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Landslide prediction necessitates viewing the past, present, and future states of
a slope as a constantly changing dialectical unity, with prediction laws derived
from known past and present information. Through in-depth analysis of the
structure and training methods of radial basis function (RBF) neural networks,
an optimization method of RBF network diffusion velocity function based on
the particle swarm optimization (PSO) algorithm was introduced in this study,
aiming at the problem of limited coverage of spread value range determined
by the empirical value or trial calculation method, so as to realize the large-
scale and efficient search of RBF network diffusion function. To address the
problem that the prediction accuracy of the data-driven model based on
displacement increment sequences built by RBF intelligent algorithm is difficult
to be guaranteed when the displacement increment mutation point exists,
the PSO-RBF intelligent coupling model based on gray system theory pre-
processing is constructed to improve the prediction accuracy of the model
from the perspective of improving the prediction accuracy of displacement
increment mutation points. Taking the data from ZG88 monitoring point of
Shuping landslide as a case study, the slope displacement prediction analysis
is carried out. The results demonstrate that the optimization method for
RBF network diffusion velocity parameters based on PSO can efficiently and
accurately identify the global optimal value within the range of 0–1,000. The
computation process takes approximately 13 min, significantly enhancing the
calculation efficiency. The RBF mixed model, incorporating gray system theory,
leverages the valuable information extracted from prior calculations of the
GM(1,1) model group. This integration enhances prediction accuracy compared
with that achieved by the singular PSO-RBF method. The developed algorithms
and research results may be expected to be applied in practical engineering.

KEYWORDS

slope displacement prediction, radial basis function neutral network, particle swarm
optimization algorithm, gray system theory, displacement increment
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1 Introduction

Surface displacement monitoring data consist of the most
intuitive and effective information for characterizing slope
conditions (Dong et al., 2022; Liu et al., 2024). A large number of
landslide monitoring data indicate that the evolution processes of
various gradient landslides not only have unique characteristics but
also have common laws (Zhao et al., 2021; Li et al., 2023); that is, the
displacement–time curves of the monitored slopes typically exhibit
a three-stage evolution pattern characterized by initial deformation,
sustained deformation, and accelerated deformation (Benac et al.,
2011; Niu et al., 2012; Pei et al., 2019). Currently, establishing a
data-driven mathematical model based on time series data of slope
displacements is the most crucial method for landslide prediction
(Xie et al., 2019; Gheorghe et al., 2023).

Recently, there have been many state-of-the-art research studies
about optimization algorithms and machine learning for slope
stability. Mohammad et al. (2022)developed an effective intelligent
system based on artificial neural networks and a new version of
the sine cosine algorithm to evaluate and predict the factor of
safety of homogenous slopes under static and dynamic loading.
Hoang and Pham (2016)proposed a hybrid artificial intelligence
method for slope stability assessment based on metaheuristic and
machine learning, and a dataset that contains 168 real cases of
slope evaluation was used to confirm the proposed hybrid approach.
Khajehzadeh and Keawsawasvong (2023)established the global best
artificial electric field algorithm for the fine-tuning of the support
vector regression hyperparameters, and the prediction accuracy
of the proposed models for forecasting the slope’s safety factor
was examined. Koopialipoor et al. (2019)predicted the safety factor
of many homogenous slopes in static and dynamic conditions
by applying various hybrid intelligent systems, namely, imperialist
competitive algorithm (ICA)-artificial neural network (ANN),
genetic algorithm (GA)-ANN, particle swarm optimization (PSO)-
ANN, and artificial bee colony (ABC)-ANN. Similarly, Gordan et al.
(2016)built two intelligent systems, namely, ANN and PSO-ANN
models, to predict the factor of safety of homogeneous slopes.
It can be said that the slope stability has been well evaluated
in the previous studies by the factor of safety using various
intelligent algorithms.

However, it is still very necessary to the further development of
landslide prediction for the slopes of complex geological structures.
Based on an in-depth analysis of the structure and training
techniques of the radial basis function (RBF) neural network (Zhao
and San, 2011; Wu X. J. et al., 2013), an RBF neural network was
adopted in this study as the research method. It comprehensively
integrates the data analysismethod, swarm intelligence optimization
algorithm, and gray system theory to explore the issue of slope
displacement prediction. For the RBF neural network, the particle
swarm optimization (PSO) algorithm is always applied for its
optimization by researchworkers. Koupae et al. (2018)integrated the
PSO algorithm with Kansa’s method based on meshless collocation
methods in order to determine a good shape parameter of RBF
for solving partial differential equations. Tsoulos and Charilogis
(2023)presented an innovative two-phase method for parameter
tuning in the RBF neural network, and they developed a technique
based onPSO to locate a promising interval of values for the network
parameters. PSO is generally considered a highly reliable method

for global optimization problems, and in addition, it is one of
the fastest and most flexible techniques of its class (Koupae et al.,
2018).Therefore, the optimizationmethod of RBF network diffusion
velocity function based on the PSO algorithm was proposed
(Jain et al., 2022). On the basis of previous studies, ZG88monitoring
data of Shuping landslide were taken as an example in this study, and
the applicability of PSO-RBFneural network for landslide prediction
is discussed.

In this study, aiming at the problem that the spread coverage
ability determined by the trial method is limited and easy
to fall into local optimum (Zhao et al., 2021), a RBF network
diffusion velocity function optimization method based on the
PSO algorithm is proposed to realize the large-scale and efficient
search of RBF network diffusion function. On this basis, in
view of the fact that it is difficult to guarantee the prediction
accuracy of the data-driven model based on the displacement
increment sequence constructed by a single RBF intelligent
algorithm when the displacement increment mutation point exists
(Li and Liu, 2005), the PSO-RBF intelligent coupling model based
on the graying layer pre-processing is established to improve
the prediction accuracy of the model from the perspective of
improving the prediction accuracy of displacement increment
mutation point.

2 Improvement of RBF neural network

2.1 RBF neural network

In 1988, Broomhead and Lowe (Wang and Xu, 2010) introduced
the multivariate difference RBF into neural networks according to
the local response phenomenon observed in biological neurons.
Different from the slow learning velocity and complex network
parameters resulting from the influence of one or more adjustable
parameters on the global output in global approximation networks,
the RBF neural network is a local approximation network.
It possesses numerous advantages, including fast convergence
velocity, simple structure, and strong approximation ability.
Numerous studies have demonstrated that RBF neural networks
can approximate arbitrary nonlinear functions within a compact
set and achieve any desired level of precision (Jiang et al., 2021;
Wang, 2023).

The RBF neural network consists of three layers: the input layer,
the hidden layer, and the output layer, which are arranged in a
forward architecture. The hidden layer employs the radial basis
function as the activation function, as illustrated in Figure 1.

The output of the network is

a2 = purelin(LW2a1 + b2), (1)

where a1 = radbas(n1), n1 = ‖IW− P‖.∗b1 = (diag((IW− ones
(S1,1)∗P′)′))^0.5.∗b1, diag(x) represents a column vector
composed of elements on the diagonal of a matrix vector,
and``^''and``.∗ ''represent the scalar multiplication and scalar
product (the multiplication and product of the corresponding
elements in the matrix), respectively.
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FIGURE 1
Structure of the RBF network (Koupae et al., 2018).

2.2 PSO neural network

The mathematical description of the PSO algorithm
(Wang et al., 2018; Zeng et al., 2022) can be as follows. Consider that
in a D-dimensional (D-D) space, population X = (x1,…xi,…xD)
is composed of m randomly generated scattered particles, where
the position of the ith particle is Vi = (vi1,…vii,…viD)

T and the
velocity is Vi = (vi1,…vii,…viD)

T. The fitness of each particle can
be calculated based on the objective function. In each iteration
calculation, the ith particle will calculate the displacement vector
PBESTij = (pi1,…pi2,…piD)

T of the particle according to the
extreme value PBESTij obtained in the past and the extreme
value GBESTij of the population. The particle vector and the
displacement vector are utilized as the particle vector values of
the next iteration. The individual extreme value is PBESTij =
(pi1,…pi2,…piD)

T and the global extreme value of the population
is GBESTij = (pi1,…pi2,…piD)

T. Based on the principle of tracking
the optimal particle, the particle xi adjusts its position and velocity
according to the following formula:

Vij(t+ 1) = Vij(t) + c1r1(t)(PBESTij(t) − xij(t)) + c2r2(t)(GBESTij(t) − xij(t)),
(2)

xij(t+ 1) = xij(t) + vij(t+ 1). (3)

2.3 Optimization of RBF network diffusion
velocity parameters based on PSO

In the undetermined parameters of the RBF neural network
prior to training, the value of network diffusion velocity spread
directly influences the fitting and generalization abilities of the
network. For function features exhibiting rapid changes, excessively
large spread values will result in overly coarse approximation
outcomes. In the existing research, the spread value range is typically
determined through empirical values or trial calculation methods,
and with the spread value being assigned a fixed step increment

within this range. The mean square error (MSE) of the prediction
results under various spread values is compared to achieve
parameter optimization. However, under the influence of rainfall,
geological structure, topography, and other factors, the deformation
and stress release of natural slopes become highly complex processes
(Liu et al., 2021). The cumulative displacement–time curves and
single-period displacement–time curves of slopes vary across
different stages of evolution. On the one hand, the spread value
range determined by empirical values or trial calculation methods
has limited coverage ability, potentially encompassing only one or
several local optima and failing to include the global optimum value.
On the other hand, the size of the incremental step impacts the
accuracy of the spread value. If the step size is too large, the optimal
solution may be missed. Conversely, if the step size is too small, the
calculation time will significantly increase, making it impractical to
efficiently search within a large range. To address the above issues
encountered with the empirical value interval search method, this
study employs the PSO algorithm to search for the optimal solution
of the spread parameter.

2.4 PSO-RBF intelligent coupling model
based on gray system theory

In 1982, the gray system theory was first proposed by
Deng (1983). The theory focuses on studying uncertain systems
characterized by “poor information” and “limited data,” where
only “partial information is known and partial information
is unknown.” By developing and generating “partial” known
information, valuable information is extracted to accurately describe
and effectively predict the behavior and evolution patterns of
the system (Wu L. F. et al., 2013). In gray system theory, random
variables are considered as gray quantities that vary within a
certain range, whereas random processes are seen as gray processes
that fluctuate within a defined range and time frame. The gray
model (GM) is utilized to depict the progression of development
and change within abstract systems. The gray model with n-
order derivative h variables is typically described as necessitating
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FIGURE 2
Implementation of PSO-RBF intelligent coupling model based on gray system theory.

variable h to encapsulate the comprehensive effect of the predicted
object. In the prediction of slope displacement, the displacement
monitoring time series represents a temporal sequence influenced
by various factors combined. Order n of the differential equation
is typically below the third order, as computational complexity
escalates substantially with higher n, whereas the increase in
prediction accuracy is not necessarily guaranteed. In this study,
the value of n is set to 1, and the first-order dynamic gray
model of singular sequence, known as the GM(1, 1) model,
is constructed.

The whitened differential equation is

dx(1)(t)
dt
+ ax(1)(t) = b, (4)

where a and b are identified model parameters. According to the
definition of white derivative,

dx(1)(t)
dt
= lim
Δx→0

x(1)(t+Δt) − x(1)(t)
Δt

. (5)

Considering equidistant sampling, the discrete formof the above
equation is expressed as

dx(1)(t)
dt
=
x(1)(t+Δt) − x(1)(t)
(t+ 1) − t

= x(1)(t+Δt) − x(1)(t) = α(1)[x(1)(t+ 1)].

(6)

Substitute Eq. 6 into the differential equation to obtain the gray
difference equation

α(1)[x(1)(t+ 1)] + χ(1) = b, (7)

where χ(1) is the background value of derivative dx(1)(t)
dt

. As
the gray derivative represents the difference between new and
old information within a unit time, and any gray derivative
is calculated based on a specific background value, this
background value is applicable to both new and old information.
Hence, the average of new and old information is adopted
as the background value, and the equation is described
as follows:

χ(1) = z(1)(t+ 1) = 0.5[x(1)(t+ 1) + x(1)(t)]. (8)

Substituting Eq. 8 into the gray difference equation, considering
α(1)[x(1)(t+ 1)] = x(0)(t+ 1), we have

[x(0)(t+ 1)] + αz(1)(t+ 1) = b t = 1,2,⋯n− 1. (9)

Because of significant variations in the prerequisites for slope
deformation disasters caused by geomorphological characteristics,
stratigraphic lithology, geological structure, and hydrogeological
environment, along with the impacts of inducing factors like
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precipitation, reservoir water level fluctuation, earthquakes,
and vegetation damage, the displacement increment sequences
obtained from different landslide monitoring points exhibit
distinct nonlinear characteristics. When employing a single
RBF intelligent algorithm to build a data-driven model based
on displacement increment sequences, ensuring prediction
accuracy becomes challenging in the presence of displacement
increment mutation points. Addressing the limitations of
single prediction methods, Bates and Granger (1969)first
proposed the idea of combined prediction in 1969. At present,
this idea has been widely developed and applied. In this
study, the PSO-RBF intelligent coupling model based on gray
system theory is constructed, drawing upon the concept of
combined prediction. Using the monitoring data from ZG88
of the Shuping landslide as a case study, the prediction
effect is assessed.

The PSO-RBF intelligent coupling model based on the
GM(1, 1) model group is established. The fundamental process
involves integrating the pre-processing steps of the GM(1, 1)
model group before inputting into the PSO-RBF neural network.
The GM(1, 1) model exhibits varying influential factors across
different evolutionary stages. The validity of the GM(1, 1)
model’s prediction results is closely related to the length of
the data sequence used in modeling. The model established by
different length sequences has different prediction accuracy. The
corresponding GM(1, 1) model groups are established using
data of varying dimensions, and the prediction results serve
as input training samples for the PSO-RBF neural network.
This facilitates high-precision training and prediction of the
network. The algorithm implementation process is shown in
Figure 2.

3 Slope deformation displacement
prediction

3.1 Research slope profile and data
preparation

In this study, the Shuping landslide in the Three Gorges
Reservoir area of the Yangtze River was selected as the research
background. The longitudinal length of the sliding body is
about 800 m from north to south and 700 m from east to
west, with a thickness ranging between 40 and 70 m. The total
volume is about 2,890×104 m3. The Shuping landslide (Zhao,
2022; Jia et al., 2023) is an old landslide accumulation body,
which is situated on the southern slope of the Yangtze River in
Shuping Village, Shazhenxi Town, Zigui County, Hubei Province.
It is approximately 47 km away from the Three Gorges Project
dam site, with geographical coordinates at 110°37′0″longitude
and 30°59′37″latitude.

The research focuses on 73 months of monitoring data from
monitoring point ZG88, situated in the eastern lower part of the
Shuping landslide within the Three Gorges Reservoir area of the
Yangtze River. These data were provided by the National Field
Scientific Observation and Research Station of the Three Gorges
Landslide in the Hubei Province. During these 73 months, the
geological conditions have hardly changed, and their effects on the

FIGURE 3
Displacement of the monitoring point on Shuping landslide.

TABLE 1 Calculated values of ACF and PACF of ZG88 monitoring point
data of Shuping landslide.

n
Parameter value

n
Parameter value

ACF PACF ACF PACF

1 0.840 0.840 11 0.269 −0.032

2 0.483 −0.758 12 0.351 −0.056

3 0.078 0.012 13 0.327 −0.014

4 −0.257 −0.061 14 0.201 −0.118

5 −0.460 −0.097 15 0.002 −0.142

6 −0.514 −0.022 16 −0.212 −0.036

7 −0.446 −0.067 17 −0.361 0.049

8 −0.295 0.022 18 −0.399 −0.021

9 −0.102 0.058 19 −0.334 −0.077

10 0.102 0.122 20 −0.191 0.066

monitoring data can be ignored (Zhao, 2022). The original surface
displacement monitoring data are filtered and processed, as shown
in Figure 3.

3.2 Optimization of the number of input
nodes

The displacement increment data from the ZG88 monitoring
points of the Shuping landslide are filtered and normalized to the
range of [0.1, 0.9].The optimal historical data point, n, is determined
by calculating both the autocorrelation function and the partial
correlation function. The calculation results of the autocorrelation
coefficient (ACF) and partial autocorrelation coefficient (PACF) for
the displacement increment sequence of ZG88 monitoring points
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FIGURE 4
ACF and PACF of displacement increment sequence of ZG88 monitoring points.

FIGURE 5
Fitness function curves of the empirical value interval search method.

are presented in Table 1, with the corresponding figures illustrated
in Figure 4. The blue dotted line in the figure represents the upper
and lower limits of the 95% confidence interval.

Based on the calculation results of the displacement increment
data from monitoring point ZG88, when the optimal historical
data point, n, is set to 2, the ACF of the displacement increment
sequence is 0.483, which is notably higher than the subsequent
values. Furthermore, the subsequent PACF value falls within the
95% confidence interval. Hence, the ZG88 monitoring point selects
n = 2, indicating that the displacement increment data from the
preceding 2 months can be chosen as the network input data.

FIGURE 6
PSO fitness function curves of ZG88 data.

3.3 Optimization of diffusion velocity
parameters

To prevent parameter selection from falling into a local
optimum, the selected spread search range should be as large as
possible, and the incremental step size should be as small as possible.
Both of them significantly increase the computation time. In this
study, the search interval is set to [0.1, 10,000], with an incremental
step size of 0.1. The computation time required to evaluate 100,000
candidate values for the ZG88monitoring data is approximately 9 h,
indicating a substantial time investment. Logarithmic coordinates
(log10) are employed in both the horizontal and vertical axes, with
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FIGURE 7
Prediction results of displacement increment at ZG88 monitoring
point of Shuping landslide.

FIGURE 8
Prediction results of displacement of ZG88 monitoring point of
Shuping landslide.

selected calculation results depicted in Figure 5. Taking the [0.1,
100] search interval as an example, the ZG88 monitoring point
data achieved a local optimal solution within the range of [90,
100]. Subsequently, within the subsequent [100, 1,000] range, the
MSE further decreased. It is evident that the spread value range
determined by empirical values or trial calculation methods has
limited coverage ability. Such ranges may only encompass one or
several local optima, thus failing to include the global optimum
value. Setting the incremental step size to 0.1 may result in missing
the optimal solution, whereas reducing it to 0.001would increase the
calculation time to 900 h, rendering efficient search impractical.

To address the aforementioned challenges and enhance the
fitting and generalization capabilities of the RBFneural network, this

study employs the PSO algorithm to search for the optimal value
of the objective function spread. In the algorithm parameters, the
initial population number CPSO.N is 40, the inertia weight CPSO.ω
is 0.7298, the individual acceleration coefficient CPSO. c1 is 1.49445,
and the group acceleration coefficient CPSO. c2 is 1.49445. After
trial calculation, the search interval is set to [0.001, 1,000] and the
upper limit of evaluation times is set to 800. The calculation results
for the optimal diffusion velocity spread of the RBF neural network
using ZG88 monitoring point data are depicted in Figure 6. Each
independent evaluation of the monitoring data takes approximately
13 min, with an upper limit of 800 evaluations. From the evaluation
results, it can be seen that themonitoring data successfully identified
the optimal solution for the SPREAD within the interval of [0.001,
1,000] within 100 steps of a single independent evaluation. This
achievement contrasts with the approximately 900 h required to
achieve a similar accuracy range using the empirical value interval
search method. Based on these calculations, the spread of the ZG88
monitoring data is determined to be 985.262.

4 Analysis of prediction results of
PSO-RBF

To verify the applicability of PSO-RBF neural network in
landslide prediction after the parameters are optimized by the
number of input nodes and the diffusion velocity parameters, the
following experiments are carried out.

Based on the optimization results for the number of network
input nodes, the network topology is configured with two input
nodes. Furthermore, leveraging the optimization outcomes for
diffusion velocity parameters, the diffusion function SPREAD is
set to 985.262. The scalar GOAL is set to the default value of 0,
and the number of output nodes is configured to be 1. Training
samples consist of data from periods 1 to 63, whereas test samples
encompass data from periods 64 to 73. The displacement increment
monitoring data for each period are normalized to the interval
[0.1, 0.9]. Figure 7 illustrates the displacement increment prediction
curves, whereas Figure 8 depicts the displacement prediction curves.
Additionally, Table 2 shows the displacement prediction results for
the prediction period.

The prediction results indicate that the root mean square error,
relative error, and average relative error of the experimental results in
both the training and test periods are small, suggesting the absence
of under-training or overfitting phenomena. The PSO-RBF neural
network, optimized by the number of input nodes and diffusion
velocity parameters as proposed in this paper, demonstrates robust
applicability in landslide prediction. However, it is worth noting
that the displacement increment sequence of the ZG88 monitoring
point of the Shuping landslide exhibits a sudden change point
during periods 67–70, coinciding with the presence of test samples
within the same period range. The prediction curve exhibits a slight
deviation from themonitoring curve, and there is a cumulative error
in the displacement prediction results for the same period. Due to
the limitations of the RBF neural network method, in the face of
input samples with highly nonlinear characteristics, there is often
a large degree of deviation from the predicted data.

To address the highly nonlinear characteristics of displacement
increment sequences, this study introduces a PSO-RBF
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TABLE 2 Prediction results of ZG88 monitoring point of Shuping landslide (unit: mm).

Observation
time

Incremental of
displacement

Cumulative displacement

Monitoring
value

Prediction
value

Prediction
residual

Relative
error (%)

Monitoring
value

Prediction
value

Prediction
residual

Relative
error (%)

64 42.427 41.149 −1.278 −3.01 2,686.06 2,699.944 13.884 0.52

65 70.007 55.416 −14.591 −20.84 2,756.067 2,755.361 −0.707 −0.03

66 112.811 88.776 −24.035 −21.31 2,868.879 2,844.137 −24.742 −0.86

67 142.718 129.081 −13.636 −9.55 3,011.596 2,973.218 −38.378 −1.27

68 156.184 129.233 −26.951 −17.26 3,167.78 3,102.451 −65.329 −2.06

69 133.132 114.722 −18.409 −13.83 3,300.912 3,217.173 −83.738 −2.54

70 81.042 69.055 −11.987 −14.79 3,381.954 3,286.229 −95.725 −2.83

71 33.670 21.655 −12.015 −35.69 3,415.624 3,307.883 −107.740 −3.15

72 13.250 13.200 −0.050 −0.38 3,428.874 3,321.083 −107.790 −3.14

73 9.660 4.684 −4.976 −51.51 3,438.534 3,325.767 −112.766 −3.28

Mean relative deviation: 18.82% Mean relative deviation: 1.97%

Root mean square error (RMSE): 15.350 Root mean square error (RMSE): 76.593

TABLE 3 Prediction results of the RBF mixed model based on the GM(1, 1) model group.

Observation
time

Gray model group prediction results (m) Mixed model
prediction
value (m)

Monitoring
value

4D 5D 6D 7D 8D Cumulative
displacement

64 2,699.944 2,695.28 2,687.56 2,682.44 2,675.05 2,669.01 2,934.722

65 2,755.361 2,750.06 2,738.30 2,728.74 2,715.49 2,703.57 3,056.519

66 2,844.137 2,842.13 2,833.55 2,821.83 2,804.76 2,787.74 3,196.505

67 2,973.218 2,973.41 2,971.97 2,964.50 2,949.53 2,931.03 3,330.542

68 3,102.451 3,105.63 3,110.26 3,110.53 3,105.03 3,091.69 3,442.185

69 3,217.173 3,223.52 3,235.17 3,242.21 3,249.47 3,248.34 3,508.796

70 3,286.229 3,290.43 3,303.82 3,316.55 3,332.84 3,344.76 3,541.979

71 3,307.883 3,310.09 3,318.27 3,331.55 3,351.88 3,371.70 3,564.715

72 3,321.083 3,321.67 3,325.35 3,333.14 3,350.47 3,372.56 3,584.344

NSE 0.9997 0.997 0.9919 0.9786 0.9590 0.9998

MAPE 1.06% 3.65% 6.37% 1.03% 1.44% 0.09%

RMSE 3.76 12.38 20.83 33.90 46.95 3.08
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intelligent coupling model based on gray system theory. By
incorporating principles from gray system theory, the displacement
increment sequence is transformed into a monotonically
increasing cumulative displacement sequence using the gray
cumulative generation operator. Gray PSO-RBF and GM(1,
1)-PSO-RBF intelligent coupling models, based on gray
system theory, are constructed to investigate the enhancement
of prediction accuracy from the perspective of intelligent
coupling models.

5 Analysis of prediction effect of
intelligent coupling model

The data from periods 1–63 were designated as the training
set, whereas the data from periods 64–73 were assigned to the test
set. Additionally, the information dimensions of theGM(1, 1)model
were configured as 4D, 5D, 6D, 7D, and 8D.Accordingly, the number
of input nodes in the PSO-RBF network is set to 5, aligning with the
number of calculation results obtained from the GM(1, 1) model
across various dimensional information settings. The number of
output nodes remains at 1. The PSO algorithm was employed to
search for the optimal value of the objective function spread within
the range [0.001, 10,000], yielding a result of 6,321.25. The scalar
GOAL is set to 0. The prediction results of the GM(1, 1) model for
each dimension and the RBF mixed model based on the GM(1,1)
model group are presented in Table 3. The cumulative displacement
Nash–Sutcliffe efficiency (NSE) coefficient, mean absolute
percentage error (MAPE), and RMSE of the RBF mixed model
based on the GM(1,1) model group are 0.9996, 0.12%, and 4.984,
respectively.

Based on the above analysis, it can be seen that the RBF
mixed models based on the GM(1, 1) model group exhibit no
signs of inadequate training or overfitting phenomena, and they
can effectively fulfill the data prediction requirements of this group.
Compared with the RBF model, the slope displacement prediction
model demonstrates improved accuracy under evaluation indexes
such as the Nash coefficient, mean absolute error percentage, and
root mean square error.

6 Conclusion

Slope displacement stands as a paramount parameter
in landslide prediction, serving as the most crucial and
readily obtainable information. It adeptly mirrors the failure
characteristics and dynamic deformation of landslides. In
this study, the intelligent algorithm is used as the research
method, integrating data analysis techniques, swarm intelligence
optimization algorithms, and gray system theory for comprehensive
analysis of slope displacement prediction. The PSO-RBF slope
displacement prediction model and the PSO-RBF intelligent
coupling model, integrating gray system theory, have been
constructed. These improved methods have been effectively
validated and deployed for predicting displacement in the Shuping
landslide scenario.

In the undetermined parameters of the RBF neural network
before training, the value of the diffusion velocity spread directly

impacts the network’s fitting and generalization abilities. Aiming at
the issue of limited coverage in determining the spread value range
through empirical or trial calculation methods, the RBF network’s
diffusion velocity parameter optimization method, based on PSO,
accurately and efficiently identifies the global optimal value across a
wide range.This approach significantly enhances the computational
efficiency.

In the absence of landslide inducement monitoring data, it
is difficult to ensure the prediction accuracy of displacement
increment mutation point of a data-driven model based on
cumulative displacement sequence by using a single RBF intelligent
algorithm. The PSO-RBF intelligent coupling model developed in
this study, based on gray system theory, maximizes the utility of the
valuable information derived from the preceding calculations of the
GM(1,1) model group. Consequently, the predictive performance of
the model is significantly enhanced compared to that of the single
PSO-RBFmethod.This approach can be recommended for adoption
in engineering practices.
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