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The present study aims to comprehensively assess the solar irradiance patterns
in the western zone of the Mantaro Valley, a region of ecological and agricultural
significance in the central Peruvian Andes. Leveraging radiation data from the
Baseline surface Radiation Network (BSRN) sensors located in the Huancayo
Geophysical Observatory (HYGO-12.04°S,75.32°W, 3350 masl) spanning from
2017 to 2022, the research delves into the seasonal variations and trends
in surface solar irradiance components. Actually, the study investigates the
diurnal and seasonal variations of solar irradiance components, namely diffuse
(EDF), direct (EDR), and global (EG) irradiance. Results demonstrate distinct peaks
and declines across seasons, with EDR and EDF exhibiting opposing seasonal
trends, influencing the overall variability in, EG. Peaks of, EG occurred in spring
(3.32 MJ m−2 h−1 at noon), particularly during October (24.14 MJ m-2 day-1),
probably associated with biomass-burning periods and heightened aerosol
optical depth (AOD). These findings highlight the impact of biomass-burning
aerosols on solar radiation dynamics in the region. In general, the seasonal
variability of, EG on the HYGO is lower than that observed in other regions
of South America at higher latitudes and reach its maximums during spring
months. Moreover, the research evaluates various irradiationmodels to establish
correlations between sunshine hours, measured with a solid glass sphere
heliograph, and, EG and EDF at different time scales, showing acceptable
accuracy to predict. In addition, the sigmoid logistic function emerges as
the most effective in correlating the hourly diffuse fraction (Kh

D) and the
hourly clearness index (Kh

T), showcasing superior performance compared to
alternative functions and exhibiting strong statistical significance and providing
valuable insights for future solar radiation forecasting and modeling efforts.
This study offers valuable insights for solar radiation forecasting and modeling
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efforts, emphasizing the importance of interdisciplinary research for solar power
generation, sustainable development and climate resilience in mountainous
regions like the Peruvian Andes.

KEYWORDS

solar irradiance models, global irradiance, diffuse irradiance, direct irradiance, peruvian
central Andes

1 Introduction

Solar radiation serves as the primary energy source driving
surface-atmosphere interactions, influencing a wide array of
physical, chemical, and biological processes within Earth’s
atmospheric and oceanic systems (Munner, 2004a; Arya, 2005).
Understanding the components of solar radiation, namely global
(EG), diffuse (EDF), and direct (EDR) radiation at the surface, is
indispensable for various applications. These include identifying
regions suitable for solar power generation (Janjai et al., 2009;
Della-Ceca et al., 2019; Barragán-Escandón et al., 2022), assessing
energy consumption in buildings (Rodríguez-Hidalgo et al., 2012;
Albarracin, 2017), supporting ecophysiological studies (Woodward
and Sheeh, 1983; Monteith and Unsworth, 1990) estimating crop
evapotranspiration (Supit and Van Kappel, 1998), and facilitating
urban planning (Redweik et al., 2013).

Since 1990, global organizations have emphasized the
environmental risks posed by fossil fuels, promoting renewable
energy. However, global energy demand is projected to rise by
over 50% by 2030 (Sayigh, 2020). In recent decades, there has
been a notable surge in investment and development of alternative
technologies aimed at producing clean energy from renewable
sources. These technologies offer lower environmental impacts
compared to traditional ones, garnering significant attention
worldwide (Ellabban et al., 2014). The “Renewable Energy Policy
Network for the 21st Century Report” highlights a growing interest
in renewable energies, with a global push towards achieving net-
zero emissions by 2050 (REN21, 2023). Currently, solar and wind
power are among the most promising and feasible renewable
resources. The implementation of photovoltaic systems (PV) has
particularly seen a rapid expansion, with growth rates reaching 40%
in recent years (Jager Waldau, 2019).

In this context, observations of solar radiation are commonly
focused on global radiation. However, many applications require
data on irradiation on sloping surfaces. Therefore, it is often
necessary to divide global radiation into its beam and diffuse
components to derive the specific data needed from the available
global radiationmeasurements. A number of diffuse fractionmodels
are available for averaging times ranging from 1 month to 1 hour
or even less. Different diffuse fraction models generally require
varying input data. The model proposed by Erbs et al. (1982) only
needs the hourly clearness index.Themodels ofMaxwell (1987) and
Skartveit and Olseth (1987) require both the hourly clearness index
and solar elevation and the model of Skartveit et al. (1998) which
added hour-to-hour variability index and regional surface albedo.

Furthermore, the model by Perez et al. (1992) further includes
ambient dew-point temperature and an hour-to-hour variability
index. From a large multiclimatic database, they derived a
computationally efficient model using a four-dimensional look-up

table consisting of a 6× 6× 5× 7 matrix of numerical constants.
Moreover, Ridley et al. (2010) developed a multiple predictor model
that uses hourly clearness index, daily clearness index, solar altitude,
apparent solar time and a measure of persistence of global radiation
level as predictors. This model performs marginally better than
currently usedmodels for locations in theNorthernHemisphere and
substantially better for Southern Hemisphere locations.

In general, South America lacks sufficient radiometric stations
equipped to measure various components of solar radiation,
typically only measuring global radiation (EG) and sunshine hours
(S). However, comprehensive data on diffuse radiation (EDF)
incident on tilted surfaces is essential for various applications,
including hydrological, architectural (thermal comfort), urban
planning, and micro-meteorological studies. Moreover, such
data supports the design of solar energy systems, aiding in
the optimization of solar collector configurations and the
determination of optimal tilt angles and panel orientations to
maximize energy conversion efficiency. This problem is particularly
serious in Andean regions, due to the lack of high quality
radiometric sensors like BSRN stations Driemel et al. (2018).
Actually, there are studies which compare global irradiance data
with numerical irradiance models for the south-central region
of Chile (Álvarez et al., 2011), Argentina (Podestá et al., 2004;
Ceballos et al., 2022) and spectral irradiance measurements in the
high Andes of Peru (Hastenrath, 1997).

Moreover, compared to 1980, projections indicate a decrease in
ultraviolet UV-B irradiance by 5%–20% at mid to high latitudes
by the end of the 21st century, while a slight increase of 2%–3%
is expected in low latitudes. The tropics (25°N–25°S) exhibit low
seasonal variability, with naturally low ozone levels around 250
Dobson Units contributing to high UV radiation. Notably, there
have been no significant changes in total ozone column over this
period in this region (McKenzie et al., 2011). Additionally, factors
contributing to heightened UV radiation levels include the altitude
of mountainous regions, clear skies, and low aerosol concentrations,
notably observed in the Andean mountains between 12°S and 23°S,
which boast over 100 peaks exceeding 6000 m above sea level
(Blumthaler et al., 1997; Cordero et al., 2014). This phenomenon
has been investigated in various locations, including the Chilean
Andes (Piazena, 1996), Bolivian Andes (Zaratti et al., 2003), and
Argentinian Andes (Cede et al., 2002; Luccini et al., 2006).

Particularly, UV solar irradiance measurements were
conducted by Suárez Salas et al. (2017) in the Peruvian central
Andes, at the HYGO, between January 2003 and December 2006,
using a GUV-511 multi-channel filter radiometer. Data analysis
revealed daily, monthly, and annual cycles of UV solar irradiance at
four wavelengths (305, 320, 340, and 380 nm). Clear sky and all sky
conditions were distinguished, with February showing peak values.
The highest hourlymeanUV Index at noon reached 18.8 under clear
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sky conditions and 15.5 under all sky conditions, with outlier peaks
close to 28. Cloud cover increased spectral irradiance at 340 nm
by up to 20%, indicating exceptionally high levels of UV radiation
in the tropical central Andes. However, to date, there are no studies
aimed at studying solar radiation in the central Peruvian Andes with
high quality data.

On the other hand, in Brazil, several studies have investigated
solar radiation patterns for different sites using high quality
radiometric sensors like BSRN stations (Driemel et al., 2018). For
instance, Oliveira et al. (2002b) examines seasonal variations in
EG and EDR diurnal patterns using surface data from São Paulo.
Codato et al. (2008) conducted a comparative analysis of solar
radiation fields between São Paulo and Botucatu. Ferreira et al.
(2012) focused on São Paulo’s radiation balance, highlighting
atmospheric factors’ role in EG seasonal variability. Furthermore,
Pereira et al. (2006) and Martins et al. (2007) utilized SOLAS
network data to validate a satellite-derived model, shedding light
on Brazil’s solar energy potential. In a related study in Rio de
Janeiro City, Marques Filho et al. (2016) obtained daily maximum
values of EG during summer and minimums in winter, showing
higher values compared to a similar analysis in São Paulo City.
This difference, despite both cities being within the same latitude
range, can be attributed to the influence of cloudiness and marine
aerosols in Rio de Janeiro City, which affect the components
and balance of solar radiation at the surface. Additionally,
De Souza et al. (2016) presented the seasonal variation of EG in
Alagoas city, while Gomes et al. (2022) analyzed the seasonal
variation of both EG and EDF in San Salvador city.

The present study aims to comprehensively analyze solar
irradiance patterns in the western Mantaro Valley, utilizing data
from BSRN sensors at the Huancayo Geophysical Observatory
(HYGO), spanning 2017 to 2022, the research investigates seasonal
variations and trends in surface solar irradiance components.
Specifically, the study explores diurnal and seasonal fluctuations of
diffuse (EDF), direct (EDR), and global (EG) irradiance. In addition,
the research evaluates various irradiation models to establish
correlations between solar irradiance parameters, aiming to predict
EG and EDF accurately across different time scales. The description
of the site is shown in Section 2, sensors and instrumentation are
described in Section 3, database and methodologies used in the
study are presented in Section 4. Section 5 summarized the results of
the research, including observational characterization and empirical
models of global, direct and diffuse solar irradiances, Section 6
discuss the main contributions of the research and finally, Section 7
concludes the paper.

2 Site and location

Themeasurements in this studywere conducted at theHuancayo
Geophysical Observatory (HYGO), situated at coordinates 12.04°S
latitude and 75.32°W longitude, with an elevation of 3350 m
above sea level (m.a.s.l). HYGO is operated by the Geophysical
Institute of Peru (IGP). It is located within the Mantaro River
Basin (MRB) within the central Peruvian Andes, covering a vast
drainage area spanning 34,550 square kilometers (Figure 1A). The
MRB encompasses various regions of the central Andes, including
Junin, Ayacucho, Huancavelica, and Pasco, with elevations ranging

from 500 to 5,300 m.a.s.l and a mean altitude of approximately
3870 m.a.s.l. (Figure 1B). Furthermore, HYGO is situated within
the non-irrigated agricultural expanse of the Mantaro Valley (MV),
positioned at a distance of 7 km from the Mantaro River and
12 km from the city of Huancayo. The observatory is nestled
between the Western Andes and the Huaytapallana cordillera to
the east, (Figure 1A).

The climatological data spanning 48 years (1965–2013) from
HYGO reveals a predominant unimodal seasonal pattern in
precipitation. This pattern distinctly delineates a dry season
extending from April to August, followed by a rainy season
spanning from September to March. Notably, the latter part of
August may witness intense rainfall events, with precipitation
steadily increasing until it reaches its zenith during the austral
summer, specifically in January through March, as substantiated
by prior studies (Silva et al., 2008; Espinoza-Villar et al., 2009).
Following this period, a noteworthy decline in precipitation is
observed in April. Consequently, approximately 83% of the annual
accumulated rainfall occurs during the rainy season, as documented
in earlier research (Silva et al., 2010).

Moreover, Flores-Rojas et al. (2019a) shows that the
components of the energy budget exhibit both seasonal and
daily variations, with the partitioning of net irradiance (QN) into
turbulent sensible (QH), turbulent latent (QE) heat fluxes, and soil
heat flux (QG) being influenced by the dynamic interplay between
the soil and the atmosphere’s heat transport capabilities, as well
as the physical attributes of the surface. At solar noon, the mean
monthlyQN attains its peak in November, registering at 660 W m−2,
while reaching its nadir in July at 450 W m−2.

During the fall and winter months, the mean monthly QH,
peaking around 300 W m−2 at noon, surpasses the mean monthly
QE, which reaches its maximum of approximately 100 W m−2

at the same time. This discrepancy can be attributed to the
limited soil moisture availability during this period. Conversely,
in the spring and summer months, the situation reverses, with
the mean monthly QE, reaching its zenith of close to 300 W
m−2 at noon, outpacing the mean monthly QH, which reaches a
maximum of approximately 220 W m−2 at noon. This shift is a
consequence of elevated precipitation levels during this period,
which enhances soil moisture availability in the Mantaro valley.
Furthermore, the replenishment of nocturnal QN loss is notably
more effective through QG than turbulent fluxes. This distinction
becomes more pronounced in the winter months, where QE is
almost negligible during the night, and the atmosphere exhibits
stratification due to low surface temperatures and diminished soil
moisture levels (Flores-Rojas et al., 2019a).

3 Instrumentation

3.1 Sensors

The Geophysical Institute of Peru implemented the Laboratory
of Physics, Microphysics and Radiation (LAMAR) in 2015 at the
HYGO. LAMAR has a set of varied instruments and sensors that
can be used to measure several atmospheric properties with high
temporal and spatial resolutions and to validate numerical physical
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FIGURE 1
(A) The location of the HYGO (12.05°S, 75.32°W, 3313 m asl) of the Geophysical Institute of Peru, inside the domain of the Mantaro valley and the
Mantaro basin. (B) Topography around the Mantaro valley, with resolution of 0.5 km and higher altitudes close to 5,200 m asl. Longitudes, latitudes and
altitudes are indicated.

models in the Mantaro valley. All devices were installed in a 6-
m high tower as a part of BSRN stations (Figure 2A). The set
of radiation sensors contains a set of three pyranometers CMP10
(Kipp & Zonen), a pyrheliometer CHP1 (Kipp & Zonen) and
two pyrgeometers CGR4 (Kipp & Zonen) (Figure 2B), to measure
the hemispherical shortwave (SW) irradiance components and
longwave (LW) irradiance incident and emitted by the surface,
respectively. Two of the pyranometers were used to measure the
SW global and diffuse irradiances incident at the surface, and the
last one was used to measured the SW irradiance reflected by the
surface. To measure the diffuse irradiance from the sky by blocking
the direct solar irradiance we used a small black sphere mounted on
an articulated, shading assembly in a two-axis automatic sun tracker
2AP (Kipp & Zonen). More details about these radiative sensors can
be found in recent contributions (Flores-Rojas et al., 2019a; lores-
Rojas et al., 2021). Figure 2C shows the heliograph from Campbell-
Stokes installed at 1.5 m on the HYGO to measure sunshine hours
and finally, Figure 2D, shows the location of LAMAR’s instruments
and sensors inside the HYGO.

4 Methodology

4.1 Database

In this study, we evaluate the primary atmospheric variables
on the HYGO by analyzing measurements collected from a set
of automatic sensors belonging to the surface weather station as
illustrated in Figure 2D and the solar irradiance data by analyzing
measurements from theBSRN station showed in Figures 2A, B. Both
systems are operated by the Geophysical Institute of Peru (IGP).The
details of these data sources are provided below:

1. Values of air temperature (°C), relative humidity (%),
precipitation (mmmin−1) and water mixing ratio (g kg−1) with
1 minute resolution carried out at the surface weather station

at 2 m height located on the HYGO between May 2017 and
December 2022 (68 months and 2,100 days approximately).

2. Values of global, diffuse and direct solar irradiance (W m−2)
with 1 minute resolution carried out at the BSRN station at 6 m
height located on theHYGObetweenMay 2017 andDecember
2022 (68 months and 2,100 days approximately).

In meteorological measurement systems, the recording of
data often encounters challenges. In the case of radiometers,
measurement errors typically arise from several factors, including
sensor misalignment or tilting, interference from nearby objects
causing shadowing and reflections, and the accumulation of dust and
moisture on the sensor dome (Bacher et al., 2013; Vuilleumier et al.,
2014). Additionally, the behavior of solar radiation components
is influenced by various factors such as cloudiness patterns,
aerosol optical depth, surface albedo, cloud type, among others
(Perez et al., 1990; Gueymard, 2005), making the development of
universal models a complex task. For this work, we conducted
distinct data quality checks to identify and rectify missing data, data
points that clearly deviated from physical constraints, and extreme
data outliers.

In cases where data were confirmed as ‘erroneous’ or ‘missing,’
the corresponding data fields were filled with a specific key
sequence of numbers unique to the reporting location, serving
as a clear indicator of the problematic observations. Any data
associated with flagged ‘bad’ or ‘missing’ data was subsequently
excluded from the dataset. Furthermore, a secondary filter was
applied to eliminate hours featuring observations that violated
fundamental physical principles or conservation laws. This included
the removal of hours where reported values exhibited anomalies
such as negative radiation values, diffuse fractions exceeding 1,
beam radiation surpassing extraterrestrial beam radiation levels, and
instances where the dew point temperature exceeded the dry bulb
temperature (Reindl et al., 1990).

Additionally, we conducted a rigorous visual quality control
process on the dataset, aiming to identify and rectify inconsistencies
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FIGURE 2
(A) BSRN radiation tower of 6 m high with radiative sensors located in the HYGO. (B) Pyranometer, pyrgeometer and pyrheliometer installed in the
BSRN station. (C) Heliograph from Campbell-Stokes installed at 1.5 m in HYGO. (D) Agricultural area around the HYGO and the location of the set of
instruments inside the HYGO. The location of the BSRN station is highlighted in red box.

and spikes that could be attributed to electronic malfunctions
within the data acquisition system. Furthermore, we applied the
methodology introduced by Younes et al. (2005) and Journee and
Cedric (2010) to analyze the time series data. Data points were
considered valid if they met specific criteria, including a solar
elevation angle (α) greater than 2°, as well as satisfying the
following ratios:

EG
ET
< 1.2,

EDF
ET
< 0.8,

EDR
ET
< 1.0, (1)

Here, ET represents the extraterrestrial solar radiation incident on
a horizontal surface. This value was estimated analytically according
to Iqbal (1983), using a value for the solar constant set at 1367 W
m−2 (Frohlich and Lean, 1998). These conditions (Equation 1) are
suitable for stations that measure direct and diffuse components,
independentlyYounes et al. (2005).Amore lenient criterion,EG/ET <
1.2, led to the removal of 8.15% of the dataset, with no observable
dependence on atmospheric turbidity or seasonality.

However, the most stringent criterion, EDF/ET < 0.8,
resulted in the exclusion of 9.58% of the dataset, predominantly
during the summer months (characterized by increased
rainfall) (Marques Filho et al., 2016). Lastly, the criterion EDR/ET <
1.0 led to the exclusion of 7.89% of the dataset. Moreover,

approximately 3.0% of the dataset was excluded based on the
criterion of α > 2°. This primarily corresponded to measurements

taken during sunrise and sunset periods characterized by elevated
atmospheric turbidity, notably during the winter and spring seasons.

Following rigorous data quality control procedures, we
identified and selected data equivalent to 1850 days (44 400 h) to
effectively capture the seasonal variations in solar irradiance across
the region. This dataset encompasses approximately 88% of the
entire observational period. Subsequently, comprehensive statistical
analyses were conducted on various measurements, including those
of EG, EDF and EDR and other relevant meteorological variables.

The present study employs two key indexes to analyze
atmospheric radiometric properties and develop empirical and
correlation models: the clearness index (KT), calculated as the ratio
of EG to ET, and the diffuse fraction (KD), expressed as the ratio
of EDF to EG, as defined in Liu and Jordan (1960). Under clear sky
conditions, a substantial portion of extraterrestrial radiation reaches
the Earth’s surface, resulting in EG tending to ET, KT approaching
1 and KD close to 0. Conversely, during cloudy conditions, EG
approaching to EDF, leading to KT nearing 0 and KD approaching
1. The principal advantage of utilizing KT and KD lies in their
ability to eliminate astronomical dependencies while preserving
essential information concerning the influence of clouds, moisture
levels, and aerosol concentrations on radiometric properties. This
approach results in a more universally applicable description of
these properties, enabling their use in regions with similar climatic
characteristics.
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4.2 Solar irradiance models

To develop the regression models of this section, the filtered
dataset from May 2017 to December 2022 (1850 days or 44 400 h)
as described in Section 4.1 was divided into two segments. Sixty
percent (60%) of the total filtered dataset chosen randomly (1,110
days or 26 640 h), were used to construct the regression models,
while the remaining forty percent (40%) of the total filtered dataset
chosen randomly (740 days or 17 760 h) were reserved for rigorous
statistical tests to evaluate model performance and robustness.

In early modeling efforts worldwide, the core focus was on
linking daily horizontal global irradiation to bright sunshine
duration. This phase involved creating regression equations using
monthly-averaged data as the basis, providing foundational insights
for solar energy prediction and utilization studies. The original
Angstrom (1924) regression equation established a connection
between monthly-averaged daily irradiation and irradiation on
clear days. However, this approach presents challenges in precisely
definingwhat constitutes a clear day. In response to this issue, several
researchers (Garg and Garg, 1985; Turton, 1987), have devised
alternative relationships, exemplified by the subsequent equation:

EG
ET
= [a+ b( n

N
)] (2)

where EG and ET are the monthly-averaged daily terrestrial and
extraterrestrial global irradiance on a horizontal surface, n is the
average daily hours of bright sunshine and N is the day length,
obtained by:

ωs = cos
−1 (− tanLAT tanDEC) , N = (2ωs/15) (3)

where ωs is expressed in degrees, LAT is the latitude of the HYGO
(12°S) andDEC is the solar declination angle.The ratio n/N is known
as fractional possible sunshine. The extraterrestrial irradiation,
E may be calculated analytically according to Munner (2004a).
Moreover, the initial development of a regression model between
monthly-averaged values of diffuse and global irradiances can be
attributed to Liu and Jordan (1960), presented asED/EG in relation to
KT = EG/ET, where ED represents the monthly-average daily diffuse
radiation incident on a horizontal surface.This pioneering approach
has garnered international attention, with numerous researchers
confirming its applicability worldwide. However, it has been noted
that observed data often deviates from predictions made using the
Liu–Jordan model, raising questions regarding its universality and
generality. The equation to estimate the monthly-averaged diffuse
irradiance can be parameterized by:

ED
EG
= a− b KT (4)

Several values for the coefficients a and b have been proposed
worldwide. For instance, Hawas and Muneer (1984) obtained a
= 1.35 and b = 1.61 for the India subcontinent and Page (1977)
obtained a = 1.0 and b = 1.13 for eight United Kingdom and nine
worldwide locations.

On the other hand, Cowley (1978) derived a series of linear
regression equations linking daily global irradiance to the duration
of bright sunshine at ten stations across Great Britain. These

equations offer a valuablemeans to estimate daily incident radiation,
a more granular measure, as opposed to monthly-averaged values.
Cowley’s equation is given as:

EdG
EdT
= {d[a+ b( n

N
)]+ (1− d) a′} (5)

where EdG and EdT are the daily global and extraterrestrial irradiances,
respectively. The ratio n/N is the daily sunshine. The parameter d
satisfies this condition d = 0 if n = 0, otherwise d = 1 if n > 0, and a’
is equal to the average ratio of EdG/E

d
T for overcasts days. On the other

hand, in the seminal study by Liu and Jordan (1960), they initially
formulated a regression equation connecting the diffuse fraction
of daily global irradiance (KD = E

d
D/E

d
G), referred to as the diffuse

ratio with the ratio of daily global to extraterrestrial irradiation (KT)
referred to as clearness index. Several contributions have used a
third degree polynomial to estimate the diffuse ratio (Le Baron and
Dirmhirn, 1983; Smietana et al., 1984; Saluja et al., 1988; Munner,
2004b), which can be expressed as:

EdD/E
d
G = a+ b KT − c K2

T + d K3
T, KT > = 0.2

EdD/E
d
G = 0.98, KT < 0.2

(6)

In general, the recommended coefficients of a global model
for the diffuse ratio are: a = 0.962, b = 0.779, c = 4.375 and
d = 2.716 according to Munner (2004a). Furthermore, the use
of hourly irradiation data significantly enhances the precision of
modeling solar energy processes. However, considering that daily
irradiation measurements are more widely available across various
sites compared to their hourly counterparts, it is imperative to
explore the correlation between these two temporal scales. Many
meteorological stations routinely report their data in the form of
monthly-averaged values of daily global irradiance, making it a
crucial point of investigation.

The pioneering work in this field is attributed to Whillier
(1956), whose research laid the foundation. Building uponWhillier’s
findings, Liu and Jordan (1960) extended and refined the framework.
Theydeveloped a series of regression curves, which take into account
the impact of temporal displacement from solar noon and day
length on the hourly-to-daily global irradiation ratio (rG). Collares-
Pereira and Rabl (1979) subsequently reaffirmed the accuracy of Liu
and Jordan’s plots. Employing a least-squares fitting approach, they
further refined the models, yielding:

rG =
π
24
(a′ + b′ cos ω)

cos ω− cosωs

sinωs −ωs cosωs
(7)

where ω represents the solar hour angle, 15° for each hour displaced
from the true solar noon, ωs is given by the Equation 3. The
coefficients a’ and b’ are given by:

a′ = r+ s sin (ωs − 1.047)

b′ = p+ q sin (ωs − 1.047)
(8)

The coefficients are given by: r = 0.409, s = 0.5016, p = 0.6609 q =
0.4767. Another authors have used similar equations with different
coefficients (Saluja and Robertson, 1983; Hawas and Muneer, 1984).
In this work, we find the best coefficients r, s, p, and q, by fitting
the Equation 7 to the observed global irradiance data. Moreover,
to calculate long-term hourly diffuse irradiation averages, one can
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derive them from monthly-average daily diffuse irradiation values,
provided that the hourly-to-daily diffuse irradiation ratio, denoted
as rD is known. For the present work, we used a generalized equation
based on the formula introduced by Liu and Jordan (1960) but with
coefficients similar to Equation 7, as:

rD =
π
24
(c′ + d′ cos ω)

cos ω− cosωs

sinωs −ωs cosωs
(9)

where ω ir the same that the Equation 7 and the coefficients
c’ and d’ are:

c′ = t+ u sin (ωs − 1.047)

d′ = v+w sin (ωs − 1.047)
(10)

Similar to the previous case of the Equation 7, we find the best
coefficients t, u, v, and w, by fitting the Equation 9 to the observed
diffuse irradiance data.

4.3 Correlation models between Kh
D and Kh

T

For the present study, we employed a diverse range of
logistic functions to establish correlations between the hourly
diffuse fraction (Kh

D) and the hourly clearness index (Kh
T). These

encompassed sigmoid logistic functions (Boland and Ridley,
2008; Marques Filho et al., 2016), a fourth-degree polynomial
function (Oliveira et al., 2002a), and a three-degree polynomial
function (Jacovides et al., 2006). As mentioned previously, to
develop the regression models in this section, the filtered dataset
from May 2017 to December 2022 (1850 days or 44,400 h), as
described in Section 4.1, was divided into two segments. Sixty
percent (60%) of the total filtered dataset, chosen randomly (1,110
days or 26,640 h), was used to construct the regression models.
The remaining forty percent (40%), chosen randomly (740 days or
17,760 h), was reserved for rigorous statistical tests to evaluatemodel
performance and robustness.

4.4 Statistical indicators

To evaluate the performance of different solar irradiancemodels,
we used the traditional statistical indicators: R-squared (R2) which
indicates the percentage of the variance in the dependent variable
that the independent variables explain collectively, R2 measures the
strength of the relationship between your model and the dependent
variable on a convenient 0% – 100% scale. In addition, the mean
squared error (MSE) assesses the average squared difference between
the observed and predicted values. When a model exhibits zero
error, its MSE becomes zero as well. As the model’s error increases,
so does the MSE value.

On the other hand, in the case of correlation models
involving Kh

D and Kh
T, we employed the Akaike’s Information

Criterion (AIC) (Marques Filho et al., 2016). This criterion serves
as a means to assess the performance of various correlation models,
and it is defined as follows:

AIC = ln(
∑(yi − μi)

2

n
)+ 2k

n
(11)

In this equation, yi represents the observed data, μi 335 signifies
the modeled data, n stands for the sample size, and k denotes the
number of model parameters (Motulski and Christopoulos, 2003).
The second term on the right side of this equation accounts for
a penalty based on the number of parameters within the model.
However, to gauge a model’s performance in comparison to others,
it becomes essential to compute the difference of AIC:

ΔiAIC = AICi −AICmin (12)

In this context, AICi represents the AIC value corresponding
to model i, and AICmin denotes the minimum AIC value calculated
among various models. This transformation is designed to ensure
that the top-performing model registers a ΔiAIC of 0, while all other
models exhibit positive values (Burnham and Anderson, 2004).

5 Results

5.1 Atmospheric variables

In this work, the main climate features of the west region
of the Mantaro valley are assessed based on measurements
carried at the HYGO conventional meteorological station and
the short-term meteorological variables from an automatic station
of the Geophysical Institute of Peru (IGP) at the HYGO, as
described below:

1. Three times a day values of air temperature (T), relative
humidity (RH), accumulate precipitation and cloudiness
carried out at the surface weather station located in the
HYGO from January 1981 to December 2020 (40-year
climate normal) (Giráldez et al., 2020).

2. One-minute average values of T, RH and precipitation
measured fromMay 2017 toDecember 2022 at IGPplatform in
the HYGO. More information about the instruments installed
in the automatic station of HYGO can be found in a recent
contribution (Flores-Rojas et al., 2021).

According to Köppen-Geiger (Peel et al., 2007) and considering
climatological observations of atmospheric variables carried out on
the HYGO (Figure 3) is classified as Cwb. In consequence, the MV
can be considered as temperate with dry winter (June-August) and
warm summer (December-February). The criteria that define this
climate zone are: mean temperature of the hottest month higher
than 10°C, for the HYGO is close to 14°C, the mean temperature
of the coldest month is between 0°C and 18°C, for the HYGO is
close to 10°C (Figure 3A). Also, the number of months where the
mean temperature is above 10 is greater than 4.Moreover, the annual
amplitude of the monthly average air temperature (T(1981−2020))
presents minimums in February with values around 12°C and
maximums in July with values around 20°C (Figure 3A).

Another important criteria are: the precipitation of the driest
month in summer is close to 90 mm month−1, the precipitation
of the driest month in winter is close to 6 mm month−1, the
precipitation of the wettest month in summer is close to 130 mm
month−1 and the precipitation of the wettest month in winter
is close to 12 mm month−1. The accumulate precipitation in
the summer is equal to 340 mm (Dec-Feb), with maximum of
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FIGURE 3
Seasonal variation of (A) mean, maximum and minimum of air temperature (°C), (B) mean monthly accumulated rainfall (mm month−1), (C) mean,
maximum, minimum, percentile 10% and percentile 90% of daily accumulated precipitation (mm day−1). All variables were calculated between 1981 and
2020 on the HYGO.

130 mm in February. In the winter (Jun-Aug), the accumulate
precipitation is 28 mm (Jun-Aug), with minimum of 6 mm in
July (Figure 3B). Moreover, the maximum daily accumulated
precipitation is observed during May and December with values
around 45 mm day−1 and the minimum during June with values
close to 15 mm day−1 (Figure 3C).

All instances of intense rainfall events on the HYGO exhibited
discernible thermal meso-scale circulations linked to the South
American Low-Level Jet (SALLJ). These circulations facilitated
the transportation of moisture fluxes originating from both the
Amazon basin in the east—traversing the passes with gentle
slopes along the Andes—and the Pacific Ocean in the west.
This atmospheric phenomenon unfolded in the hours leading
up to the occurrence of intense rainfall events within the MV.
Furthermore, our investigations revealed two primary regions on
the eastern side of the Andes where moisture influxes penetrated

the central Andes: one situated in the north-western region (Blue
Cordillera) and the other in the south-eastern region of the
Mantaro Basin.

On the western side of the Andes, several small passes with
gradual slopes served as conduits for moisture fluxes originating
from the Pacific Ocean (Flores-Rojas et al., 2019b). The impact
of these meso-scale circulations became particularly pronounced
during intense rainfall events occurring between 14 LT and 23 LT.
The trajectory of these moisture flows into specific regions within
the MV hinged on their interaction with circulations at medium
and high atmospheric levels. Within this framework, we identified
two distinct sets of atmospheric circulations that gave rise to severe
rainfall events above the HYGO: the EC (East Circulation) and
WC (West Circulation) events. These were characterized by the
prevailing atmospheric circulations at high and medium levels,
respectively (Flores-Rojas et al., 2020).
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FIGURE 4
Seasonal variation of (A) air temperature (°C), (B) Relative humidity (%), (C) water mixing ratio (g kg−1), (D) sunshine hours measured by the heliograph
installed at 1.5 m height and (E) daily accumulated precipitation (mm day−1) on the HYGO. The graphics show the minimum, mean and maximum
values of the variables calculated between May 2017 and December 2022.

To validate the micro-climate data recorded at the HYGO
automatic station (2017–2022), we compare seasonal variations in
air temperature and daily accumulated precipitation with a 40-
year climate normal (1981–2020) from the conventional weather
station of the HYGO. This analysis ensures the representativeness
and reliability of the observed micro-climate trends. In general,
comparatively to the climate normal, the observations in the HYGO
automatic station indicate that the climate on the HYGO during
the period of 2017–2022 are very similar to the climatology values
of temperature (Figure 3A), with mean maximums close to 22°C
in November and mean minimums close to −3°C in July, with
minimum diurnal thermal amplitude close to 12°C in March and
maximum close to 23°C in July (Figure 4A).

Furthermore, Figure 4E illustrates the seasonal dynamics of
daily accumulated precipitation from 2017 to 2022, exhibiting a
pattern consistent with the 40-year precipitation climate normal
depicted in Figure 3C. During this period, the maximum daily
accumulated precipitation peaks in March, reaching approximately
56 mm day−1, while the minimum values, around 4 mm day−1,
are observed in July. Additionally, Figure 4B portrays the seasonal
fluctuations in relative humidity (RH) from 2017 to 2022. Notably,
the smallest amplitude of RH occurs in March, with values close
to 52%, while the maximum amplitude is observed in January,
reaching approximately 68%. The seasonal variation of water vapor
mixing ratio between 2017 and 2022 is depicted in Figure 4C. Mean
maximum values are observed during in January and February
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FIGURE 5
The psychrometric diagram for (A) daily and (B) monthly average values of specific humidity (g kg−1) versus temperature average values (°C). Summer
are indicated by red; winter by blue; fall by green and spring by magenta. The dashed curves are the calculated relations for relative humidity (RH) of
20%, 40%, 60%, 80%, and 100%, with atmospheric pressure equal to 675.6 hPa.

with values close to 8.5 g kg−1 and minimum values around to 2 g
kg−1 in July.

Finally, Figure 4C shows the seasonal variation of sunshine
hours from 2017 to 2022 registered by the Heliograph installed
on the HYGO (Figure 2C). Maximum values of sunshine hours are
observed in June and July with values close to 10.5. It is important
to note that October also has high maximum sunshine hours
around to 10. This set of data is important because initial modeling
work carried out around the world was involved in relating daily
horizontal global irradiation to duration of bright sunshine hours.

An alternative approach to assess the representativeness of
measurements obtained from the HYGO automatic station involves
utilizing the psychrometric diagram for characterizing the seasonal
climate conditions in the area (Gaffen andRoss, 1999). Figures 5A, B
illustrate the psychrometric diagram for daily and monthly average
values of specific humidity (q) (g kg−1) and temperature (T) (°C),
respectively. Both figures reveal a moderate correlation between
specific humidity (q) and temperature (T), with values reaching
approximately 60% for mean diurnal averages and 75% for mean
monthly averages. The seasonal average daily values (Figure 5A)
of q range from 1.5 g kg−1 on a few spring days to 11 g kg−1 on
certain days in fall and summer. The colored lines in the figure
represent the values of q as a function of T for different relative
humidity (RH) levels, with atmospheric pressure set to 675.6 hPa
(mean pressure at HYGO).

Throughout all seasons, the range of daily average RH values
fluctuates between 20% and 90%. The increased dispersion in the
monthly average values recorded at the HYGO automatic station,
particularly notable during the summer and spring, appears to be
linked to climatic variability. This variability is indicative of warmer
and drier conditions experienced during these seasons in recent
years. Additionally, the seasonal average monthly values (Figure 5B)
of q vary between 4 g kg−1 in winter and 10 g kg−1 in fall and
summer. Similar to the daily values, the colored lines in the figure
depict the relationship between q and T for different RH levels,
considering the atmospheric pressure of 675.6 hPa (mean pressure
at HYGO). Monthly average RH values consistently fall within the
range of 40% and 75%, as demonstrated in Figure 4B.

Hence, based on the climate analysis conducted herein, it can be
inferred that the radiationmeasurements recorded between 2017 and
2022 on the HYGO automatic station might be influenced by the
fact that the HYGO region experienced cooler and drier conditions
during this period compared to the climatological norm.Despite these
variations, as detailed in Section 5.2, it will be demonstrated that the
mean behavior of EG at the surface aligns with estimates derived from
normal values of sunshine hours. This alignment suggests that it can
be deemed representative of the climate in the MV region. On the
other hand, the EDF and EDR components of solar radiation,measured
at the HYGO automatic station, appear to exhibit a greater sensitivity
to local climate and land-use characteristics.

5.2 Irradiance variables

In this section, we delineate the time-integrated values of surface
solar radiation components denoted by EYX, expressed in megajoules
per unit area per hour (MJ m2 h−1). The subscripts X (T, G,
DF, and DR) represent extraterrestrial, global, diffuse, and direct
solar radiation, respectively. All irradiance variables EDR, EDF, EG
components observed at the surface. The superscripts Y (h and d)
signify time intervals for integration, with “h” representing 1 hour
and “d” representing 1 day.

5.2.1 Seasonal variation of hourly values

The seasonal fluctuation in the diurnal evolution of EhDR
(Figure 6A) is derived from the matrix of monthly average EhDR
values, which are interpolated using the cubic spline method (Boor,
2001). The monthly average of EhDR at noon reaches a peak close to
2.5 MJ m2 h−1 during winter (July) and dipping to a minimum close
to 1.2 MJ m2 h−1 in summer (February). Moreover, the monthly
average of EhDF (Figure 6B) at noon reaches a peak around 1.80 MJ
m2 h−1 during summer (February) and dipping to a minimum
around 0.45 MJ m2 h−1 in winter (July). Notably, the longest and
shortest duration of sunshine hours occur in July (9 h) and February
(5.5 h), respectively.
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FIGURE 6
Seasonal and hourly cycles of average (A) direct (EDR), (B) diffuse (EDF) and (C) global (EG) solar irradiances (MJ m−2 h−1) on the HYGO (12.0oS, 73.5oW),
from July, 2017 to September, 2022. The graphics show the mean values of the variables calculated between May 2017 and December 2022.

On the contrary, the monthly average of EhG (Figure 6C) at noon
reaches a peak around 3.6 MJ m2 h−1 during spring (October) and
dipping to a minimum close to 2.7 MJ m2 h−1 in winter (July).
The highest EhG in spring months is associated to a combination of
astronomical factor, cloudiness and aerosol concentration patterns
observed during 2017–2022 in the HYGO. During this period, the
daily accumulated precipitation reach maximum and mean values
around 24 mm day−1 and 5 mm day−1, respectively. The maximum
value is below the climate normal in October with maximums close
to 37 mm day−1 and the mean value is close to the climate mean
value around 4 mm day−1. In addition, the sunshine hours during
October reach amaximumclose to 10 h (Figure 4).The combination
of these factors indicates that the reduction in the precipitation and
the moderate presence of aerosols seems to be associated to the
reduction in the cloud cover that favored large values of EhG.

The diurnal evolution of monthly average of EhT, EhG, EhDF
and EhDR, during summer, fall, winter and spring months are
shown in Figures 7A–D, respectively. In addition, Table 1 shows the
specific values for the diurnal cycle of these irradiance variables.
All components of solar irradiance exhibit a clearly defined
diurnal cycle, reaching their maximum intensity at noon. The
minimal standard error of the mean, denoted by the small vertical
bars, signifies that the monthly average values of solar radiation
components recorded at the surface within the HYGO accurately
reflect the mean conditions observed in the MV.

During summer at noon, EhG (3.11±0.16 MJ m−2 h−1)
constitutes 64.4% of EhT (4.83±0.14 MJ m−2 h−1). Additionally, EhDF
(1.67±0.22 MJ m−2 h−1) and EhDR (1.37±0.21 MJ m−2 h−1) represent
53.7% and 44.10% of Eh

G (3.11±0.16 MJ m−2 h−1), respectively.
In contrast, during winter at noon, EhG (3.08±0.14 MJ m−2 h−1)

accounts for 78.2% of Eh
T (3.94±0.11 MJ m−2 h−1). Moreover, EhDF

(0.64±0.16 MJ m−2 h−1) and EhDR (2.27±0.19 MJ m−2 h−1) represent
20.8% and 73.7% of EhG, respectively.

On the other hand, during fall at noon, EhG (3.02±0.18 MJ m−2

h−1) constitutes 69.7% of EhT (4.33±0.14 MJ m−2 h−1). Furthermore,
EhDF (1.18±0.17 MJ m−2 h−1) and EhDR (1.65±0.23 MJ m−2 h−1)
represent 39.1% and 54.6% of EhG, respectively. Finally, it is
noteworthy that during spring at noon, EhG (3.32±0.22 MJ m−2 h−1)
surpasses the mean values in summer, constituting 70.0% of EhT
(4.74±0.17 MJ m−2 h−1). Additionally, EhDF (1.32±0.24 MJ m−2 h−1)
and EhDR (1.92±0.27 MJ m−2 h−1) represent 39.8% and 57.8% of EhG,
respectively.

It is important to highlight that for all seasons the sum of EhDF
and EhDR do not contribute 100% to the total EhG. We consider that
these small differences are caused by the filters showed in Section 4.1
that removes several data of EhDF and EhDR mainly in hours close to
noon, caused by fails of the sun-tracker 2AP (Kipp & Zonen) that
move the pyrheliometer CHP1 (Kipp & Zonen) to measure EhDR and
the small black sphere to measure EhDF. These problems are more
evident during winter and fall seasons and will be corrected by the
acquisition of a new sun-tracker.

The examination of KT and KD provides a more comprehensive
insight into the diurnal pattern of atmospheric transmittance, as
it eliminates the influence of astronomical factors on ET, EG, and
EDF. Consequently, KT and KD emerge as crucial indicators for
discerning the scattering and absorption processes facilitated by
the presence of clouds and aerosol loads in the atmosphere. The
diurnal evolution of Kh

T shows a maximum close to 0.64±0.04 at
noon during summer (Figure 8A), around 0.71±0.06 at 13 LT
during fall (Figure 8B), close to 0.78±0.04 at noon during winter
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FIGURE 7
Seasonal and diurnal variation of EhT, E

h
G, E

h
DF and EhDR in MJ m−2 h−1 for the (A) summer, (B) fall, (C) winter and (D) spring. The standard error of the mean

bars correspond to 95% confidence interval.

TABLE 1 Seasonally average hourly values of solar irradiance components: EhT, E
h
G, E

h
DF and EhDR, clearness index (KT) and diffuse fraction (KD) observed in

the HYGO. The hourly values correspond to noontime (12 LT).

Irradiances
(MJ m−2 h−1)

Summer Fall Winter Spring

ET 4.83±0.14 4.33±0.16 3.94±0.11 4.74±0.17

EG 3.11±0.16 3.02±0.18 3.08±0.14 3.32±0.22

EDF 1.67±0.22 1.18±0.17 0.64±0.16 1.32±0.24

EDR 1.37±0.21 1.65±0.23 2.27±0.19 1.92±0.27

Indexes Summer Fall Winter Spring

KT 0.64±0.04 0.70±0.04 0.78±0.04 0.70±0.05

KD 0.61±0.05 0.45±0.06 0.25±0.07 0.47±0.06

(Figure 8C) and around 0.72±0.04 at 11 LT in spring (Figure 8D).
In general, Kh

D has an inverse behavior in comparison with
Kh
T. The diurnal evolution of Kh

D presents maximum values at
noon also during summer close to 0.61±0.05 and minimum
during winter around 0.25±0.07. The amplitude of seasonally
average values between Kh

T and Kh
D for the HYGO at noontime

reach its minimum value in summer (0.03) and its maximum
in winter (0.53) with intermediate values during fall (0.25) and
spring (0.23) (Table 1).

5.2.2 Seasonal variation of daily values

The seasonal variation of monthly average daily values of the
solar radiation components at the surface of the HYGO is presented
in Figure 9A; Table 2. The highest values of EdG are observed in
October (spring) around 24.14±2.10 MJ m−2 day−1 and the lowest
values of EdG are observed inMarch (autumn) around 19.50±2.15 MJ
m−2 day−1. Moreover, the highest values of EdDR are observed during
August (winter) around 14.97±1.82 MJ m−2 day−1 but also are
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FIGURE 8
Diurnal variation of Kh

T and Kh
D for the (A) summer, (B) fall, (C) winter and (D) spring. The standard error of the mean bars correspond to 95%

confidence interval.

observed high values of EdDR in September and October (spring)
probably partially associated with high values of aerosol optical
depth at 440 nm occurring during these months (Figure 9C). The
lowest values of EdDR are observed during March (autumn) with
values close to 6.59±1.89 MJ m−2 day−1. On the contrary, the
highest values ofEdDF are observed during January (summer), around
13.03±1.91 MJ m−2 day−1 and the lowest values are observed during
July (winter) around 4.57±1.0 MJ m−2 day−1. This behavior of EdDF
can be explained by the strongly seasonal variation of clouds and
precipitation on the HYGO, previously analyzed (Figure 4E).

Furthermore, the seasonal evolution of Kd
T shows maximums

close to 0.73±0.06 in June and July (winter) and minimums
around 0.54±0.04 during January and February (summer). In
general, the seasonal evolution of Kd

D has an inverse behavior
in comparison with Kd

T with maximums in February (summer)
close to 0.66±0.08 and minimums during July (winter) with values
around 0.24±0.10 (Table 2). The amplitude of monthly average
values between Kd

T and Kd
D for the HYGO reach its minimum value

during March (0.05) and November (0.02) and reach maximum
values in July (0.48) (Figure 9B).

To elucidate the seasonal variations in the average daily values of
solar irradiance components (EdG, E

d
DF, and EdDR), Figure 10 present

the monthly mean values of aerosol volumetric size distributions.
These distributions are derived from measurements taken with
a CIMEL CE-318T sun photometer, part of the AERONET
network (Holben et al., 1998; 2001). The data exhibit a generally
bimodal behavior in the monthly mean size distributions, with
a predominance of the coarse mode, as shown by the average

size distribution curve for the analyzed period (dashed line in
all graphs). This bimodal pattern is also evident in the seasonal
mean values (dotted lines), where larger aerosols dominate in
all seasons except spring (Figure 10D). Specifically, coarse-mode
aerosols are predominant in summer (Figure 10A), fall (Figure 10B),
and winter (Figure 10C). These coarse-mode aerosols, with average
radii around 5.0613 μm, account for 56.3% of the cases and
are primarily associated with marine and desert sources, with
lesser contributions from continental aerosols. In contrast, fine-
mode aerosols, with average radii around 0.1482 μm (43.7%), are
mainly produced by the incomplete combustion of fossil fuels and
biomass burning (Estevan et al., 2019).

During the spring season, there is a clear predominance of
fine-mode aerosols, as illustrated in Figure 10D. This trend is
evident in the seasonal mean (dotted line) and the monthly mean
values, particularly in September and November. In September,
the fine mode dominates, primarily due to aerosols generated by
biomass burning in the Peruvian Amazon, which is associated with
high Aerosol Optical Depth (AOD) values measured by the sun
photometer at HYGO. Previous studies indicate that starting in
July, AOD values rise due to biomass burning aerosols, peaking
in September (Estevan et al., 2019). This increase aligns with the
predominance of f ine-mode aerosols in August (Figure 10C) and
throughout the spring months (Figure 10D).

In an atmosphere with aerosols, more scattered energy reaches
the ground due to increased forward scattering (Iqbal, 1983). During
spring, the pronounced presence of both fine-mode (0.1482 m)
and coarse-mode (5.0613 m) aerosols, combined with longer daily
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FIGURE 9
Monthly variation of (A) the solar irradiance components: EdT, E

d
G, E

d
DF and EdDR, the (B) clearness index (Kd

T) and diffuse fraction (Kd
D) and (C) Angstrom

turbidity coefficient (AOD) observed in the HYGO. The standard error of the mean bars correspond to 95% confidence interval.

TABLE 2 Seasonally average daily values of solar irradiance components: EdT, E
d
G, E

d
DF and EdDR, clearness index (KT) and diffuse fraction (KD) observed in

the HYGO. Also are shown the standard deviations for each components.

Irradiances
(MJ m−2 day−1)

Indexes

ET EG EDF EDR KT KD

January 39.94±0.74 21.39±1.60 13.03±1.91 7.15±2.40 0.54±0.04 0.65±0.08

February 38.84±2.30 20.95±1.94 12.97±1.94 6.73±2.30 0.54±0.05 0.66±0.08

March 34.91±4.52 19.50±2.15 11.38±1.61 6.59±1.89 0.56±0.05 0.61±0.06

April 32.98±2.69 20.87±1.82 8.71±1.42 9.61±2.81 0.63±0.05 0.47±0.11

May 29.51±2.18 20.06±1.92 6.48±1.57 10.59±2.04 0.68±0.05 0.36±0.11

June 27.96±1.58 20.33±1.63 5.05±1.61 12.75±1.72 0.73±0.05 0.28±0.12

July 28.96±0.46 21.03±1.59 4.57±1.00 13.91±1.56 0.73±0.06 0.24±0.10

August 31.48±2.26 22.48±1.72 5.75±1.44 14.97±1.82 0.71±0.04 0.28±0.09

September 35.16±1.88 22.45±1.48 8.65±1.25 12.64±1.43 0.64±0.04 0.42±0.07

October 38.29±0.60 24.14±1.98 9.64±2.31 13.20±2.56 0.63±0.05 0.43±0.09

November 39.26±1.56 23.14±2.10 12.40±2.99 9.51±2.99 0.59±0.05 0.57±0.10

December 39.76±1.04 21.92±2.16 12.29±2.55 8.87±3.30 0.55±0.05 0.60±0.11
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FIGURE 10
Monthly mean values of the aerosols volume-size distribution (μm3μm−2), for the seasons: (A) summer, (B) autumn, (C) winter and (D) spring, during
the period 2018–2022.

sunshine hours and increased EdT, leads to a rise in EdDF, ultimately
resulting in higher EdG. This effect is particularly noticeable in
October (Figure 9A), which still experiences many days with high
sunshine hours (Figure 4D), reaching a maximum EdG intensity of
24.14 MJ m−2 day−1.

Moreover, during the study period, several high aerosol
concentration events were recorded by the AERONET station’s
sun photometer, primarily in September. Notably, on 24 November
2020, at 21:23 UTC, the sun photometer recorded the highest
AOD values since its installation on 19 March 2015, at HYGO,
with an AOD 440 nm value of 1.23. These elevated AOD levels
are linked to biomass-type aerosols. To determine if these aerosols
were related to biomass burning, the HYSPLIT trajectory model
was employed. Using NCEP reanalysis meteorological data, 120-
h back-trajectories were calculated at three altitude levels: 500,
1,500, and 3000 m, from the sun photometer’s location. Figure 11
presents these back-trajectories along with fire hotspots detected
by the MODIS and VIIRS satellites, indicated as red dots. By

applying a coincidence criterion of a 4 km radius and 1 km height
around the trajectory, two coincident fire hotspots were identified.
These hotspots were located 281.2 km and 282.6 km from the sun
photometer, at altitudes of 355.4 m and 343.1 m, respectively, where
the 500 m back-trajectory passed. This evidence strongly suggests
that the biomass-type aerosols observed on the specified date likely
originated from these fire hotspots.

5.3 Irradiance empirical models

Initial modeling efforts in numerous countries focused
on establishing a relationship between daily horizontal global
irradiation and the duration of bright sunshine. The initial phase of
this endeavor entailed the formulation of regression equations based
on monthly-averaged data. However, subsequent advancements
have led to the development of equations utilizing data recorded at
daily intervals. This progression allows for a more comprehensive
understanding by connecting the discussed relationships with the
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FIGURE 11
At the top, the red dots represent the fire hotspots associated with biomass burning. The yellow dot represents the position of the sun photometer at
the HYGO, and the lines represent the back trajectories at 500 m (red line), 1,500 m (blue line), and 3000 m (green line) above the sun photometer at
zero time. At the bottom, the back trajectories at different altitudes over the 120-h model run are shown.

daily variation between horizontal diffuse and global irradiation.
This sections will present an analysis enabling the estimation
of diurnal horizontal global and diffuse irradiation at different
time scales.

5.3.1 Monthly-averaged daily horizontal
global (MADHG) and diffuse (MADHD)
irradiation models

In this section, we introduce the MADHG irradiation model,
designed to establish a connection between the monthly-averaged

daily clearness index (KT = EG/ET) and the monthly mean
daily sunshine fraction, as defined by Equations 2, 3. Figure 12A
showcases a scatter plot for Equation 2, utilizing irradiance data
from the BSRN station on the HYGO spanning from May 2017
to December 2022. Notably, a robust correlation between the
variables is apparent, characterized by an R2 value of 0.76 and
a root mean squared error (RMSE) of approximately 4.1%. The
coefficients ‘a’ and ‘b’ in Equation 2 are illustrated in Figure 12A;
Table 3 as 0.33 and 0.50, respectively. It is noteworthy that analogous
plots, depicting strong correlations with comparable ‘a’ and ‘b’
values, have been presented by various researchers for diverse sites
worldwide (Munner, 2004b).
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FIGURE 12
(A) Relationship between monthly-averaged clearness index (KT = EG/ET) and sunshine fraction and (B) variation of monthly-averaged diffuse ratio
(ED/EG) against clearness index. All irradiance data were measured by the BSRN station between May 2017 and December 2022.

TABLE 3 Coefficients and statistical parameters for the empirical irradiance models. The forty percent (40%) of the total filtered dataset chosen
randomly (740 days or 17 760 h) were reserved for rigorous statistical tests to evaluate model performance and robustness. The RMSE was calculated in
percentage and in MJ m−2 day−1.

Irradiance Models Coefficients Statistics

a b c d r2 RMSE (%) RMSE (MJ)

Model 01: MADHG 0.33 0.50 - - 0.76 4.1 0.88

Model 02: MADHD 1.63 −1.91 - - 0.91 5.0 1.08

Model 03: DAHG 0.32 0.51 - - 0.85 5.0 1.08

Model 04: DAHD 0.75 2.45 7.15 3.92 0.86 9.3 2.0

Furthermore, we introduced the MADHD irradiation
model, designed to establish a relationship between the
monthly-averaged daily diffuse ratio (ED/EG) and the monthly-
averaged daily clearness index (KT), as defined by Equation 4.
Figure 12B illustrates the scatter plot for Equation 4, utilizing
irradiance data from the BSRN station on the HYGO
spanning from May 2017 to December 2022. Similar to the
previous model, a robust correlation is evident between the
discussed variables, characterized by an R2 value of 0.91
and a root mean squared error (RMSE) of approximately
5%. The coefficients ‘a’ and ‘b’ in Equation 4 are depicted
in Figure 12B; Table 3 as 1.63 and −1.91, respectively. It
is noteworthy that analogous plots, demonstrating strong
correlations with comparable ‘a’ and ‘b’ values, have been
presented by various researchers for numerous sites worldwide
(Munner, 2004c).

5.3.2 Daily-averaged horizontal global
(DAHG) and diffuse (DAHD) irradiation
models

In this section we present the irradiation model DAHG,
which connect the daily clearness index (KT=EG/ET) with

the daily sunshine fraction, according to the Equations 3, 5.
Moreover, Figure 12B, shows the scatter plot for the Eq.
Equation 5 using the irradiance data of the BSRN station on
the HYGO between May 2017 and December 2022. A strong
correlation between the two quantities under discussion is
evident with R2 equal to 0.85 and RMSE around 5%. Figure 13A
also shows the coefficients ‘a’ and ‘b’ of the Eq. Equation 5;
Table 3, equals to 0.32 and 0.51, respectively. In general, the
relationships for daily values and monthly-averaged daily values,
represented by Eqs Equations 2, 5, respectively, are different,
according to Munner (2004d).

In addition, we introduced the DAHD irradiation model,
designed to establish a connection between the daily diffuse ratio
(ED/EG) and the daily clearness index (KT = EG/ET), as expressed by
Equation 4. Figure 13B displays the scatter plot for Equation 6,
utilizing irradiance data from the BSRN station on the HYGO
between May 2017 and December 2022. Mirroring the pattern
observed in the previous model, a robust correlation is apparent
between the two discussed variables, with an R2 value of 0.86 and a
mean squared error (MSE) of approximately 9.3%. Figure 12B and
Table 3 also presents the coefficients ‘a,’ ‘b,’ ‘c,’ and ‘d’ of Equation 6
as 0.75, 2.45, 7.15, and 3.92, respectively. Notably, analogous
plots, demonstrating strong correlations with comparable values
for ‘a,’ ‘b,’ ‘c,’ and ‘d,’ have been presented by various researchers
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FIGURE 13
(A) Relationship between daily averaged clearness index (KT = EG/ET) and sunshine fraction and (B) variation of daily averaged diffuse ratio (ED/EG)
against clearness index. All irradiance data were measured by the BSRN station between May 2017 and December 2022.

for numerous sites worldwide (Muneer and Hawas, 1984;
Saluja et al., 1988).

5.3.3 Hourly horizontal global (HHG) and
diffuse (HHD) irradiation models

In this section, we introduce the HHG irradiation model, which
connect the ratio between the hourly global irradiation and the
daily global irradiation (rG) with the sunset hour angle expressed as
radians from solar noon, according to the Equations 7, 8. Figure 14
illustrates the effect of the displacement of the hour from solar
noon, and the daylength, on the ratio of hourly to daily global
irradiation (rG). There are six time deviations occurring before solar
noon (−0.5 h, −1.5 h, −2.5 h, −3.5 h, −4.5 h, −5.5 h), depicted in
Figure 14A, and six deviations occurring after solar noon (+0.5 h,
+1.5 h, +2.5 h, +3.5 h, +4.5 h, +5.5 h), displayed in Figure 14B. The
values of rG range from around 0.15 at ±0.5 h to 0.01 at ±5.5 h and
the values of sunset hour angle range from 1.48 (84.8°) at ±0.5 h to
1.65 (94.5°) at ±5.5 h. This narrow range of these values is due to the
latitude location of the HYGO (12°).

Unlike certain previous studies (Liu and Jordan, 1960; Iqbal,
1983), which utilized a least-squares fit to determine the coefficients
of Equations 7, 8, we employed a least-squares fit approach to
ascertain these coefficients individually for each hour preceding and
following solar noon. First column of Table 4 shows fitted values
for the coefficients of rG and statistical indicators for the hourly
horizontal global (HHG) irradiation model fitting for each hour
preceding and following solar noon. However, the values of R2 range
from 0.12 for +4.5 h to 0.83 for +2.5, and the values of RMSE range
from5.4% to 8.4%. It is important to note that these coefficient values
within −4.5 and +1.5 h, are similar to those found by Iqbal (1983)
testing the applicability of the model of Liu and Jordan (1960).

On the other hand, we also introduce the HHD irradiation
model, which connect the ratio between the hourly diffuse
irradiation and the daily diffuse irradiation (rD) with the sunset
hour angle expressed as radians from solar noon, according to the
Equations 8, 10. Figure 15 illustrates the effect of the displacement of
the hour from solar noon, and the daylength, on the ratio of hourly

to daily diffuse irradiation (rD). As in the case of th global diffuse
irradiation, there are six time deviations occurring before solar noon
(−0.5, −1.5 h, −2.5 h, −3.5 h, −4.5 h, −5.5 h), depicted in Figure 15A,
and six deviations occurring after solar noon (+0.5, +1.5 h, +2.5 h,
+3.5 h, +4.5 h, +5.5 h), displayed in Figure 14B. The values of rD
range from around 0.12 at ±0.5 h to 0.015 at ±1.5 h and the values
of sunset hour angle range from 1.48 (84.8°) at ±1.5 h to 1.66 (95.1°)
at ±5.5 h. This narrow range of these values is due to the latitude
location of the HYGO (12°).

Second column of Table 4 shows fitted values for the coefficients
of rD and statistical indicators for the hourly horizontal diffuse
(HHD) irradiation model fitting for each hour preceding and
following solar noon. However, the values of R2 range from 0.11
for −3.5 h to 0.89 for +3.5, and the values of RMSE range from
6.3% to 8.9%. It is important to note that there is a wide variety of
values for the coefficients depending on the hours from solar noon,
which indicates that the Equations 8, 10 may not be suitable for
representing these variables.

5.3.4 Hourly diffuse correlation (HDC)
irradiance models

In this study, the sigmoid logistic function is employed to depict
the correlation between Kh

D and Kh
T. In comparison to alternative

logistic functions Boland and Ridley (2008); Ridley et al. (2010),
it demonstrates superior capability in capturing the behavior of
Kh
D across all Kh

T values, particularly when Kh
T approaches unity.

To construct the regression model, the total dataset spanning the
years 2017–2022 is partitioned randomly into two segments, the
first one for regression model development and the second one for
conducting statistical tests.

For the performance evaluation of regression models, two
key statistical parameters are employed: i) the coefficient of
determination (R2) and ii) root mean square error (RMSE).
Figure 16 shows the scatter plot of Kh

D versus Kh
T (Liu-Jordan

Diagram). The sigmoid function proposed in this work is compared
with models developed for regions locate in South Hemisphere
(Oliveira et al., 2002a; Boland andRidley, 2008;Marques Filho et al.,
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FIGURE 14
Ratio of hourly to daily global irradiation (rG) against the sunset hour angle expressed in radians from solar noon (Equations 7, 8) between (A) 07 and 12
LT and between (B) 13 and 18 LT.

TABLE 4 Coefficients of rG and rD and statistical indicators for the hourly horizontal global (HHG) and diffuse (HHD) irradiation models fitting for each
hour preceding and following solar noon. The forty percent (40%) of the total filtered dataset chosen randomly (740 days or 17 760 h) were reserved for
rigorous statistical tests to evaluate model performance and robustness. The RMSE was calculated in percentage and in MJ m−2 hour−1.

Hours
from
solar
noon

rG rD

Coefficients Statistics Coefficients Statistics

r s p q R2 RMSE
(%)

RMSE
(MJ)

t u v w R2 RMSE
(%)

RMSE
(MJ)

−5.5 −0.02 0.94 0.53 −0.44 0.46 7.0 0.22 0.99 5.88 15.92 −2.01 0.19 8.9 0.28

−4.5 0.38 0.53 0.55 −0.49 0.32 7.7 0.24 9.02 −1.30 15.74 4.04 0.11 8.9 0.28

−3.5 0.41 0.69 0.54 −0.38 0.17 8.4 0.26 10.53 2.01 14.22 3.57 0.11 7.0 0.22

−2.5 0.36 0.84 0.49 −0.23 0.13 7.0 0.22 5.79 4.61 14.97 −2.89 0.69 7.0 0.22

−1.5 0.34 0.87 0.45 −0.16 0.12 6.3 0.20 5.44 5.35 14.86 −2.81 0.58 8.0 0.25

−0.5 0.33 0.87 0.43 −0.13 0.11 7.0 0.22 5.92 6.11 14.67 −1.62 0.43 8.9 0.28

+0.5 0.44 0.61 0.54 −0.39 0.53 6.3 0.20 7.49 6.06 14.27 0.19 0.40 7.0 0.22

+1.5 0.54 0.39 0.63 −0.60 0.59 7.0 0.22 11.86 4.27 12.42 5.02 0.15 6.3 0.20

+2.5 0.69 0.02 0.75 −0.88 0.83 5.4 0.17 0.09 −0.01 0.03 0.07 0.87 6.3 0.20

+3.5 0.72 −0.09 0.73 −0.86 0.16 8.3 0.26 0.02 0.02 −0.03 0.08 0.89 6.3 0.20

+4.5 0.85 −0.51 0.73 −0.89 0.12 8.3 0.26 1.12 −0.94 0.74 1.17 0.75 7.0 0.22

+5.5 1.28 −1.48 0.70 −0.76 0.15 6.3 0.20 0.10 −0.09 0.51 0.12 0.18 6.3 0.20
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FIGURE 15
Ratio of hourly to daily diffuse irradiation (rD) against the sunset hour angle expressed in radians from solar noon (Equations 9 and 10) between (A) 07
and 12 LT and between (B) 13 and 18 LT.

FIGURE 16
Kh
T versus K

h
D for the irradiance data measured on the HYGO. The orange solid squares represent the block average and vertical lines the standard

deviation. The different solid lines represent the correlation models presented in this study. Model 01: Sigmoid type 01, Model 02: Sigmoid type 02,
Model 03: 4th polynomial, Model 04: 3rd polynomial.

2016). It is important to highlight that this is the first study to utilize
high-quality solar radiation data to develop empirical models of
solar radiation in the central Andes of Peru.

The superiority of the sigmoid type 01 function
becomes apparent when comparing its conformity to the

block-averaged experimental curve against other correlation
models (Oliveira et al., 2002a; Jacovides et al., 2006; Boland and
Ridley, 2008). Notably, while the logistic function adjusted
to the HYGO dataset enhanced the statistical performance
of that particular model, the sigmoid function consistently
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TABLE 5 Equations fitted for Kh
D in function of Kh

T and statistical performance of the models for calculating the hourly averaged diffuse fraction Kh
D. The

forty percent (40%) of the total filtered dataset chosen randomly (740 days or 17 760 h) were reserved for rigorous statistical tests to evaluate model
performance and robustness. The RMSE was calculated in percentage and in MJ m−2 hour−1.

Models Equation r2 RMSE (%) RMSE (MJ)

Model 01: Sigmoid
0 ≤ KT ≤ 1.0

KD =
0.1+ 0.83 1.0

1+exp(−6.29 + 9.84 KT)

0.831 14.9 0.47

Model 02: Logistic
0 ≤ KT ≤ 1.0

KD =
1.0

1+exp(−4.52 + 7.20 KT)
0.826 15.2 0.48

Model 03: 4th polynomial
KT ≤ 0.15

0.1 < KT ≤ 0.85
KT ≥ 0.85

KD = 0.96
KD = 1.3− 3.9KT + 14.7K

2
T −

24.6K3
T + 12.7K

4
T

KD = 0.15

0.813 15.8 0.49

Model 04: 3rd polynomial
KT ≤ 0.18

0.18 < KT ≤ 0.85
KT ≥ 0.85

KD = 0.94
KD = 0.74+ 1.62KT − 4.26K2

T +
1.74K3

T
KD = 0.12

0.809 16.4 0.51

outperforms all alternatives, including 3rd and 4th polynomial
functions.

The statistical parameters outlined in Table 5 indicate that all
models present a coefficient of determination higher than 83%.
Notably, the proposed sigmoid function fitting exhibits the best
statistical performance, closely followed by the adjusted logistic
and 4th polynomial functions, which show lower RMSE values.
Nevertheless, all correlation models yield predictions that are
statistically significant at a confidence level of 95%. These results
closely resemble those reported by Marques Filho et al. (2016) for
the city of Rio de Janeiro in Brazil. However, Marques Filho et al.
(2016) did not make adjustments for polynomial functions, as
they relied on the results of the study conducted by Oliveira et al.
(2002a). This decision was due to the minimal divergence in climate
conditions between Rio de Janeiro and São Paulo.

On the other hand, the AIC statistical method, assessed using
Equations 11, 12, identifies the sigmoid function for HYGO as
the best model (see Table 6). However, all correlation models are
statistically relevant (ΔiAIC <2) (Burnham and Anderson, 2004)
and can effectively reproduce the relationship between Kh

D and Kh
T.

Although the logistic function proposed by Boland and Ridley
(2008) relies on only two parameters, its performance when fitted
to the HYGO dataset is not optimal. This is likely due to the curve
of points (Kh

D, K
h
T) simulated by Boland and Ridley (2008) diverging

significantly from the mean values (see Figure 16).

6 Discussions

6.1 Atmospheric variables

The first goal of the present study was to evaluate the climate
characteristics of the western Mantaro Valley, using data from two
meteorological stations: the HYGO conventional station and the
IGP automatic station. It includes surface weather measurements
from HYGO spanning 1981 to 2020 and 1-min averages from
the IGP platform between 2017 and 2022. Details on the station

TABLE 6 Statistical performance of the sigmoid function model in
comparison with the other empirical irradiance models for the HYGO.

Models Number of
parameters

AIC ΔiAIC

Model 01: Sigmoid 4 −3.655 0.000

Model 02: Logistic 2 −3.642 −0.013

Model 03: 4th polynomial 7 −3.647 −0.008

Model 04: 3rd polynomial 6 −3.639 −0.016

instrumentation are provided in recent publications (Flores-
Rojas et al., 2019a; 2021; 2020).

Based on Köppen-Geiger classification (Peel et al., 2007) and
data from the HYGO station, the Mantaro Valley is classified as
Cwb, indicating a temperate climate with dry winters and warm
summers. The criteria include a mean temperature of the hottest
month above 10°C and the mean temperature of the coldest month
between 0°C and 18°C. Precipitation patterns show the driest and
wettest months receiving approximately 90 mm and 130 mm of
rainfall respectively. Summer accumulation is 340 mm with a peak
in February, while winter accumulation is 28 mm with a minimum
in July. Maximum daily precipitation occurs in May and December,
while the minimum is observed in June (Figure 3).

An alternative method for evaluating data from the HYGO
automatic station involves using psychrometric diagrams to
characterize seasonal climate conditions. There are moderate
correlations between specific humidity (q) and temperature (T),
with approximately 60% for mean diurnal averages and 75% for
mean monthly averages. Daily q values range from 1.5 g kg−1 in
spring to 11 g kg−1 in fall and summer, with RH fluctuating between
20% and 90%. Monthly average q varies from 4 g kg−1 in winter to
10 g kg−1 in fall and summer, with RH consistently between 40%
and 75%. These analyses suggest that radiation measurements from
the HYGO automatic station between 2017 and 2022 may reflect
cooler and drier conditions compared to the climatological norm,
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though mean surface solar irradiance (EG) remains representative
of the MV region’s climate. However, components like EDF and EDR
appear more sensitive to local climate and land-use factors.

6.2 Irradiance variables

The seasonal variation in EhG, especially at noon, exhibits a
low amplitude, ranging from 3.02±0.18 MJ m−2 h−1 in fall to
3.32±0.22 MJ m−2 h−1 in spring, resulting in a seasonal amplitude
close to 0.30 MJ m−2 h−1. This amplitude is notably lower than
the amplitude variation for EhT, which is close to 0.90 MJ m−2 h−1.
This pattern can be attributed to the opposing seasonal variations
of the solar irradiance components EhDF and EhDR, which attenuate
the seasonal variation of EhG. Specifically, E

h
DF peaks during summer

and reaches its minimum in winter, while EhDR peaks in winter and
reaches its minimum in summer.

During the spring, moderate values of EhDF and EhDR lead to the
highest values of EhG during this season. This behavior is associated
with reduced precipitation, moderate cloud cover, and the presence
of aerosols, possibly from biomass burning in the HYGO during
springmonths,whichwasanalyzedbyEstevan et al. (2019).Moreover,
diurnal patterns of Kh

T show maximum values at noon in winter
and minimums in summer, whereas Kh

D displays an inverse behavior
showing maximums at noon in summer and minimums in winter.
The amplitude of seasonally average values between Kh

T and Kh
D

is minimal in summer and maximal in winter, with intermediate
values in fall and spring.

In addition, the monthly average daily solar radiation
components at the HYGO corroborate the seasonal patterns
observed in hourly irradiance variables. Peak values of EdG are
evident in October (spring), contrasting with lowest values
observed in March (autumn). Similarly, peak values of EdDR
manifest in August (winter) and begins to decrease continuously
in the following months attributable to heightened aerosol optical
depth (AOD) and to the increase of cloudiness during this
period (Estevan et al., 2019). In contrast, EdDF peaks in January
(summer) and reaches its minimums in July (winter), mirroring
the pronounced seasonal fluctuations of aerosols, clouds and
precipitation in the HYGO (Giráldez et al., 2020).

Besides, the increase in AOD during September significantly
raises Kd

D from 0.25 in August to 0.42 in September and October.
Consequently, there is a reduction in EdDR and an increase in EdDF,
similar to the findings of Huaping et al. (2021) in Wuhan, China.
However, in October, EdDF slightly increases while EdDR remains
almost constant compared to September, which results in a slight
increase in EdG during October, reaching its highest value of the year.
This behavior is attributed to specific biomass burning events near
HYGO, which cause a sudden increase in AOD and alter the solar
irradiance components EdDF and EdDR (Estevan et al., 2019).

Moreover, the monthly mean aerosol size distributions,
measured by a CIMEL CE-318T sun photometer (AERONET
network) (Holben et al., 1998; 2001) reveal a bimodal distribution,
with coarse-mode aerosols (5.0613 μm) predominating in summer,
fall, and winter, accounting for 56.3% of the cases. These aerosols
are mainly from marine and desert sources. Fine-mode aerosols
(0.1482 μm), which make up 43.7%, are primarily produced
by fossil fuel combustion and biomass burning (Estevan et al.,

2019). During spring, fine-mode aerosols predominate, particularly
in September and November. This is primarily due to biomass
burning in the Peruvian Amazon, leading to high Aerosol Optical
Depth (AOD) values measured at HYGO. Increased forward
scattering in an aerosol-rich atmosphere results in more ground-
reaching energy (Iqbal, 1983). In spring, the presence of a large
quantity of aerosols, coupled with longer sunshine hours, cloudiness
and higher EdT, raises E

d
DF, leading to increased EdG. This behavior is

especially evident in October, which experiences high sunshine
hours and reaches a maximum values of EdG.

6.3 Irradiance models

The MADHG irradiation model establishes a connection
between the monthly-averaged daily clearness index (KT) and the
monthly mean daily sunshine fraction. Utilizing irradiance data
from the BSRN station on the HYGO, a strong correlation, with R2

= 0.76, and RMSE of 4.1% are observed. Additionally, the DAHG
irradiationmodel links the daily clearness index (KT = EG/ET) to the
daily sunshine fraction, revealing a strong correlation between the
two variables, with R2 equal to 0.85 and RMSE around 5.0%. It is
noted that the relationships derived from the MADHG and DAHG
models exhibit slight differences, as reported by Munner (2004d).

Furthermore, the MADHD irradiation model is designed to
establish a relationship between the monthly-averaged daily diffuse
ratio (ED/EG) and the monthly-averaged daily clearness index (KT).
In this case, a more robust correlation is evident between the
discussed variables, characterized by an R2 value of 0.91 and RMSE
of approximately 5.0%. In addition, the DAHD irradiation model,
designed to establish a connection between the daily diffuse ratio
(ED/EG) and the daily clearness index (KT), mirroring the pattern
observed in the previous model, a robust correlation is apparent
between the two discussed variables, with an R2 value of 0.86 and
RMSE of approximately 9.3%.

On the other hand, the HHG irradiation model links the ratio
of hourly global irradiation to daily global irradiation (rG) with the
sunset hour angle expressed in radians from solar noon. Statistical
indicators for this model reveal R2 values ranging from 0.12 for
+4.5 h from solar noon to 0.83 for +2.5 h from solar noon, with
RMSE values spanning from 5.4% to 8.4%. Interestingly, coefficient
values within the −4.5 h and +1.5 h range closely resemble those
from prior studies Iqbal (1983); Liu and Jordan (1960).

Similarly, the HHD irradiation model links the ratio of hourly
diffuse irradiation to daily diffuse irradiation (rD) with the sunset
hour angle in radians from solar noon. Its statistical indicators
demonstrate R2 values ranging from 0.11 for −3.5 h from solar noon
to 0.89 for +3.5 h from solar noon, and RMSE values ranging from
6.3% to 8.9%.Notably, a wide range of coefficient values across hours
from solar noon suggests that the mathematical expressions for this
model may not comprehensively represent these variables.

The correlation models for hourly diffuse irradiance utilizes
several function to correlate Kh

D and Kh
T. The present contribution

shows that the sigmoid logistic function demonstrates superior
performance, particularly when Kh

T approaches unity, compared to
alternative functions. Evaluation metrics include R2 and RMSE. The
sigmoid function is compared favorably tomodels developed for the
Southern Hemisphere, showing its first application in developing
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empirical solar radiation models for Peru’s central Andes. Superior
performance of the sigmoid function is evident when compared to
other models, including the logistic function adjusted to HYGO
dataset and polynomial functions. All models exhibit R2 values
over 83%, with the sigmoid function showing the best statistical
performance.TheAICmethod identifies the sigmoid function as the
best model for HYGO, though all models effectively capture the Kh

D
and Kh

T relationship.
It is important to highlight that the clearness index (Kh

T) is not
independent of the zenith angle (θZ). A given Kh

T value represents
significantly different conditions depending on whether the sun is
near the zenith or the horizon. This approach inherently carries
an error. Better performance can be achieved by using another
variable, independent of θZ, to characterize insolation conditions.
Another well-known limitation of Kh

T is that, for a given Kh
T

value within a specific range of solar elevation, the atmospheric
conditions can vary significantly in terms of direct and diffuse
content. Additionally, other independent atmospheric variables
can be incorporated if they provide relevant information about
direct irradiance transmission. (Perez et al., 1990). For instance,
surface dew-point temperature (Td) serves as a reliable estimator of
atmospheric precipitable water, which significantly influences both
absorption and aerosol growth. This, in turn, affects the balance
between direct and diffuse irradiance, as well as the scattering and
direct-to-diffuse ratio (Perez et al., 1992).

For the present study, we propose models that use the hourly
clearness index (Kh

T) to estimate (Kh
D) (Erbs et al., 1982), due to

their simplicity and their status as the first proposed models.
However, several other models, which perform marginally better
than the currently used models for various global locations, will
be implemented in future research. These models incorporate
additional atmospheric variables such as the hourly clearness
index and solar elevation (Maxwell, 1987; Skartveit and Olseth,
1987), hour-to-hour variability index and regional surface albedo
(Skartveit and Olseth, 1987), dew-point temperature and hour-to-
hour variability index (Perez et al., 1992), and apparent solar time
with a measure of global radiation persistence (Ridley et al., 2010).
These enhanced models will be incorporated in future studies to
improve performance.

7 Conclusion

The present study evaluates the climatic characteristics of the
western Mantaro Valley using data from the HYGO conventional
station (1981–2020) and the IGP automatic station (2017–2022).
The Mantaro Valley is classified as Cwb according to the Köppen-
Geiger system, indicating a temperate climate with dry winters
and warm summers. Summer sees peak precipitation, reaching
340 mm month−1 in February, while winter experiences minimal
precipitation, with 28 mmmonth−1 in July.The analysis suggests that
radiation measurements accurately represent the valley’s climate,
while factors like EDF and EDR are more influenced by local climate
and land-use, indicating cooler and drier conditions compared to
the regional climatic norms.

The analysis of diurnal and seasonal variations in EDR, EDF,
and EG in the western Mantaro Valley shows distinct patterns.
At noontime, EhDR peaks during winter and decreases in summer.

Conversely, EhDF reaches its maximum in summer and declines
in winter. Additionally, EhG peaks in spring and decreases in
winter, influenced by astronomical factors, cloudiness, and aerosol
concentrations observed from 2017 to 2022. Seasonal variations in
daily solar radiation components at the HYGO surface reveal that
EdDR peaks in winter, notably in August, with the lowest values in
March. Conversely, peakEdDF values occur in summer, particularly in
January, with the lowest values observed in winter, especially in July.

Notably, peak values of EdG occurred during spring, reaching its
highest recorded value in October (24.14 MJ m−2 day−1) and its
lowest in March (19.50 MJ m−2 day−1). This seasonal variation in
EdG correlates with periods of biomass burning, which are associated
with elevated aerosol optical depth (AOD) levels in the Mantaro
Valley region. Biomass burning events typically occur from July
to October annually, with September exhibiting peak AOD values.
These months coincide with increased forest fire activity, both
locally in Peru and in neighboring countries like Brazil and Bolivia.
The influx of biomass-burning aerosols contributes to higher AOD
levels in September, affecting Kd

D and consequently reducing EdDR
while increasing EdDF. In October, EdDF shows a slight increase while
EdDR remains constant, resulting in the peak of EdG for the year.
This behavior is attributed to biomass burning events near the
HYGO station.

This study investigates irradiation models that establish
robust correlations among various solar radiation parameters. The
MADHG and DAHG models relate the monthly-averaged daily
clearness index (KT) to daily sunshine fraction, while the MADHD
and DAHD models connect the monthly-averaged daily diffuse
ratio (ED/EG) to KT. Furthermore, the HHG and HHD models
correlate the ratio of hourly global or diffuse irradiation to daily
values with the sunset hour angle. All these models demonstrated
acceptable accuracy in predicting irradiance variables.Moreover, the
sigmoid logistic function emerges as themost effective in correlating
Kh
D and Kh

T, demonstrating superior performance compared to
alternative functions and exhibiting strong statistical significance.
The AIC method supports the superiority of the sigmoid function,
emphasizing its efficacy in capturing the relationship between solar
radiation components. It effectively reproduces the behavior of Kh

D
as a function of Kh

T, demonstrating superior statistical performance
compared to other correlation models.

It is important to emphasize that this is the first study aimed at
the observational characterization and empirical modeling of global
and diffuse solar irradiances in the central Peruvian Andes, using
high-quality radiation data from sensors belonging to the BSRN
network. In the future, this newmodelwill be testedwithEDF, andEG
measurements collected in other regions of central Andes andwill be
proposed better empirical models, physical parametric broadband
models, perceptron neural-network techniques to estimate hourly
values of the diffuse solar irradiance and machine learning methods
for solar radiation forecasting. However, the empirical models
presented here can easily be used to forecast solar irradiance
components with acceptable accuracy, just like the proposals
made for other South American cities. Future research should
incorporate models that use additional atmospheric and solar
variables for improved performance, such as solar elevation,
hour-to-hour variability index, regional surface albedo, dew-point
temperature and apparent solar time with a measure of global
radiation persistence.
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Glossary

Irradiance variables

ET extraterrestrial solar irradiance (W m−2)

Eh
T hourly value of extraterrestrial solar irradiance at the surface

(MJ m−2 hour−1)

Ed
T daily value of extraterrestrial solar irradiance at the surface

(MJ m−2 day−1)

EG global solar irradiance (W m−2)

Eh
G hourly value of global solar irradiance at the surface (MJ m−2

hour−1)

Ed
G daily value of global solar irradiance at the surface (MJ m−2

day−1)

EDR direct solar irradiance (W m−2)

Eh
DR hourly value of direct solar irradiance at the surface (MJ m−2

hour−1)

Ed
DR daily value of direct solar irradiance at the surface (MJ m−2

day−1)

EDF direct solar irradiance (W m−2)

Eh
DF hourly value of diffuse solar irradiance at the surface (MJ

m−2 hour−1)

Ed
DF daily value of diffuse solar irradiance at the surface (MJ m−2

day−1)

KT clearness index (nondimensional)

Kh
T hourly value of clearness index (nondimensional)

Kd
T daily value of clearness index (nondimensional)

KD diffuse fraction of the solar irradiance (nondimensional)

Kh
D hourly value of diffuse fraction of the solar irradiance

(nondimensional)

Kd
D daily value of diffuse fraction of the solar irradiance

(nondimensional)

Atmospheric variables

q specific humidity (g kg−1)

T air temperature (°C)

RH relative humidity (%)

S monthly average daily value of sunshine hours (hours)

Smax maximum monthly average daily value of sunshine hours
(hours)

Statistical Parameters

MBE mean bias error

R2 coefficient of determination

RMSE root mean square error

AIC Akaike’s information criterion

ΔiAIC difference of Akaike’s information criterion

Empirical Irradiation models

MADHG Monthly-averaged daily horizontal global

MADHD Monthly-averaged daily horizontal diffuse

DAHG Daily-averaged horizontal global

DAHD Daily-averaged horizontal diffuse

HHG Hourly horizontal global

HHD Hourly horizontal diffuse

HDC Hourly diffuse correlation
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