter
(Nagler et al., 2016; Tsai et al., 2019). Similarly, early algorithms to
map the snow-covered area developed for Landsat TM (Dozier,
1989) have been extended to Sentinel-2 multispectral imagery
(Wayand et al., 2018; Gascoin et al., 2019). Both methods benefit
from the enhanced spatial resolution and revisit times of Sentinel-
1 and Sentinel-2 with respect to previous missions, allowing the
development of a new generation of snow products at European
scale (European Environment Agency, 2021). The combination of
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Sentinel-1 wet snow-covered area and Sentinel-2 snow-covered
area would increase the number of observations to estimate the
area and duration of the snow cover at decametric resolution
(Karbou et al., 2021).

Similarly, spectral unmixing methods developed for MODIS
are being adapted to Landsat 8/9 and Sentinel-2 (Aalstad et al.,
2020; Bair et al., 2020; Stillinger et al., 2023). Keuris et al. (2023)
proposed a method for estimation fractional snow extent exploiting
the full spectral capabilities of moderns satellite sensors such
as Sentinel-2, Landsat-7/8/9 and Sentinel-3 SLSTR and OLCI,
applying multispectral unmixing with local adaptive endmember
selection and accounting for the high variable solar illumination in
mountainous areas. These approaches take advantage of all available
spectral information to retrieve fractional snow cover and other
properties such as snow albedo, grain size or the presence of light
absorbing particles (Nolin et al., 1993; Painter et al., 2009).

Recent methods applied to past and recent
missions

In recent years, several methods were applied to retrieve snow
depth from space. A mountain snow depth map obtained from
satellite data only was generated by differencing digital elevation
models from Pléiades stereoscopic imagery (Marti et al., 2016).
The estimated random error was 0.6 m at a spatial resolution
of 2 m. This method was refined and further evaluated against
airborne lidar measurements showing that the accuracy of this
method increases down to 0.3 m at 100 m resolution (Deschamps-
Berger et al., 2020). It is limited by the swath width of Pléaides
(or WorldView), which typically allows imaging a region of
400–1,000 km2 in a single pass depending on the acquisition
geometry, but it is a viable alternative to airborne campaigns
(Eberhard et al., 2021). A conceptual method was proposed to
retrieve mountain snow depth at northern hemisphere scale from
Sentinel-1 polarimetric backscatter observations with a change
detection technique (Lievens et al., 2019). Using a single global
calibration factor this method yielded a mean absolute error of
∼ 0.3 m at 1 km resolution, where regional calibration enabled
improved performance (Lievens et al., 2022). With the 6–12 days
revisit of Sentinel-1, this approach could provide useful frequent
snow depth data. It is not applicable during the melt season when
the radar signal is absorbed by the liquid water contained in the
snowpack, and retrieval performance is reduced in regions with
shallow or intermittent snow, and with dense vegetation. More
recently, ICESat-2 land surface elevation retrievals were successfully
used to retrieve snow depth in the Sierra Nevada (Deschamps-
Berger et al., 2023). The method is not yet applicable at global
scale as it requires an accurate snow-off digital terrain model. This
is because ICESat-2 orbit is not repeated outside polar regions.
Such reference elevation model could be obtained from VHR
stereo imagery in areas where lidar surveys are not available.
Last, machine/deep learning algorithms have also been successfully
trained to infer snow depth in the Alps, either from AMSR-E at
10 km resolution (Santi et al., 2014) or from Sentinel-1/2 at 10 m
resolution (Daudt et al., 2023). These methods rely on in situ or
airborne data for model training, which prevents their application
to other regions.

Machine learning algorithms are also increasingly used to
detect the snow cover in high resolution satellite images, especially
those devoid of shortwave infrared bands. This includes very
high resolution imagery from commercial satellites operated
by Maxar (Hu and Shean, 2022), Planet (Yang et al., 2023) or
Venµs (Baba et al., 2020). These sensors offer the opportunity to
map the snow cover at metric resolution, even in steep alpine
terrain. Convolutional neural networks are efficient to perform
the snow and cloud object segmentation as they account for
the pixel neighborhood in addition to the pixel-wise spectral
information (Lu et al., 2022). This approach is especially useful
to extract the snow-covered area from historical satellite images
with poor radiometric resolution and in the absence of a
shortwave infrared band such as SPOT 1-4 and Landsat 1-4
(Barrou Dumont et al., 2023).

Methods to retrieve snow depth and snow-covered area can
be used in combination with empirical snow density models
to estimate catchment scale SWE. Error on snow density are
rather low if the snow depth is known (Avanzi and De Michele,
2015). Jonas et al. (2009) reported an error of ±45 kg.m-3 (±1
standard deviation) on snow density using in situ snow depth
data as predictor. In addition, land surface temperature monitoring
open new research avenues on this topic. Indeed, the snow
density could be estimated from Landsat with an RMSE of
82 kg m−3 (Colombo et al., 2023). A machine-learning approach
enabled to estimate snow density from multiple MODIS and
reanalyses datasets with an RMSE of 43 kg m−3 (H. Wang et al.,
2023). However, as we argue below, a more optimal method to
convert snow depth to SWE is through the assimilation in a
snowpack model.

The above satellitemethods provide incomplete information due
to orbital constraints, sensor geometry, cloud cover and applicability
domain of the retrieval algorithm. Indeed, most approaches do not
work well in all snow climate and/or environmental conditions (e.g.,
deep vs. shallow snowpack). Microwave approaches are generally
more uncertain in case of wet snow or dense forest cover. Data
assimilation enables tomerge different types of satellite observations
accounting for the retrieval uncertainty to generate physically
consistent, spatially and temporally continuous datasets of the snow
cover properties, including SWE, snow depth, etc. (Girotto et al.,
2020; Largeron et al., 2020). Previous studies have shown the value
of data assimilation for water resources studies (Margulis et al.,
2015), operational near real time applications (Cluzet et al., 2021),
climate reanalysis (Hersbach et al., 2020), numerical weather
prediction (de Rosnay et al., 2015, 2022), and seasonal prediction
(Orsolini et al., 2019). The recent release of the Multiple Snow
data Assimilation System (MuSA) (Alonso-González et al., 2022b)
should facilitate the development of data assimilation experiments
and the generation of snow datasets in mountain regions taking
advantage of various remote sensing products. Data assimilation
studies would also benefit from radiative transfer models like
the Snow Microwave Radiative Transfer model (SMRT), which
enables to compute backscattering and brightness temperature in
active and passive mode from multilayered snowpack (Picard et al.,
2018). SMRT enables to test the assimilation of low level satellite
measurements (e.g., radiance) as it is typically done in numerical
weather prediction.
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Challenges

As briefly discussed above, the availability of petabytes of
satellite data enables the observation of multiple snow variables
with ever-increasing temporal and spatial precision at the scale
of entire mountain ranges (Lievens et al., 2019; Liu et al., 2021).
However, to fully harness the wealth of satellites, there remain
challenges in accessing, processing and interpreting results from
large datasets. This is especially the case with the Sentinel-1,
Sentinel-2 and Landsat datasets, but it will be the case with
upcoming missions like NISAR. Snow scientists increasingly rely
on commercial cloud geoprocessing platforms such as Google
Earth Engine and Microsoft Planetary Computer to process
remote sensing datasets (Crumley et al., 2020; Notarnicola, 2020;
Gascoin et al., 2022; Gagliano et al., 2023). High performance and
cloud computing is also becoming critical to perform intensive
computations for machine and deep learning and ensemble-based
data assimilation.

In addition to the computing resources issue, the scarcity of
snow-specific data assimilation software has hindered the adoption
of data assimilation in snow science. Data assimilation algorithms
can be complex and sometimes require advanced knowledge in
applied mathematics. Several well-documented open source snow
models with different levels of complexity are now available,
but, in contrast, there is only one open source snow model
including data assimilation tools to our best knowledge (Alonso-
González et al., 2022a). The open-source NASA Land Information
System software also embeds land surface models including snow
modules and data assimilation code (Kumar et al., 2006). Another
key challenge that should be addressed to facilitate data assimilation
is the quantification of remote sensing data accuracy in various
conditions, because a good knowledge of the observation error
is needed to balance the weight of the observations in the
model analysis.

From the numerical weather prediction and climate reanalysis
perspectives, the main challenges are (i) the availability and
sustainability of relevant operational satellites sensitive to snow
properties, (ii) the complexity of the radiative transfer processes
that link snow properties to the signal that the satellite measures.
Radiative transfer models are required to optimally use satellite
observations to analyze snow.

Despite several decades of research in optical remote sensing of
the snow cover, there remain some challenges. Cloud cover hinders
our capacity to observe basic variables such as snow cover. This
issue is particularly pronounced in key regions like the Eastern
Himalaya and the Pacific Northwest of North America. Moreover,
the confusion between clouds and snow cover in optical images
classification is an issue that is often underestimated (Stillinger et al.,
2019). Evaluation studies have typically focused on clear-sky images
whereas cloud cover canmask over 50%of observations in temperate
mountain ranges (Rittger et al., 2013; Masson et al., 2018). The issue
of snow-cloud discrimination is also largely unaddressed in studies
using commercial very high resolution imagery, which prevents
their more systematic use on a large scale. Even a very accurate
snow detection algorithm is of limited utility if the associated cloud
and cloud shadow detection algorithm is too conservative and
masks most of the snow pixels. Another important challenge is that

opticalmethods are very uncertain in forested areas (Xin et al., 2012;
Muhuri et al., 2021). This is also true for microwave methods. As
a result, our ability to characterize the snow-covered area, snow
depth or snow albedo from remote sensing is very limited in
forested area.

Although this is a long standing issue in remote sensing,
there often remains a scale gap between remote sensing
retrievals, in situ measurements and model outputs (Blöschl,
1999). This can lead to systematic differences between these
quantities. For example, the intrinsic snow albedo that can
be measured in situ or simulated by snowpack models differs
from the apparent (or effective) albedo retrieved from space
due to snow surface microtopography (Bair et al., 2022). The
scale mismatch with in situ measurements similarly impedes
the evaluation of many remote sensing products like snow
depth and SWE.

Recommendations

After the workshop, the experts agreed on a list of
recommendations to go beyond the current status in
mountain snow remote sensing. This document is provided
in Supplementary Appendix. We highlight and develop here
the key points to address the three key issues that were
highlighted in the introduction (#1. lack of representative
snow water equivalent observations, #2. lack of systematic
and regular high resolution observations and #3. lack of long
term observations).

First, we consider that a range of satellite snow products and
methods are already available to go beyond the status quo in the short
term. Global scale, high resolution (10–30 m) monitoring of the
snow-covered area can be achieved using Sentinel-2 and Landsat-
8/9 observations with a revisit lower than 5 days (cloud permitting).
Although snow and cloud flags are already included in standard
level 2 Sentinel-2 and Landsat products distributed by ESA and
USGS, they can be improved using existing algorithms tailored to
snow cover mapping. Open source software is available to generate
fractional snow cover maps at continental scale from Sentinel-2
and is already operated in Europe (European Environment Agency,
2020). In addition, Sentinel-1 data are now used by the same
agency to increase the effective observation frequency of the snow-
covered area when the snowpack contains liquid water. Similarly,
the USGS distributes Landsat fractional snow cover products
over the United States. Such datasets if available globally would
enable to address key issue #2, enabling many applications in
mountain ecology.

Secondly, while there is currently no operational method to
retrievemountain SWE from space, we argue that the SWE question
(key issue #1) can be tackled by the assimilation of multiple
remote sensing observations in a distributed snowpack model.
Recent advances in snow depth remote sensing with Sentinel-1,
ICESat-2 are promising as the snow depth is the main driver of
SWE variability. More systematic repeat-track ICESat-2 campaigns
over non-polar, snow-covered mountain regions would enable to
retrieve snow depth from ICESat-2 data only (Besso et al., 2024).
This would be especially useful to better estimate snow depth in
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forested areas thanks to the unique ability of ICESat-2 to measure
surface elevation below the forest canopy, where other optical and
microwave sensors provide limited information. In the meantime,
merging satellite snow depth from Sentinel-1 and snow-covered
area from Sentinel-2 should be tested. While Sentinel-1 snow depth
algorithm is not applicable during the melt season, Sentinel-2
provides frequent observations of the snow-covered area during
spring and summer, an additional constraint to estimate SWE
(Figure 2). Further research is required to take full advantage of
those observations. In particular it is essential to characterize
their uncertainty, as it is a key input for data assimilation. To go
forward in this topic, we need accurate benchmarking datasets in
pilot sites. An outstanding example is the Tuolumne river basin in
California Sierra Nevada, where snow depth is frequentlymonitored
by airborne lidar since 2012, including very dry and very wet
years. Several instrumented sites are available in other mountain
ranges. A recent compilation of research catchments is available
from the International Network for Alpine Research Catchment
Hydrology (INARCH) website (Pomeroy et al., 2015). However,
each site includes different types of observations with varying
spatio-temporal resolutions, etc. Assimilating these observations
into processed-based snow models would allow assembling
benchmarking datasets that are physically consistent and complete
in space and time. The development of such benchmarking datasets
would help maximize the usage of in situ observations for the
evaluation of remote sensing products. Regarding the assimilation
method itself, previous studies recommend the use of ensemble
approaches (in contrast with variational approaches) because they
make it possible to use off-the-shelf nonlinear snowpack models,
without the need to implement an adjoint model (Helmert et al.,
2018; Largeron et al., 2020; Alonso-González et al., 2022b). We note
however that this status may change soon in the future with the
adoption of automatic differentiation tools in the Earth science
modeling community.

Third, data assimilation is also a way to address the lack of
long term observations (key issue #3), as it allows merging multiple
discontinuous satellite time series and different variables of interest.
In this case, the batch smoothing approach is well suited (in contrast
with a filtering algorithm) since it assimilates simultaneously all
available observations over a time window so that late snow
season observations are used to update the early snow season
parameters distribution and reciprocally (Durand et al., 2008).
Again, this requires a good knowledge of the data uncertainties
especially if the objective is to study trends due to climate change.
A detailed intercomparison of global to northern hemispheric
daily snow extent products is being carried out in the Satellite
Snow Product Intercomparison and Evaluation Exercise (SnowPEx
and SnowPEx+). A national program led by China National
Satellite Meteorological Center called RetrospectIve Calibration of
Historical Chinese Earth Observation Satellite data (RICH-CEOS)
aims to cross-calibrate historical datasets from multiple satellites
operated by China. The multispectral data provided by HJ-1A
and HJ-1B missions should be of particular interest for the snow
community due to their high spatial resolution (30–150 m) and
4 days revisit period. To facilitate the fusion of multiple remote
sensing datasets, we encourage data providers to adopt standardized
data and meta-data formats and we recommend to provide
uncertainty estimates on a pixel-by-pixel basis. Machine-learning

FIGURE 2
Schematic representation of how various remote sensing data can be
used to estimate the snow water equivalent in mountain regions by
data assimilation in a snowpack model. Remote sensing observations
and model forcing come with errors (top diagram) that are reflected in
the posterior model uncertainties (bottom diagram). The blue lines in
the bottom diagram represent the bounds of uncertainty of the
simulated SWE.

products should also include their uncertainty and domain of
applicability.

Finally, we expect that upcoming Earth observation missions
will create new opportunities to improve our knowledge of the
mountain snow. L-band SAR missions (ROSE-L, NISAR, ALOS-4)
should open the door to InSAR retrieval of the SWE changes in
complex terrain (Tarricone et al., 2023). Thermal infrared missions
(TRISHNA, LSTM, SBG) will allow the assimilation of near
daily surface temperature to improve SWE simulations (Alonso-
González et al., 2023). These missions will also allow the retrieval
of snow albedo at finer resolution than the current products from
Sentinel-3 or VIIRS thanks to their multispectral and multiangle
imaging capabilities. To foster the development of new algorithms
and prepare futuremissions, we recommend a better coordination of
on-demand satellite data acquisitions (e.g., very high resolution SAR
and optical stereoscopic images) over pilot mountain sites by space
agencies and commercial providers following the example of NASA
SnowEx campaigns.

Author contributions

SG:Visualization,Writing–original draft.KL:Conceptualization,
Writing–review and editing. TN: Writing–review and editing. HL:
Writing–review and editing. MM: Writing–review and editing. TJ:

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1381323
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Gascoin et al. 10.3389/feart.2024.1381323

Writing–review and editing. ZZ: Writing–review and editing. PD:
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

Many experts contributed to the WMO-EUMETSAT workshop
on which this paper is based. The authors would like to thank
Adnan Shafiq Rana, Charles Fierz, Freddy Saavedra, Rijan Bhakta
Kayastha, Shawn Marshall, Sonam Lotas, Suhaib Bin Farhan,
Wolfgang Schöner, Zuhal Akyurek, Kenneth Holmlund, Lijuan Ma,
Tao Che, Samuel Buisan, Marie Dumont, Zhaojun Zheng, Colleen
Mortimer, SeanHelfrich, Jeff Key, SeanHelfrich.The authors greatly
thank Rodica Nitu and the Global Cryosphere Watch (WMO) for
coordinating this event and her help to realize this publication. The
authors also would like to thank Ran Zhang for the organization of
the workshop. Figure 2 was inspired by a similar graphic created by
Jessica Lundquist for the SnowEx campaign.

Conflict of interest

Authors KL and HL were employed by Snowcap BV, a start-up
based on scientific research at KULeuven. Author TNwas employed
by ENVEO Environmental Earth Observation IT GmbH.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2024.
1381323/full#supplementary-material

References

Aalstad, K., Westermann, S., and Bertino, L. (2020). Evaluating satellite retrieved
fractional snow-covered area at a high-Arctic site using terrestrial photography. Remote
Sens. Environ. 239, 111618. doi:10.1016/j.rse.2019.111618

Alba, R., Oddi, L., Rosselli, D., and Chamberlain, D. (2023). Avalanches create
unique habitats for birds in the European Alps. J. Ornithol. 164 (2), 377–388.
doi:10.1007/s10336-022-02039-3

Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-Moreno, J. I.,
Fiddes, J., et al. (2022a). MuSA: the multiscale snow data assimilation system (v1.0).
Geosci. Model Dev. Discuss., 1–43. doi:10.5194/gmd-2022-137

Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-
Moreno, J. I., Fiddes, J., et al. (2022b). The multiple snow data assimilation
system (MuSA v1.0). Geosci. Model Dev. 15 (24), 9127–9155. doi:10.5194/
gmd-15-9127-2022

Alonso-González, E., Gascoin, S., Arioli, S., and Picard, G. (2023). Exploring the
potential of thermal infrared remote sensing to improve a snowpack model through an
observing system simulation experiment.Cryosphere 17 (8), 3329–3342. doi:10.5194/tc-
17-3329-2023

Avanzi, F., and De Michele, C. (2015). On the performances of empirical regressions
for the estimation of bulk snow density. Geografia Fisica e Dinamica Quaternaria,
105–112. doi:10.4461/GFDQ.2015.38.10

Awasthi, S., and Varade, D. (2021). Recent advances in the remote
sensing of alpine snow: a review. GIScience Remote Sens. 58, 852–888.
doi:10.1080/15481603.2021.1946938

Baba, M. W., Gascoin, S., Hagolle, O., Bourgeois, E., Desjardins, C., and Dedieu,
G. (2020). Evaluation of methods for mapping the snow cover area at high
spatio-temporal resolution with VENμS. Remote Sens. 12 (18), 3058. doi:10.3390/
rs12183058

Bair, E. H., Dozier, J., Stern, C., LeWinter, A., Rittger, K., Savagian, A., et al. (2022).
Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with
implications for remote sensing.Cryosphere 16 (5), 1765–1778. doi:10.5194/tc-16-1765-
2022

Bair, E. H., Stillinger, T., and Dozier, J. (2020). Snow property inversion from
remote sensing (SPIReS): a generalizedmultispectral unmixing approachwith examples
from MODIS and landsat 8 oli. IEEE Trans. Geoscience Remote Sens. 59, 7270–7284.
doi:10.1109/TGRS.2020.3040328

Barrou Dumont, Z. B., Gascoin, S., and Inglada, J. (2024). Snow and cloud
classification in historical SPOT images: an image emulation approach for training a

deep learning model without reference data. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 1–13. doi:10.1109/JSTARS.2024.3361838

Besso, H., Shean, D., and Lundquist, J. D. (2024). Mountain snow depth retrievals
from customized processing of ICESat-2 satellite laser altimetry. Remote Sens. Environ.
300, 113843. doi:10.1016/j.rse.2023.113843

Blöschl, G. (1999). Scaling issues in snow hydrology. Hydrol. Process. 13 (14–15),
2149–2175. doi:10.1002/(sici)1099-1085(199910)13:14/15<2149::aid-hyp847>3.0.co;2-
8

Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H. (2018). Estimating
snow-cover trends from space.Nat. Clim. Change 8 (11), 924–928. doi:10.1038/s41558-
018-0318-3

Bouamri, H., Kinnard, C., Boudhar, A., Gascoin, S., Hanich, L., and Chehbouni, A.
(2021). MODIS does not capture the spatial heterogeneity of snow cover induced by
solar radiation. Front. Earth Sci. 9. doi:10.3389/feart.2021.640250

Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P., and Thuiller, W. (2015). Modelling
snow cover duration improves predictions of functional and taxonomic diversity for
alpine plant communities. Ann. Bot. 116 (6), 1023–1034. doi:10.1093/aob/mcv041

CEOS Land product validation subgroup. (2023). Available at: https://lpvs.gsfc.nasa.
gov/producers2.php?topic=snow.

Choler, P. (2015). Growth response of temperatemountain grasslands to inter-annual
variations in snow cover duration. Biogeosciences 12 (12), 3885–3897. doi:10.5194/bg-
12-3885-2015

Cluzet, B., Lafaysse, M., Cosme, E., Albergel, C., Meunier, L.-F., and Dumont, M.
(2021). CrocO_v1.0: a particle filter to assimilate snowpack observations in a spatialised
framework. Geosci. Model Dev. 14 (3), 1595–1614. doi:10.5194/gmd-14-1595-
2021

Colombo, R., Pennati, G., Pozzi, G., Garzonio, R., Di Mauro, B., Giardino, C., et al.
(2023). Mapping snow density through thermal inertia observations. Remote Sensing of
Environment 284, 113323. doi:10.1016/j.rse.2022.113323

Crumley, R. L., Palomaki, R. T., Nolin, A. W., Sproles, E. A., and Mar, E. J.
(2020). SnowCloudMetrics: snow information for everyone.Remote Sens. 12 (20), 3341.
doi:10.3390/rs12203341

Daudt, R. C., Wulf, H., Hafner, E. D., Bühler, Y., Schindler, K., and Wegner,
J. D. (2023). Snow depth estimation at country-scale with high spatial and
temporal resolution. ISPRS J. Photogrammetry Remote Sens. 197, 105–121.
doi:10.1016/j.isprsjprs.2023.01.017

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1381323
https://www.frontiersin.org/articles/10.3389/feart.2024.1381323/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2024.1381323/full#supplementary-material
https://doi.org/10.1016/j.rse.2019.111618
https://doi.org/10.1007/s10336-022-02039-3
https://doi.org/10.5194/gmd-2022-137
https://doi.org/10.5194/gmd-15-9127-2022
https://doi.org/10.5194/gmd-15-9127-2022
https://doi.org/10.5194/tc-17-3329-2023
https://doi.org/10.5194/tc-17-3329-2023
https://doi.org/10.4461/GFDQ.2015.38.10
https://doi.org/10.1080/15481603.2021.1946938
https://doi.org/10.3390/rs12183058
https://doi.org/10.3390/rs12183058
https://doi.org/10.5194/tc-16-1765-2022
https://doi.org/10.5194/tc-16-1765-2022
https://doi.org/10.1109/TGRS.2020.3040328
https://doi.org/10.1109/JSTARS.2024.3361838
https://doi.org/10.1016/j.rse.2023.113843
https://doi.org/10.1002/(sici)1099-1085(199910)13:14/15<2149::aid-hyp847>3.0.co;2-8
https://doi.org/10.1002/(sici)1099-1085(199910)13:14/15<2149::aid-hyp847>3.0.co;2-8
https://doi.org/10.1038/s41558-018-0318-3
https://doi.org/10.1038/s41558-018-0318-3
https://doi.org/10.3389/feart.2021.640250
https://doi.org/10.1093/aob/mcv041
https://lpvs.gsfc.nasa.gov/producers2.php?topic=snow
https://lpvs.gsfc.nasa.gov/producers2.php?topic=snow
https://doi.org/10.5194/bg-12-3885-2015
https://doi.org/10.5194/bg-12-3885-2015
https://doi.org/10.5194/gmd-14-1595-2021
https://doi.org/10.5194/gmd-14-1595-2021
https://doi.org/10.1016/j.rse.2022.113323
https://doi.org/10.3390/rs12203341
https://doi.org/10.1016/j.isprsjprs.2023.01.017
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Gascoin et al. 10.3389/feart.2024.1381323

Dedieu, J.-P., Carlson, B. Z., Bigot, S., Sirguey, P., Vionnet, V., and Choler, P. (2016).
On the importance of high-resolution time series of optical imagery for quantifying
the effects of snow cover duration on alpine plant habitat. Remote Sens. 8 (6), 481.
doi:10.3390/rs8060481

Derksen, C., Lemmetyinen, J., King, J., Belair, S., Garnaud, C., Lapointe, M.,
et al. (2019). A dual-frequency ku-band radar mission concept for seasonal snow.
IGARSS 2019 - 2019 IEEE Int. Geoscience Remote Sens. Symposium, 5742–5744.
doi:10.1109/IGARSS.2019.8898030

de Rosnay, P., Browne, P., de Boisséson, E., Fairbairn, D., Hirahara, Y., Ochi,
K., et al. (2022). Coupled data assimilation at ECMWF: current status, challenges
and future developments. Q. J. R. Meteorological Soc. 148 (747), 2672–2702.
doi:10.1002/qj.4330

de Rosnay, P., Isaksen, L., andDahoui, M. (2015). Snow data assimilation at ECMWF.
Meteorology. doi:10.21957/LKPXQ6X5

Deschamps-Berger, C., Gascoin, S., Berthier, E., Deems, J., Gutmann, E., Dehecq,
A., et al. (2020). Snow depth mapping from stereo satellite imagery in mountainous
terrain: evaluation using airborne laser-scanning data. Cryosphere 14 (9), 2925–2940.
doi:10.5194/tc-14-2925-2020

Deschamps-Berger, C., Gascoin, S., Shean, D., Besso, H., Guiot, A., and López-
Moreno, J. I. (2023). Evaluation of snow depth retrievals from ICESat-2 using
airborne laser-scanning data. Cryosphere 17 (7), 2779–2792. doi:10.5194/tc-17-2779-
2023

Dong, C. (2018). Remote sensing, hydrological modeling and in situ
observations in snow cover research: a review. J. Hydrology 561, 573–583.
doi:10.1016/j.jhydrol.2018.04.027

Dozier, J. (1989). Spectral signature of alpine snow cover from the landsat thematic
mapper. Remote Sens. Environ. 28, 9–22. doi:10.1016/0034-4257(89)90101-6

Dozier, J., Bair, E. H., and Davis, R. E. (2016). Estimating the spatial distribution
of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 3,
461–474. doi:10.1002/wat2.1140

Dumont, M., and Gascoin, S. (2016). Optical remote sensing of snow cover.
Land Surf. Remote Sens. Cont. Hydrology, 115–137. doi:10.1016/B978-1-78548-104-8.
50004-8

Durand, M., Molotch, N. P., and Margulis, S. A. (2008). Merging complementary
remote sensing datasets in the context of snowwater equivalent reconstruction. Remote
Sens. Environ. 112 (3), 1212–1225. doi:10.1016/j.rse.2007.08.010

Eberhard, L.A., Sirguey, P.,Miller, A.,Marty,M., Schindler, K., Stoffel, A., et al. (2021).
Intercomparison of photogrammetric platforms for spatially continuous snow depth
mapping. Cryosphere 15 (1), 69–94. doi:10.5194/tc-15-69-2021

European Environment Agency (2020). Fractional snow cover (raster 20m)
2016-present, Europe, daily, jul. 2020 (01.00) [GeoTIFF]. Eur. Environ. Agency.
doi:10.2909/3E2B4B7B-A460-41DD-A373-962D032795F3

European Environment Agency (2021). High resolution snow and
ice. EEA Geospatial Data Cat. Available at: https://sdi.eea.europa.
eu/catalogue/srv/api/records/45e60a9f-f08b-47a9-97b6-21805cf22940.

Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Page, M. L., et al.
(2017). Snow hydrology inMediterraneanmountain regions: a review. J. Hydrology 551,
374–396. doi:10.1016/j.jhydrol.2017.05.063

Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M. (2017). Snow
redistribution for the hydrological modeling of alpine catchments: snow
redistribution for hydrological modeling. Wiley Interdiscip. Rev. Water 4 (5),
e1232. doi:10.1002/wat2.1232

Fugazza,D.,Manara, V., Senese, A., Diolaiuti, G., andMaugeri,M. (2021). Snow cover
variability in the greater alpine region in the MODIS era (2000–2019). Remote Sens. 13
(15), 2945. doi:10.3390/rs13152945

Gagliano, E., Shean,D.,Henderson, S., andVanderwilt, S. (2023). Capturing the onset
ofmountain snowmelt runoff using satellite synthetic aperture radar.Geophys. Res. Lett.
50 (21), e2023GL105303. doi:10.1029/2023GL105303

Galen, C., and Stanton, M. L. (1995). Responses of snowbed plant species
to changes in growing-season length. Ecology 76 (5), 1546–1557. doi:10.2307/
1938156

Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O. (2019).
Theia Snow collection: high-resolution operational snow cover maps from Sentinel-
2 and Landsat-8 data. Earth Syst. Sci. Data 11 (2), 493–514. doi:10.5194/essd-11-
493-2019

Gascoin, S., Monteiro, D., and Morin, S. (2022). Reanalysis-based contextualization
of real-time snow cover monitoring from space. Environ. Res. Lett. 17 (11), 114044.
doi:10.1088/1748-9326/ac9e6a

Girotto, M., Musselman, K. N., and Essery, R. L. H. (2020). Data assimilation
improves estimates of climate-sensitive seasonal snow.Curr. Clim. Change Rep. 6, 81–94.
doi:10.1007/s40641-020-00159-7

Gottlieb, A. R., and Mankin, J. S. (2024). Evidence of human influence on
NorthernHemisphere snow loss.Nature 625 (7994), 293–300. doi:10.1038/s41586-023-
06794-y

Guneriussen, T., Hogda, K. A., Johnsen, H., and Lauknes, I. (2001). InSAR for
estimation of changes in snow water equivalent of dry snow. IEEE Trans. Geoscience
Remote Sens. 39 (10), 2101–2108. doi:10.1109/36.957273

Hall, D. K., and Riggs, G. A. (2021). MODIS/Terra snow cover daily L3 global
0.05Deg CMG, version 61. NASA Natl. Snow Ice Data Cent. Distributed Act. Archive
Cent. doi:10.5067/MODIS/MOD10C1.061

Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K.
J. (2002). MODIS snow-cover products. Remote Sens. Environ. 83 (1–2), 181–194.
doi:10.1016/S0034-4257(02)00095-0

Helmert, J., Şensoy Şorman, A., AlvaradoMontero, R., DeMichele, C., De Rosnay, P.,
Dumont, M., et al. (2018). Review of snow data assimilation methods for hydrological,
land surface, meteorological and climate models: results from a COST HarmoSnow
survey. Geosciences 8 (12), 489. doi:10.3390/geosciences8120489

Hersbach,H., Bell, B., Berrisford, P.,Hirahara, S.,Horányi, A.,Muñoz-Sabater, J., et al.
(2020). The ERA5 global reanalysis. Q. J. R. Meteorological Soc. 146 (730), 1999–2049.
doi:10.1002/qj.3803

Hu, J. M., and Shean, D. (2022). Improving Mountain snow and land cover mapping
using very-high-resolution (VHR) optical satellite images and random forest machine
learning models. Remote Sens. 14 (17), 4227. doi:10.3390/rs14174227

Hüsler, F., Jonas, T., Riffler,M.,Musial, J. P., andWunderle, S. (2014). A satellite-based
snow cover climatology (1985–2011) for the European Alps derived fromAVHRR data.
Cryosphere 8 (1), 73–90. doi:10.5194/tc-8-73-2014

Intergovernmental Panel on Climate Change (IPCC) (2022). “High Mountain
areas,” in The Ocean and Cryosphere in a changing climate: special report of the
intergovernmental Panel on climate change (Cambridge University Press), 131–202.
doi:10.1017/9781009157964.004

Jonas, T., Marty, C., and Magnusson, J. (2009). Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps. Journal of Hydrology 378, 161–167.
doi:10.1016/j.jhydrol.2009.09.021

Jonas, T., Rixen, C., Sturm, M., and Stoeckli, V. (2008). How alpine plant growth
is linked to snow cover and climate variability. J. Geophys. Res. 113 (G3), G03013.
doi:10.1029/2007JG000680

Karbou, F., Veyssière, G., Coleou, C., Dufour, A., Gouttevin, I., Durand, P., et al.
(2021). Monitoring wet snow over an alpine region using sentinel-1 observations.
Remote Sens. 13 (3), 381. doi:10.3390/rs13030381

Keuris, L., Hetzenecker, M., Nagler, T., Mölg, N., and Schwaizer, G. (2023).
An adaptive method for the estimation of snow-covered fraction with error
propagation for applications from local to global scales. Remote Sensing 15, 1231.
doi:10.3390/rs15051231

Kumar, S., Peterslidard, C., Tian, Y., Houser, P., Geiger, J., Olden, S., et al. (2006).
Land information system: an interoperable framework for high resolution land surface
modeling. Environ.Model. Softw. 21 (10), 1402–1415. doi:10.1016/j.envsoft.2005.07.004

Largeron, C., Dumont,M.,Morin, S., Boone, A., Lafaysse,M.,Metref, S., et al. (2020).
Toward snow cover estimation in mountainous areas using modern data assimilation
methods: a review. Front. Earth Sci. 8. doi:10.3389/feart.2020.00325

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.
(2022). Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European
Alps. Cryosphere 16 (1), 159–177. doi:10.5194/tc-16-159-2022

Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L., Brangers, I.,
et al. (2019). Snow depth variability in the Northern Hemisphere mountains observed
from space. Nat. Commun. 10 (1), 4629. doi:10.1038/s41467-019-12566-y

Liu, Y., Fang, Y., and Margulis, S. A. (2021). Spatiotemporal distribution of seasonal
snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era
snow reanalysis dataset. Cryosphere 15 (11), 5261–5280. doi:10.5194/tc-15-5261-2021

Lu, Y., James, T., Schillaci, C., and Lipani, A. (2022). Snow detection in alpine regions
with Convolutional Neural Networks: discriminating snow from cold clouds and water
body. GIScience Remote Sens. 59 (1), 1321–1343. doi:10.1080/15481603.2022.2112391

Malnes, E., Buanes, A., Nagler, T., Bippus, G., Gustafsson, D., Schiller, C., et al. (2015).
User requirements for the snow and land ice services – CryoLand. Cryosphere 9 (3),
1191–1202. doi:10.5194/tc-9-1191-2015

Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N. S. (2015).
The potential for snow to supply human water demand in the present and future.
Environ. Res. Lett. 10 (11), 114016. doi:10.1088/1748-9326/10/11/114016

Margulis, S. A., Girotto, M., Cortés, G., and Durand, M. (2015). A particle batch
smoother approach to snow water equivalent estimation. J. Hydrometeorol. 16 (4),
1752–1772. doi:10.1175/JHM-D-14-0177.1

Marti, R., Gascoin, S., Berthier, E., de Pinel, M., Houet, T., and Laffly, D. (2016).
Mapping snow depth in open alpine terrain from stereo satellite imagery. Cryosphere
10 (4), 1361–1380. doi:10.5194/tc-10-1361-2016

Masson, T., Dumont, M., Mura, M. D., Sirguey, P., Gascoin, S., Dedieu, J.-P., et al.
(2018). An assessment of existing methodologies to retrieve snow cover fraction from
MODIS data. Remote Sens. 10 (4), 619. doi:10.3390/rs10040619

Monteiro, D., and Morin, S. (2023). Multi-decadal analysis of past winter
temperature, precipitation and snow cover data in the European Alps from

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1381323
https://doi.org/10.3390/rs8060481
https://doi.org/10.1109/IGARSS.2019.8898030
https://doi.org/10.1002/qj.4330
https://doi.org/10.21957/LKPXQ6X5
https://doi.org/10.5194/tc-14-2925-2020
https://doi.org/10.5194/tc-17-2779-2023
https://doi.org/10.5194/tc-17-2779-2023
https://doi.org/10.1016/j.jhydrol.2018.04.027
https://doi.org/10.1016/0034-4257(89)90101-6
https://doi.org/10.1002/wat2.1140
https://doi.org/10.1016/B978-1-78548-104-8.50004-8
https://doi.org/10.1016/B978-1-78548-104-8.50004-8
https://doi.org/10.1016/j.rse.2007.08.010
https://doi.org/10.5194/tc-15-69-2021
https://doi.org/10.2909/3E2B4B7B-A460-41DD-A373-962D032795F3
https://sdi.eea.europa.eu/catalogue/srv/api/records/45e60a9f-f08b-47a9-97b6-21805cf22940
https://sdi.eea.europa.eu/catalogue/srv/api/records/45e60a9f-f08b-47a9-97b6-21805cf22940
https://doi.org/10.1016/j.jhydrol.2017.05.063
https://doi.org/10.1002/wat2.1232
https://doi.org/10.3390/rs13152945
https://doi.org/10.1029/2023GL105303
https://doi.org/10.2307/1938156
https://doi.org/10.2307/1938156
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.1088/1748-9326/ac9e6a
https://doi.org/10.1007/s40641-020-00159-7
https://doi.org/10.1038/s41586-023-06794-y
https://doi.org/10.1038/s41586-023-06794-y
https://doi.org/10.1109/36.957273
https://doi.org/10.5067/MODIS/MOD10C1.061
https://doi.org/10.1016/S0034-4257(02)00095-0
https://doi.org/10.3390/geosciences8120489
https://doi.org/10.1002/qj.3803
https://doi.org/10.3390/rs14174227
https://doi.org/10.5194/tc-8-73-2014
https://doi.org/10.1017/9781009157964.004
https://doi.org/10.1016/j.jhydrol.2009.09.021
https://doi.org/10.1029/2007JG000680
https://doi.org/10.3390/rs13030381
https://doi.org/10.3390/rs15051231
https://doi.org/10.1016/j.envsoft.2005.07.004
https://doi.org/10.3389/feart.2020.00325
https://doi.org/10.5194/tc-16-159-2022
https://doi.org/10.1038/s41467-019-12566-y
https://doi.org/10.5194/tc-15-5261-2021
https://doi.org/10.1080/15481603.2022.2112391
https://doi.org/10.5194/tc-9-1191-2015
https://doi.org/10.1088/1748-9326/10/11/114016
https://doi.org/10.1175/JHM-D-14-0177.1
https://doi.org/10.5194/tc-10-1361-2016
https://doi.org/10.3390/rs10040619
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Gascoin et al. 10.3389/feart.2024.1381323

reanalyses, climate models and observational datasets. Cryosphere 17 (8), 3617–3660.
doi:10.5194/tc-17-3617-2023

Muhuri, A., Gascoin, S., Menzel, L., Kostadinov, T. S., Harpold, A. A., Sanmiguel-
Vallelado, A., et al. (2021). Performance assessment of optical satellite-based operational
snow cover monitoring algorithms in forested landscapes. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sens. 14, 7159–7178. doi:10.1109/JSTARS.2021.3089655

Nagler, T., and Rott, H. (2000). Retrieval of wet snow bymeans ofmultitemporal SAR
data. IEEE Trans. Geoscience Remote Sens. 38 (2), 754–765. doi:10.1109/36.842004

Nagler, T., Rott, H., Ripper, E., Bippus, G., and Hetzenecker, M. (2016).
Advancements for snowmelt monitoring by means of sentinel-1 SAR. Remote Sens. 8
(4), 348. doi:10.3390/rs8040348

National Academies of Sciences, Engineering, and Medicine (2018). Thriving on our
changing planet: a decadal strategy for Earth observation from space. National Academies
Press. doi:10.17226/24938

Niffenegger, C. A., Schano, C., Arlettaz, R., and Korner-Nievergelt, F. (2023). Nest
orientation and proximity to snow patches are important for nest site selection of
a cavity breeder at high elevation. J. Avian Biol. 2023 (3–4), e03046. doi:10.1111/
jav.03046

Nolin, A. W. (2010). Recent advances in remote sensing of seasonal snow. J. Glaciol.
56 (200), 1141–1150. doi:10.3189/002214311796406077

Nolin, A. W., Dozier, J., and Mertes, L. A. K. (1993). Mapping alpine snow
using a spectral mixture modeling technique. Ann. Glaciol. 17, 121–124.
doi:10.3189/S0260305500012702

Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain
regions over 2000–2018. Remote Sens. Environ. 243, 111781. doi:10.1016/j.rse.2020.
111781

Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., et al. (2019).
Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses
using in situ and satellite remote sensing observations. Cryosphere 13 (8), 2221–2239.
doi:10.5194/tc-13-2221-2019

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke,
F., et al. (2016). The Airborne Snow Observatory: fusion of scanning lidar, imaging
spectrometer, and physically-based modeling for mapping snow water equivalent
and snow albedo. Remote Sens. Environ. 184, 139–152. doi:10.1016/j.rse.2016.
06.018

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J.
(2009). Retrieval of subpixel snow covered area, grain size, and albedo from MODIS.
Remote Sens. Environ. 113 (4), 868–879. doi:10.1016/j.rse.2009.01.001

Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., et al.
(2022). Climate changes and their elevational patterns in the mountains of the world.
Rev. Geophys. 60 (1), e2020RG000730. doi:10.1029/2020RG000730

Picard, G., Sandells, M., and Löwe, H. (2018). SMRT: an active–passive microwave
radiative transfer model for snow with multiple microstructure and scattering
formulations (v1.0). Geosci. Model Dev. 11 (7), 2763–2788. doi:10.5194/gmd-11-2763-
2018

Pomeroy, J., Bernhardt, M., and Marks, D. (2015). Research network to track alpine
water. Nature 521 (7550), 32. doi:10.1038/521032c

Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A., Mankin, J.
S., et al. (2020). Agricultural risks from changing snowmelt. Nat. Clim. Change 10,
459–465. doi:10.1038/s41558-020-0746-8

Revuelto, J., Gómez, D., Alonso-González, E., Vidaller, I., Rojas-Heredia, F.,
Deschamps-Berger, C., et al. (2022). Intermediate snowpack melt-out dates guarantee
the highest seasonal grasslands greening in the Pyrenees. Sci. Rep. 12 (1), 18328.
doi:10.1038/s41598-022-22391-x

Rittger, K., Painter, T. H., and Dozier, J. (2013). Assessment of methods
for mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380.
doi:10.1016/j.advwatres.2012.03.002

Rott, H., and Nagler, T. (1995). Monitoring temporal dynamics of snowmelt with
ERS-1 SAR. 3, 1747–1749.

Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., and Sibold, J. S. (2018). Changes
in Andes snow cover from MODIS data, 2000–2016. Cryosphere 12 (3), 1027–1046.
doi:10.5194/tc-12-1027-2018

Santi, E., Pettinato, S., Paloscia, S., Pampaloni, P., Fontanelli, G., Crepaz, A., et al.
(2014). Monitoring of Alpine snow using satellite radiometers and artificial neural
networks. Remote Sens. Environ. 144, 179–186. doi:10.1016/j.rse.2014.01.012

Shi, M., Yuan, Z., Hong, X., and Liu, S. (2022). Spatiotemporal variation of snow
cover and its response to climate change in the source region of the yangtze river, China.
Atmosphere 13 (8), 1161. doi:10.3390/atmos13081161

Stillinger, T., Rittger, K., Raleigh,M. S.,Michell, A., Davis, R. E., andBair, E.H. (2023).
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated
by airborne lidar datasets. Cryosphere 17 (2), 567–590. doi:10.5194/tc-17-567-2023

Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J. (2019). Cloud masking
for landsat 8 and MODIS terra over snow-covered terrain: error analysis and
spectral similarity between snow and cloud. Water Resour. Res. 55 (7), 6169–6184.
doi:10.1029/2019WR024932

Sturm, M., Goldstein, M. A., and Parr, C. (2017). Water and life from
snow: a trillion dollar science question. Water Resour. Res. 53 (5), 3534–3544.
doi:10.1002/2017WR020840

Tarricone, J., Webb, R. W., Marshall, H.-P., Nolin, A. W., and Meyer, F. J. (2023).
Estimating snow accumulation and ablation with L-band interferometric synthetic
aperture radar (InSAR). Cryosphere 17 (5), 1997–2019. doi:10.5194/tc-17-1997-
2023

Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C. (2019). Remote sensing
of snow cover using spaceborne SAR: a review. Remote Sens. 11 (12), 1456.
doi:10.3390/rs11121456

Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H.,
et al. (2022). Review article: global monitoring of snow water equivalent using high-
frequency radar remote sensing.Cryosphere 16 (9), 3531–3573. doi:10.5194/tc-16-3531-
2022

Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y. (2020). Increasing
dependence of lowland populations on mountain water resources. Nat. Sustain. 3,
917–928. doi:10.1038/s41893-020-0559-9

Wang, H., Zhang, X., Xiao, P., Che, T., Zheng, Z., Dai, L., et al. (2023). Towards large-
scale daily snow density mapping with spatiotemporally aware model and multi-source
data. Cryosphere 17 (1), 33–50. doi:10.5194/tc-17-33-2023

Wang, L., Forman, B. A., and Kim, E. (2022). Exploring the spatiotemporal coverage
of terrestrial snow mass using a suite of satellite constellation configurations. Remote
Sens. 14 (3), 633. doi:10.3390/rs14030633

Wayand, N. E., Marsh, C. B., Shea, J. M., and Pomeroy, J. W. (2018). Globally
scalable alpine snow metrics. Remote Sens. Environ. 213, 61–72. doi:10.1016/j.rse.2018.
05.012

Xin, Q., Woodcock, C. E., Liu, J., Tan, B., Melloh, R. A., and Davis, R. E. (2012). View
angle effects on MODIS snow mapping in forests. Remote Sens. Environ. 118, 50–59.
doi:10.1016/j.rse.2011.10.029

Yang, K., John, A., Shean, D., Lundquist, J. D., Sun, Z., Yao, F., et al. (2023).
High-resolution mapping of snow cover in montane meadows and forests using
Planet imagery and machine learning. Front. Water 5. doi:10.3389/frwa.2023.
1128758

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1381323
https://doi.org/10.5194/tc-17-3617-2023
https://doi.org/10.1109/JSTARS.2021.3089655
https://doi.org/10.1109/36.842004
https://doi.org/10.3390/rs8040348
https://doi.org/10.17226/24938
https://doi.org/10.1111/jav.03046
https://doi.org/10.1111/jav.03046
https://doi.org/10.3189/002214311796406077
https://doi.org/10.3189/S0260305500012702
https://doi.org/10.1016/j.rse.2020.111781
https://doi.org/10.1016/j.rse.2020.111781
https://doi.org/10.5194/tc-13-2221-2019
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1016/j.rse.2009.01.001
https://doi.org/10.1029/2020RG000730
https://doi.org/10.5194/gmd-11-2763-2018
https://doi.org/10.5194/gmd-11-2763-2018
https://doi.org/10.1038/521032c
https://doi.org/10.1038/s41558-020-0746-8
https://doi.org/10.1038/s41598-022-22391-x
https://doi.org/10.1016/j.advwatres.2012.03.002
https://doi.org/10.5194/tc-12-1027-2018
https://doi.org/10.1016/j.rse.2014.01.012
https://doi.org/10.3390/atmos13081161
https://doi.org/10.5194/tc-17-567-2023
https://doi.org/10.1029/2019WR024932
https://doi.org/10.1002/2017WR020840
https://doi.org/10.5194/tc-17-1997-2023
https://doi.org/10.5194/tc-17-1997-2023
https://doi.org/10.3390/rs11121456
https://doi.org/10.5194/tc-16-3531-2022
https://doi.org/10.5194/tc-16-3531-2022
https://doi.org/10.1038/s41893-020-0559-9
https://doi.org/10.5194/tc-17-33-2023
https://doi.org/10.3390/rs14030633
https://doi.org/10.1016/j.rse.2018.05.012
https://doi.org/10.1016/j.rse.2018.05.012
https://doi.org/10.1016/j.rse.2011.10.029
https://doi.org/10.3389/frwa.2023.1128758
https://doi.org/10.3389/frwa.2023.1128758
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	Introduction
	Recent advances
	Application of existing algorithms to recent missions
	Recent methods applied to past and recent missions

	Challenges
	Recommendations
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

