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Estimation of the dolomite
content of carbonate rock
outcrops based on spectral
knowledge and machine learning

Wei Wei, Yanlin Shao*, Zhonggui Hu, Qing Wang, Fan Deng,
Yu Huang and Kunpeng Zhao

School of Geosciences, Yangtze University, Wuhan, China

Accurately estimating the dolomite content in carbonate rocks is crucial for
optimizing oil and gas exploration and production strategies. Hyperspectral
techniques for estimating dolomite content have advantages in terms
of efficiency, cost-effectiveness, and non-destructiveness compared with
traditional laboratory methods. Despite the abundance of hyperspectral data,
feature selection and extraction remain challenging. In this study, hyperspectral
data collected from surface outcrop in the field using the analytical spectral
device (ASD) were applied to construct model for estimating dolomite
content. Firstly, the data were preprocessed via outlier analysis and continuum
transformation. Next, a hybrid approach integrating spectral knowledge with
machine learning was proposed and applied to facilitate efficient and precise
feature selection of the hyperspectral data; in this approach, preliminary
screening based on spectral knowledge is followed by further hyperspectral
data feature selection using a random forest algorithm. The selected features
were then combined using a support vector regression algorithm to obtain
the estimation model. Finally, the accuracy of the model was evaluated
using the hyperspectral data from field outcrop samples. To further verify the
effectiveness of this method, various combinations of eight input variables and
four machine learning algorithms were compared. Among all combinations,
our model achieved the highest accuracy with a test R2 value of 0.91 and a
root-mean-square error of only 0.122. The proposed method is practical and
efficient and provides precise quantitative data for field geologists to identify
the mineral distribution in outcrops. Thus, our method provides robust support
for understanding reservoir characteristics and has significant practical value in
geological surveys and mineral exploration.

KEYWORDS

hyperspectral, dolomite content, hybrid feature selection, machine learning, outcrop

1 Introduction

Carbonate rocks are significant reservoir rocks that account for approximately 50%
of petroleum reserves worldwide (Gaffey, 1987). Dolomite, one of the key mineral
components in carbonate rocks, is an important indicator for assessing reservoir quality,
understanding the Earth’s historic climate, and current climate changes. Traditional
methods for analyzing dolomite content, which include X-ray diffraction (XRD), scanning
electron microscopy (SEM), differential thermal analysis (DTA), thin-section analysis
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and staining, are primarily laboratory based. These methods
are costly, time-consuming, and not suitable for real-time field
applications. By contrast, hyperspectral techniques, effectively
utilize the spectral differences between minerals for mineralogical
analysis (van der Meer et al., 2012; Hecker et al., 2019). Thus,
hyperspectral approaches have advantages in terms of speed,
efficiency, cost, and non-destructiveness (Zaini et al., 2014;
Hamedianfar et al., 2023). Commonly used hyperspectral devices
for outcrop studies include ground-based hyperspectral imagers
and field spectrometers, such as analytical spectral devices (ASD).
ASD spectrometers are particularly favored for their portability and
fine spectral resolution, which make them suitable for field analysis
of rock mineral content. The unique advantages of hyperspectral
analysis are related to the ability to provide abundant information.
However, this also presents significant challenges for subsequent
data processing and analysis (Rasti et al., 2020; Deepa et al., 2023).

Methods for estimating mineral content based on hyperspectral
data can be primarily categorized into two groups: spectral
knowledge-based and machine learning-based approaches.
Spectral knowledge-based methods focus on extracting a
limited but highly representative set of feature bands according
to specific rules derived from the spectral characteristics of
rocks or minerals. Statistical methods such as linear regression
are then used for estimation. These hyperspectral techniques
involve selecting mineral diagnostic bands, constructing features
such as band ratio, mineral indices through various algebraic
operations (Haest et al., 2012; Seo et al., 2023), and analyzing local
waveform features including depth, width, symmetry, and area
(Hebert, 2019; Kurz et al., 2022; Tan et al., 2023). These spectral
knowledge-based methods effectively reduce the dimensionality
of hyperspectral data and have clear physical and chemical
significance (Kurz et al., 2012; Okyay et al., 2016). However, spectral
knowledge-based methods depend significantly on substantial
expert knowledge, particularly when constructing complex features
like mineral spectral indices. A lack of expert knowledge could
result in the omission of critical features, thereby adversely
affecting the precision of the outcomes. In addition, these
methods are typically used in conjunction with linear regression
models, resulting in suboptimal performance when addressing
nonlinear issues.

An alternative approach involves the integration of machine
learning with hyperspectral data. Machine learning-based methods
involve two key steps: feature selection/extraction and machine
learning modeling. During feature selection/extraction, feature
selection techniques preserve the physical characteristics of the
original data and provide strong interpretability, making them
popular for reducing the dimensionality of the hyperspectral data
analysis. Feature selection techniques mainly include filter, wrapper,
and embedded approaches. Filter methods select bands based on
specific measurement criteria, such as correlation, information
divergence, entropy, and mutual information (Zhou et al., 2022;
Tan et al., 2023). Wrapper techniques select features by exploring
various feature subsets and evaluating model performance; this
process is independent of themodel training. Embedded approaches
are integrated with certain machine learning algorithms, including
random forest (RF) and support vector machine (SVM), often
have inherent evaluation metrics to select optimal features (Thomas
and Gupta, 2020). Due to their consideration of training samples

and feature interdependencies, embedded approaches typically
yield superior model performance compared with other feature
selection methods (Kumar, 2014; Thomas and Gupta, 2020).
Algorithms frequently used in the modeling stage include partial
least squares regression (PLSR) (Knox et al., 2015), ensemble
learning (Carranza, 2015; Tan et al., 2020; Lin et al., 2022), SVM
(Iglesias, 2020; Chatterjee et al., 2022), artificial neural networks
(ANN) (Saikia et al., 2020), and deep learning (Zhang T. et al.,
2023). Nonlinear models are widely regarded to outperform linear
models in a variety of instances (Zhou et al., 2021; Sim et al., 2023).
However, the significant potential of deep learning in geochemical
analysis is currently hindered by limitations in data quantity
(He et al., 2022; Dawson et al., 2023). The benefits of machine
learning-based techniques are their powerful data processing and
analytical capabilities, impressive analytical speed, independence
from expert knowledge, and proficiency in addressing nonlinear
challenges (Rodriguez-Galiano et al., 2018; Shirmard et al., 2022).
Nonetheless, it is important to note that the efficacy of machine
learning is highly correlated with the quality of the input features
(Jia et al., 2013; Zhang Y. et al., 2023).

In this study, we propose a scheme for estimating dolomite
content in carbonate rocks based on a combination of spectral
knowledge and machine learning. This proposed method combines
the advantages of spectral knowledge and machine learning to
significantly improve the quality of the input data used in machine
learning models. Moreover, our method preserves the advantages of
machine learning-based approaches, allowing to effectively address
nonlinear problems. The main contributions of this study are:

(1) Providing an efficient mechanism for hyperspectral feature
selection. The hybrid method for feature selection is
characterized by high accuracy, robust interpretability, and
low computational cost

(2) Developing a scheme for estimating mineral content based on
ASD spectral data. The scheme described in this article covers
the entire process from data preprocessing to feature selection
and modeling. This method offers a practical and efficient
approach for on-site mineral content estimation.

2 Data and methods

2.1 Data

2.1.1 Study area
Thestudy area lies in the eastern and northwestern regions of the

Sichuan Basin, a substantial oil and gas basin in southwestern China.
This basin is positioned to the northwest of the Yangtze platform.
The stratigraphy of the Sichuan Basin is both comprehensive and
diverse. From the Sinian to the Middle Triassic, the primary
depositional environment was marine and dominated by carbonate
rocks, By contrast, from the Upper Triassic to the Quaternary,
terrestrial deposition primarily involved clastic rocks. This study
primarily focuses on the marine sediments from the Sinian to
the Triassic, which predominantly comprise carbonate rocks. To
ensure sample representativeness, nine outcrops were selected as
sampling sites, the specific locations of the sampling sites are
depicted in Figure 1.
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FIGURE 1
Study area, nine outcrops as our sampling sites (map source provided by ArcGIS online).

2.1.2 Data acquisition
Data acquisition for this study comprised two tasks: fieldwork

and laboratory work. Fieldwork encompassed three procedures:
selecting the sampling locations, collecting hyperspectral data, and
gathering rock samples. To enhance the applicability of the model
in predicting dolomite content in field outcrops, the hyperspectral
data of the training samples were collected on-site in the field.
The mineral content of the training samples, which serve as labels
for the training data, is ascertained through chemical analysis
conducted in the laboratory.The detailed data acquisition process is
as follows:.

(1) Selecting field sampling locations. Due to the complex surface
conditions of the outcrops (e.g., varying degrees of weathering,
smoothness, and the practicality of measuring rock samples),
selecting sampling points requires careful consideration. Areas
with minimal weathering and relatively smooth, flat surfaces
were prioritized for sampling (Figure 2A).

(2) Collecting hyperspectral data. Hyperspectral data were
collected using the Analytical Spectral Devices (ASD)
FieldSpec3 Hi-Res spectrometer equipped with a contact
probe and an integrated light source to minimize the effects
of stray light. During field data collection, the spectrometer
contact probe was aligned vertically with respect to the
sampling point on the outcrop surface, as shown in Figure 2B.
The spectral range was between 350 and 2,500 nm, and the
spectral resolutions were 3 nm at 700 nm, 10 nm at 1,400 nm,
and 10 nm at 2,100 nm. Each sampling point was measured
three times, with each comprising an average of 10 scans.
All data were subsequently averaged to obtain the final
spectrum for that rock sample. A white reference panel was
used for calibration every 5 min during the sampling process
(Asadzadeh and Souza Filho, 2016).

(3) Gathering rock samples. Following the collection of field
hyperspectral data, rock samples were chiseled from the
sampling sites using a hammer (Figure 2C). The rock samples

were then packed in bags and transported back to the
laboratory for analysis (Figure 2D).

(4) Laboratory analysis: XRD analysis was conducted to determine
the mineral compositions of the rock samples. The rock
samples were ground into powders and analyzed using a
SmartLab X-ray diffractometer.

In this study, 206 carbonate rock samples were collected, and
detailed mineral content data were obtained for each sample. The
collected data were divided into two parts: one part was used for
training themodel, and the other part was used to validate themodel
and assess its accuracy.

2.2 Methods

2.2.1 Preprocessing
In this study, the data preprocessing involved outlier analysis and

continuum removal. During the acquisition of field hyperspectral
data, outliers may arise due to a variety of factors including
mishandling, inadequate proximity of the instrument probe to the
outcrop surface, and sensor malfunctions. These outliers have the
potential to result in overfitting or underfitting by the machine
learning algorithms, affecting the efficacy of the model. For outlier
analysis, the mean spectrum was calculated for each band ±2
standard deviations for all samples. If 80% of the sample spectral
value fell outside of this range, the sample was considered an outlier
and removed.

After outlier deletion, continuum removal was executed to
suppress the effect of background noise and accentuate subtle
spectral variations (Clark and Roush, 1984; Baugh et al., 1998). The
continuum removal method applied in this study was based on
the approach proposed by Clark and Roush (1984). In addition
to enhancing differences, the continuum removal process also
normalized the data, facilitating comparison between different
spectral curves.
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FIGURE 2
(A) One sample site (B) Field hyperspectral data collection (C) Rock sample collection location (D) One rock sample.

2.2.2 Feature selection based on the mineral
spectral knowledge (MSK)

MSK-based feature selection relies on mineral diagnostic
bands. The diagnostic bands of dolomite in the near-infrared
region are primarily attributed to the energy produced by the
vibrations of atoms deviating from their equilibrium positions
within the carbonate molecular group (Clark et al., 1990).
Specifically, these bands are produced by overtones or combinations
of the three fundamental vibration modes of CO2−

3 icons
(Hunt, 1977): v1 (symmetric C–O stretching), v3 (asymmetric
C–O stretching) and v4 (in-plane bending). Table 1 lists the
diagnostic bands of carbonate rocks in the near-infrared region.
Different regions exhibit diverse rock and mineral compositions;
thus, a unified standard has not yet been established for the
exact intervals of feature bands (Hunt, 1977; Gaffey, 1987;
Zaini et al., 2014).

Building on previous research and considering the spectral
characteristics of samples from the study area, we employ
a boxplot methodology to ascertain the range of feature
bands for carbonate rock minerals. The specific steps are
outlined below:

(1) Determination of the approximate positions of diagnostic
bands. Considering the characteristics of the samples,
we determined the approximate positions of the
absorption bands specific to dolomite minerals in this
region.

(2) Location of absorption valleys. The absorption valleys near
the diagnostic bands determined in the preceding step were
identified.

(3) Extraction of shoulder bands. The left and right shoulder
wavelengths for each absorption valley (λs1 and λs2,
respectively) were extracted (see Figure 3).

(4) Definition of interval boundaries. The boundaries of intervals
were established via the boxplot analysis of shoulder
wavelengths (Tukey, 1977). We establish the first quartile
(Q1) of the left shoulder band and the third quartile (Q3)
of the right shoulder band as the boundary bands for each
interval. Here, Q1 represents the first quartile, indicating that
25% of the data are below this value, and Q3 represents the
third quartile, indicating that 75% of the data set are below
this threshold. This analytical method is designed to capture
prevalent patterns across most samples, effectively minimizing
the effect of outliers.

TABLE 1 Diagnostic bands of carbonate rocks in near-infrared region.

Diagnostic
features (nm)

Overtone or
combinations

Ref.

2,550 v1 + 2ν3 Clark et al., 1990;
Gaffey, 1987; Hunt,

1977; Rasouli Beirami
and Tangestani, 2020

2,350 3v3 Clark et al., 1990;
Gaffey, 1987; Hunt,
1977; Rasouli and
Tangestani, 2020

2,248 - Gaffey (1987)

2,160 v1 + 2ν3 + ν4 , 3v1 + 2ν4 Clark et al., 1990;
Gaffey, 1987; Hunt,

1977; Rasouli Beirami
and Tangestani, 2020

2,000 2v1 + 2ν3 Clark et al., 1990;
Gaffey, 1987; Hunt,

1977; Rasouli Beirami
and Tangestani, 2020

1,900 v1 + 3ν3 Clark et al., 1990;
Gaffey, 1987; Hunt,

1977; Rasouli Beirami
and Tangestani, 2020

1,740 - Gaffey (1987)

2.2.3 Feature selection based on random forest
feature importance (RFFIM)

Feature selection based on RFFIM employs an RF algorithm
to rank and select input features according to the criteria. In
classification tasks, criteria such as Gini impurity or information
gain are typically employed, whereas variance reduction is used in
regression problems. Since this study involved a regression problem,
we chose variance reduction as the evaluation criterion (Breiman,
2001; Verikas et al., 2011). The specific steps were as follows:

(1) Construction of decision trees. Assume a total of p training
samples, each with q features, random sampling was used
to select n training samples from the p training samples to
construct a set of n decision trees, denoted as t1, t2,…… tn.
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FIGURE 3
Local waveform features, λm: the wavelength of the absorption valley’s
bottom, λs1: left shoulder wavelength, λs2: right shoulder wavelength.

(2) Contribution of each feature to variance reduction. The
contribution of each feature xm to variance reduction caused
by the split at each node j in each decision tree ti was calculated
by Eq. 1:

△Var(i,xm) = Varp −Vars, (1)

where Varp is the variance of the target variable in the parent node
before the split, and Vars represents the weighted variance after the
split.

(3) Total contribution to variance reduction. The total
contribution to variance reduction TVD(xm) for each feature
xm for all nodes j across all decision trees ti was determined by
Eq. 2:

TVD(xm) =∑
n
i=1
∑

j∈ti
△Var(i,xm). (2)

(4) Quantification of feature importance. The importance of
feature xm was quantified as its total contribution to variance
reduction, expressed as a proportion of the aggregate
contribution from all features as Eq. 3:

I(xm) =
TVD(xm)

∑q
m=1

TVD(xm)
. (3)

2.2.4 Support vector regression (SVR)
SVR is a regression analysis method derived from the principles

of SVM. The foundational concept of SVR is to seek an optimal
balance between model accuracy and generalizability (Smola and
Schölkopf, 2004; Iglesias, 2020). The primary aim of SVR is to
identify a smooth model function that minimizes the discrepancy
between the estimated and actual values. The linear form of this

function is given by Eq. 4:

f(xi) = ω ∙ xi + b, (4)

where f(xi) represents the estimated value for the i-th sample, ω is
theweight vector, xi is the input feature vector of the i-th sample with
dimensions corresponding to the number of feature bands, and b is
the bias.

A central aspect of SVR is its focus on a subset of data points
known as support vectors, which are determined by the ε-insensitive
zone. This zone allows small estimation errors to be ignored
while considering only significant deviations in model accuracy.
In addition, SVR introduces slack variables ξ (slack variables) to
allow larger estimation errors (Bennett and Mangasaian, 1992). The
objective function, The objective function is given as Eq. 5:

min 1
2
‖ω‖2 +C∑m

i=1
(ξi + ξ∗i ), (5)

where C is a regularization parameter that balances the model’s
complexity and error tolerance, and m represents the number of
samples.The first part of the objective function aims tominimize the
complexity of the model and prevent overfitting, while the second
part penalizes significant estimation error.

In this study, a linear SVR was employed due to the limited
number of available samples.

2.2.5 MSK-RFFIM-SVR scheme
In this study, a MSK-RFFIM-SVR scheme was developed for

estimating dolomite content. In this scheme, MSK-RFFIM is used
for feature selection in hyperspectral data, while the SVR algorithm
is employed for inversion modeling. The workflow of this approach
is illustrated in Figure 4, and the specific implementation steps were
as follows:

(1) Preprocessing. The hyperspectral data were preprocessed via
outlier deletion and continuum removal.

(2) Preliminary feature selection based on the MSK. After
analyzing the spectral characteristics of dolomiteminerals, box
plots were employed to identify the spectral feature regions of
the samples, thereby facilitating the preliminary screening of
the original hyperspectral bands.

(3) Secondary feature selection based on the RFFIM. An
RF algorithm was used to rank the importance of the
preliminarily screened features, and the top 50 bands were
selected.

(4) Modeling. The top 50 bands selected in the preceding step
were used as input variables for the machine learning model
to estimate the dolomite content. The results were evaluated to
ensure the model’s effectiveness.

3 Experimental results

In this study, we have developed the MSK-RFFIM-SVM
inversion scheme for estimating dolomite content and verified its
effectiveness in comparison to other input variables and modeling
methods. The input variables considered in the comparison ranged
from Input V1 to Input V8, defined as follows: Input V1 retained
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FIGURE 4
The workflow of dolomite content estimation.

TABLE 2 Description of eight input variables.

ID Description

Input V1 All bands

Input V2 Based on MSK

Input V3 Based on RFFIM

Input V4 Our method (MSK-RFFIM)

Input V5 Based on correlation coefficient

Input V6 Based on PCA

Input V7 Based on KPCA

Input V8 Based on local waveform features

TABLE 3 Hyperparameters and optimization range.

Model Hyperparameters Value range

PLSR component 2–20

RF

n_estimators 100–500

min_samples_leaf 5–10

max_depth 2–15

SVR C 0.01,0.1,1,10-150

ANN
alpha 0.001,0.01,0.1,1,10,20

hidden_layer_sizes [3]–[20]

FIGURE 5
ASD spectrum of carbonate rock samples with different dolomite
contents; solid line denotes the original spectrum; dashed line
describes the continuum-removed spectrum; black vertical lines
represented four diagnostic bands; the percentages in the legend
indicate the content of dolomite of samples.

all continuum-removed bands; Input V2 selected features based on
the MSK; Input V3 utilized the top 50 features selected by RFFIM;
Input V4 was based on our MSK-RFFIM method; Input V5 was
the top 50 features selected based on correlation coefficients; Input
V6 and Input V7 were obtained by transforming hyperspectral
data using principal component analysis (PCA) and Kernel PCA
(KPCA), respectively, and selecting the top 20 components for
each; and Input V8 employs feature selection based on the local
waveform characteristics, including the wavelength and reflectance
of the bottom of the absorption valley’s, the double-shoulder
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FIGURE 6
Box diagrams for left and right shoulder wavelengths of four absorption valleys of samples. (A–D) respectively represent the absorption valleys near
1,900 nm, 2,000 nm, 2,160 nm, and 2,350 nm.

TABLE 4 Accuracy assessment of dolomite content estimation based on continuum-removal data.

Features
PLSR RF SVR ANN Average

Test R2 RMSE Test R2 RMSE Test R2 RMSE Test R2 RMSE Test R2 RMSE

Input V1 0.788 0.528 0.809 0.185 0.759 0.208 0.736 0.218 0.773 0.285

Input V2 0.758 0.517 0.790 0.194 0.863 0.157 0.747 0.213 0.789 0.271

Input V3 0.742 0.522 0.824 0.178 0.735 0.218 0.733 0.219 0.758 0.284

Input V4 0.762 0.515 0.798 0.190 0.917 0.122 0.853 0.163 0.833 0.248

Input V5 0.654 0.513 0.732 0.220 0.864 0.156 0.758 0.209 0.752 0.274

Input V6 0.795 0.527 0.637 0.255 0.760 0.208 0.794 0.193 0.747 0.296

Input V7 0.817 0.532 0.630 0.258 0.769 0.204 0.774 0.201 0.748 0.299

Input V8 0.778 0.535 0.879 0.147 0.793 0.193 0.749 0.212 0.800 0.272

Average 0.750 0.522 0.759 0.205 0.814 0.180 0.767 0.204 0.772 0.278

The bold represents our method, along with the optimal and average accuracy values.

wavelengths, and the width, height, area, and symmetry of each
absorption valley. The detailed extraction methods can be found in
Hecker et al. (2019). Table 2 presents detailed information on these
eight input variables. The machine learning algorithms included
in the comparison were PLSR, RF, SVM and ANN (multilayer
perceptron). All algorithms in this experiment were implemented
using the Python programming language.

3.1 Model parameters and evaluation
metrics

To select the best model hyperparameters, we aimed to
minimize the number of hyperparameters requiring tuning, thereby
reducing model complexity, and enhancing its generalizability. In
this study, the ‘GridSearchCV’ method from the ‘sklearn’ library
was employed to determine the optimal hyperparameters of the
model. ‘GridSearchCV’ integrates grid search with cross-validation
to identify the most accurate parameters within a specified range,
traversing all potential combinations. Based on the hyperparameter

tuning range presented in Table 3, ‘GridSearchCV’ employed a
k-fold cross-validation approach in which the training set was
partitioned into k non-overlapping subsets. In each iteration, k−1
subsets were selected for the training set, and the remaining subset
served as the validation set for subsequent testing of the trained
model. After computing the average score over k iterations, the
hyperparameter combination with the highest mean score was
selected as the optimal choice. In this study, k was set to 5.

The evaluation metrics in this study were the coefficient of
determination (R2) and root mean square error (RMSE), as shown
in Eqs 6, 7:

R2 = 1−
∑m

i=1
(yi − ŷi)

2

∑m
i=1
(yi − yi)

2
, (6)

RMSE = √ 1
m
∑m

i=1
(yi − ŷi)

2, (7)

where ŷi denotes the estimation value, yi denotes themeanmeasured
value, m represents the number of samples for evaluation. The
value of R2 ranges from −1 to 1, with values closer to 1 indicating
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FIGURE 7
Accuracy assessment of dolomite content estimation based on continuum-removed data, (A): Test R2 assessment (B): RMSE assessment.

higher estimated accuracy. RMSE is a commonly used accuracy
metric; a larger RMSE value indicates a greater disparity between
the estimated and actual values, thus signifying poorer accuracy.

3.2 Feature intervals based on the MSK

After outlier removal, 203 samples were retained for subsequent
work. Based onprevious studies, the dolomitemineral exhibits seven
significant features in the near-infrared range (see Section 2.2.2).
However, based on the spectral range of our instrument,
features around 2,500–2,550 nm were not included, and the
characteristics near 2,248 and 1740 nm were extremely weak,
bordering on negligible.Therefore, we excluded those three features.
Consequently, the characteristic spectral features of dolomite
minerals in the study area were primarily distributed around
1900, 2000, 2,160, and 2,350 nm (see Figure 5). Subsequently,
we located the corresponding absorption valleys at these four
wavelengths and extracted the left and right shoulder wavelengths
for boxplot analysis. As depicted in Figure 6. The final feature
intervals were determined as 1839–1870,1950–2009, 2,110–2,183
and 2,133–2,386 nm with a total of 416 bands.

3.3 Modeling evaluation and analysis

In total, 203 samples were used in the modeling process. These
samples were randomly divided into a test set and a training set,
with 80% (162 samples) designated as training samples and 20% (41
samples) as testing samples.

Table 4 and Figure 7 show the results of the accuracy evaluation
for dolomite estimation based on eight features extracted from
the continuum-removed data and four machine learning models.
In Table 4, ourmethod, alongwith the optimal and average accuracy
values, is highlighted in bold font.

First, regarding input variables, significant disparities in
performance were observed among the eight input variables
across the four machine learning models (Table 4; Figure 7). For
the PLSR model, the highest accuracy was achieved when using
Input V7, while the lowest accuracy was observed with Input V3.
Conversely, for the RF model, the highest and lowest accuracies
were, respectively, observed with Input V8 and Input V7.The results
obtained using the SVR and ANNmodels were consistent: Input V4
yielded the highest accuracy, whereas Input V3 resulted in the lowest
accuracy. The average test R2and RMSE values were calculated for
all input features and are presented in the two rightmost columns
of Table 4. The average Test R2values for the eight input variables
decreased in the following order: Input V4 > Input V5 > Input V2 >
Input V8 > Input V7 > Input V6 > Input V1 > Input V3. The results
indicate that Input V4 achieved the best overall performance among
all input features.

Next, comparing the different machine learning models, the
four models exhibited different performances when combined with
different input variables. When selecting Input V1, Input V3, and
Input V8, the RF model demonstrated the highest accuracy, while
the ANN model had the lowest accuracy. With Input V2, the SVR
model displayed the highest accuracy, whereas the ANNmodel had
the lowest. For Input V4 and Input V5, the SVR model achieved the
highest accuracy, and the PLSR model result in the lowest accuracy.
With Input V6 and Input V7, the PLSR model achieved the highest
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FIGURE 8
Comparison of the estimated results of all input variables based on continuum-removed data and SVM algorithm with the XRD data of the test samples,
(A–H) corresponds to Input V1- Input V8 respectively.

FIGURE 9
(A,B) are correlation analysis of original data and continuum-removed data with the dolomite content respectively, OB: original hyperspectral data, CR:
continuum-removed data.

accuracy, while RF results in the lowest. Although the test R2 value
of PLSR was not always the lowest among the four models, its RMSE
value was significantly higher than those of the other three models,
as shown in Figures 7A, B, indicating that PLSR was not suitable for
estimating dolomite mineral content in this study. Furthermore, the
average test R2 value for all input variables was calculated across the
four models (see Table 4), resulting in the following order in average
test R2 accuracy: SVR > ANN > RF > PLSR. The results suggest that
among the tested models, SVR achieved best average accuracy and
thus the best overall performance.

In summary, by combining the good feature selection
performance of MSK-RFFIM with the overall accuracy of
SVR, the integrated MSK-RFFIM-SVR model demonstrated
exceptional efficacy for estimating the dolomite content
in carbonate rocks. Figure 8 shows a detailed comparison
of the estimation accuracies for each input variable when
integrated with the SVR model. The MSK-RFFIM-SVR
approach proposed in this study achieved a test R2 of
0.917 and an RMSE of just 0.122, superior to other
methods.

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1401026
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wei et al. 10.3389/feart.2024.1401026

TABLE 5 The Top 20 features of input variables and their ranking index scores.

Ranking Input V3 Input
V3_score

Input V4 Input
V4_score

Input V5 Input
V5_score

1 2,373 0.127 2,352 0.138 2,372 0.726

2 2,371 0.111 2,354 0.112 2,373 0.725

3 2,160 0.091 2,141 0.098 2,371 0.72

4 2,161 0.084 2,356 0.076 2,370 0.717

5 2,375 0.076 2,142 0.073 2,374 0.713

6 2,159 0.07 2,140 0.070 2,369 0.711

7 2,374 0.066 2,355 0.066 2,368 0.704

8 2,372 0.06 2,351 0.043 2,367 0.702

9 2,370 0.057 2,353 0.036 2,375 0.701

10 2,163 0.018 2,350 0.036 2,451 0.696

11 2,212 0.018 2,145 0.027 2,366 0.694

12 2,208 0.015 2,194 0.026 2,452 0.694

13 2,213 0.015 2,348 0.009 2,453 0.693

14 2,369 0.009 2,191 0.009 2,455 0.692

15 2,164 0.008 2,186 0.009 2,450 0.692

16 2,202 0.008 2,184 0.009 2,456 0.692

17 2,158 0.008 2,139 0.008 2,454 0.689

18 1,661 0.005 2,196 0.008 2,457 0.686

19 1,648 0.005 2,362 0.007 2,458 0.683

20 1824 0.004 2,364 0.006 2,376 0.681

4 Discussion

4.1 Comparison of original data and
continuum-removed data

The purpose of continuum removal is to enhance information
while simultaneously eliminating background noise. A correlation
analysis was conducted to compare the dolomite content based
on both the original and continuum-removed hyperspectral data
(Figure 9). As shown in Figure 9A, the original hyperspectral data
was influenced by environmental factors and background noise
and showed relatively low variance in reflectance. Consequently,
the correlation coefficients between the reflectance of all bands
and the dolomite content were relatively uniform. However, the
correlations between continuum-removed data and the dolomite
content exhibited more pronounced variations (Figure 9B).
Therefore, continuum removal improved the quality of the
hyperspectral data and facilitated subsequent feature selection
and modeling.

4.2 Feature selection

The hybrid MSK-RFFIM feature selection method proposed in
this paper leverage the strengths of both constituent methods. As
shown in Table 4, the MSK-RFFIM method resulted in enhanced
accuracy compared with either the MSK or RFFIM method alone.
Previous studies have also indicated that hybrid feature selection
methods can enhance the overall effectiveness of feature selection
(Chen et al., 2023;Wang et al., 2023).TheMSK-RFFIMmethod was
further analyzed using the top 20 bands from Input V3, Input V4,
and Input V5 (refer to Table 5). Some selected bands of InputV3
were situated below 1800 nm; the reflectance of these bands is
likely related to the water molecules present within the minerals.
Similarly, for Input V5, a significant number of the first 20 features
included bands above 2,400 nm. Given that the detection limit of
the employed equipment was 2,500 nm, the reflectance spectra in
the proximal wavelength range (2,450–2,500 nm) tend to exhibit
a sawtooth pattern, suggesting that they may be unreliable due
to noise or intrinsic equipment limitations. Therefore, using the
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FIGURE 10
Sensitivity analysis of model hyperparameters. (A–D) represent the effects of hyperparameter variations in PLSR, RF, SVR, and ANN on accuracy.

MSK method as a preliminary screening tool effectively eliminated
irrelevant features, thereby reducing interference in subsequent
models. Further comparison between the MSK and MSK-RFFIM
appoaches (as seen in Table 4; Figure 8, Input V2 and Input V4)
indicated a notable improvement in the average test R2 for MSK-
RFFIM (0.833 compared with 0.789 for MSK). This improvement
is likely attributed to the ability of the RF algorithm to eliminate
unimportant features and reduce the effect of redundant features
(Genuer, 2010).

4.3 Model sensitivity

In addition to accuracy, we also considered the sensitivity of the
model hyperparameters. High sensitivity to model hyperparameters
complicates the tuning of machine learning algorithms; minor
adjustments canmarkedly affect outcomes, potentially undermining
the generalization ability of the model. Here, we conducted
a sensitivity analysis of model hyperparameters based on the
optimal approach. The hyperparameter sensitivity of the model was
evaluated based in terms of the estimation accuracy of different
hyperparameter combinations with the four machine learning
algorithms.

In Figure 10, the vertical axis represents the ‘mean_test_score’
while the horizontal axis represents the different hyperparameter
combinations for eachmachine learning algorithm.The ‘mean_test_
score’ represents the average accuracy from a 5-fold cross-validation
on training samples using the ‘GridSearchCV’ algorithm. For
PLSR and SVM, optimization focused on a single hyperparameter:
‘n_components’ for PLSR and ‘C′ for SVM (Figures 10A, C).
By contrast, RF and ANN required adjustments across multiple
hyperparameters; the hyperparameter tuning ranges for each
are detailed in Table 3. Consequently, RF and ANN possessed

a total of 84 hyperparameter combinations, which form the
horizontal axis (Figures 10B, D). Figure 10 illustrates that both
the PLSR and RF models exhibited minimal sensitivity to
hyperparameter variations. The SVM model showed unstable
performance when the ‘C′ value was low, but stabilized when the
‘C′ hyperparameter reached a certain critical value (Wang et al.,
2019). Conversely, the ANN model exhibited the highest
sensitivity to the hyperparameters, consistent with previous finding
(Rodriguez-Galiano et al., 2015).

In summary, PLSR was not favorable due to its significant
error. The RF model stood out for its stability and simplicity in
parameter tuning. However, the accuracy of the RF model was
lower compared with other non-linear models. The ANN algorithm
achieved higher accuracy, but demonstrated notable sensitivity to
the model parameters, complicating hyperparameter optimization.
Overall, the SVR model achieved the optimal balance among
accuracy, parameter count, and parameter sensitivity. It mainly
optimizes the ‘C′ parameter, with performance plateauing beyond
a certain threshold. Therefore, the experimental results suggest that
the SVR algorithm is the optimal choice.

4.4 Limitations and future work

The primary focus of this study was carbonate rocks, other
rock types were not considered. Furthermore, during hyperspectral
sampling, sampling points with relatively fresh surfaces were
specifically chosen, while severely weathered areas intentionally
avoiding to prevent the known effect of weathering on spectral data
(Shin et al., 2019). Future work will involve samples taken from
weathered surfaces and comparative analysis of the accuracy of
different features and modeling algorithms between weathered and
fresh surfaces.
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5 Conclusion

This paper presents the MSK-RFFIM-SVR scheme for
estimating mineral content based on field-collected hyperspectral
data. In this scheme, following the preprocessing of the
hyperspectral data, a hybrid MSK-RFFIM approach is used for
feature selection. The SVR algorithm is then used to inversely
estimate the dolomite content. Compared with conventional
machine learning methods, this scheme more effectively selects
key features of the target mineral, significantly enhancing
model accuracy. Our estimation results for dolomite samples
produced a test R2 value of 0.91 and an RMSE of 0.122. The
proposed approach is especially advantageous for field outcrop
exploration and can provide high-precision quantitative data to
support field geologists in identifying distribution of outcrop
minerals, understanding the reservoir characteristics, and detecting
changes in ancient environments. The carbonate rock samples
in this study mainly consisted of dolomite and calcite. Future
research will explore more complex mineral compositions
and surface environmental conditions in carbonate rock
outcrops.
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