
TYPE Review
PUBLISHED 10 May 2024
DOI 10.3389/feart.2024.1401947

OPEN ACCESS

EDITED BY

Hongjian Zhu,
Yanshan University, China

REVIEWED BY

Yize Huang,
Chinese Academy of Sciences (CAS), China
Debin Xia,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Denglin Han,
handl@yangtzeu.edu.cn

Wei Lin,
ucaslinwei@126.com

RECEIVED 16 March 2024
ACCEPTED 17 April 2024
PUBLISHED 10 May 2024

CITATION

Huang X, Yu X, Li X, Wei H, Han D and Lin W
(2024), A review of the flow characteristics of
shale oil and the microscopic mechanism of
CO2 flooding by molecular dynamics
simulation.
Front. Earth Sci. 12:1401947.
doi: 10.3389/feart.2024.1401947

COPYRIGHT

© 2024 Huang, Yu, Li, Wei, Han and Lin. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A review of the flow
characteristics of shale oil and
the microscopic mechanism of
CO2 flooding by molecular
dynamics simulation

Xinmiao Huang1, Xinjing Yu2, Xiao Li3, Haopei Wei4,
Denglin Han1* and Wei Lin5*
1School of Geosciences, Yangtze University, Wuhan, China, 2CNOOC Research Institute Ltd., Beijing,
China, 3China National Logging Corporation, Xi’an, China, 4The Second Oil Plant, Changqing Oil and
Gas Branch Company, Xi’an, China, 5School of Resources and Environment (Institute of Digital
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Shale oil is stored in nanoscale shale reservoirs. To explore enhanced recovery,
it is essential to characterize the flow of hydrocarbons in nanopores. Molecular
dynamics simulation is required for high-precision and high-cost experiments
related to nanoscale pores. This technology is crucial for studying the kinetic
characteristics of substances at the micro- and nanoscale and has become
an important research method in the field of micro-mechanism research
of shale oil extraction. This paper presents the principles and methods of
molecular dynamics simulation technology, summarizes common molecular
models and applicable force fields for simulating shale oil flow and enhanced
recovery studies, and analyzes relevant physical parameters characterizing the
distribution and kinetic properties of shale oil in nanopores. The physical
parameters analyzed include interaction energy, density distribution, radial
distribution function, mean-square displacement, and diffusion coefficient. This
text describes how molecular dynamics simulation explains the mechanism
of oil driving in CO2 injection technology and the factors that influence it.
It also summarizes the advantages and disadvantages of molecular dynamics
simulation in CO2 injection for enhanced recovery of shale oil. Furthermore,
it presents the development trend of molecular dynamics simulation in shale
reservoirs. The aim is to provide theoretical support for the development of
unconventional oil and gas.

KEYWORDS

shale oil, molecular dynamics simulations, CO2 flooding, flow characteristics,
microscopic mechanism, enhanced recovery

1 Introduction

Shale reservoirs differ from conventional sandstone reservoirs in several ways. They
have smaller pore throats, lower permeability, higher mud content, and micro- and nano-
pore channels. These channels typically have diameters less than 10 nm, and some even
have pores less than 2 nm in organic matter. As a result, the seepage mechanism in shale
reservoirs is complex and does not conform toDarcy’s law of seepage (Ross andMarc Bustin,
2009; Wang, 2014; Yang et al., 2015; Perez and Devegowda, 2019; Yang et al., 2019;
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Yang et al., 2020a). And the porewall composition is complex, which
has a great influence on both shale oil endowment and flow in
the pore space. Shale is characterized by high brittleness, non-
homogeneity, high clay mineral content, and difficulty in fracturing
(Zou et al., 2013; Su et al., 2022). At the present stage, horizontal
well fracturing technology and multi-well platform industrialized
production and other technologies are generally used to modify
the reservoir and improve the reservoir permeability, but still can
not achieve the desired oil and gas recovery rate. Later, water
flooding, chemical flooding, gas flooding, gas huff and puff and
other enhanced oil recovery development technologies have been
developed successively, but there are different degrees of problems
(Feng et al., 2020; Gaddipati et al., 2020). Water drive will produce
serious water-sensitive reaction, low water wave efficiency, capillary
phenomenon is serious, the development is more difficult; for
chemical drivewithwater drive, there is the sameproblemof difficult
to inject, and serious pollution to the environment, the use of high
cost, is not suitable for large-scale production. In comparison, gas
injection to improve recovery is a more environmentally friendly
and efficient development method.

In the selection of displacement media, experimental studies
and field development reports have proved that CO2 injection
can effectively improve oil recovery and achieve CO2 storage
(Chen et al., 2010; Gao et al., 2010; Liu et al., 2020). CO2 is dissolved
in the crude oil, which leads to the expansion of the crude oil
volume, thus reducing the viscosity of the crude oil, so that the
crude oil mobility is improved (Mondal and De, 2015). According
to whether the displacement pressure is higher than the minimum
miscible pressure (MMP), gas flooding is divided into immiscible
flooding, near miscible flooding and miscible flooding (Li et al.,
2020). Compared with nitrogen and methane, CO2 has a lower
minimum miscible pressure (Yu et al., 2020a).

This paper explores methods for studying the flow behavior of
fluids in nanopores and summarizes recent advances in molecular
dynamics simulations for shale oil flow as well as enhanced recovery.
In recent years,molecular dynamics simulationhas beenwidely used
in the study of shale oil flow characteristics as well as enhanced
recovery, which can not only make up for the shortcomings of
physical experiments in micro and nanoscale studies and reduce
the cost, but also intuitively observe the kinetic behaviors and
microscopicmechanisms of the interactions between different fluids
in the confined space.

2 Methods for studying fluid flow
behavior in micro- and nanopores

Currently, the study of fluid states in micro- and nanopores
is primarily divided into experimental research and numerical
simulations (Chen et al., 2018). The microfluidic method is
currently the most commonly used experimental technique for
studying the flow behavior of microscale fluids. This method has
been used to investigate the diffusion of macromolecular tracers
and the phase transition behavior of light components in nano-slits
(Zhong et al., 2017; Zhong et al., 2018). It has also been used to
observe the flow behavior of single-phase water and gas-water two-
phase flow in 100 nmchannels, including different flow regimes such
as laminar flow and annular flow (Wu et al., 2013). Additionally, it

has been utilized to study the mechanism of enhanced recovery in
shale reservoirs (Nguyen et al., 2018). Nuclear magnetic resonance
(NMR) technology has been widely used in studies on enhanced
shale oil recovery. The technology categorizes shale oil into movable
and immovable oil and investigates the effects of gas drive time
and maintenance pressure on drive efficiency (Zhou et al., 2019;
Zhu et al., 2020). The lattice Boltzmann method (LBM) enables
simulation of fluid flow within porous media and detection of the
interactions of microscopic fluid particles to obtain macroscopic
properties of the study object (Shan and Doolen, 1995; Zhang and
Tian, 2008). Mahabadian et al. (Mahabadian and Jamialahmadi,
2012) used LBM to study mixed-phase flow in two-dimensional
pores and fractures, and the simulation results agreed well with the
microchannel experiments of Ahdari et al. (Ajdari et al., 2006). The
available LBM simulations predominantly study single-phase flow
and non-mixed-phase drives, which are in good agreement with the
experimental results.

3 Advances in molecular dynamics
modeling in shale oils

3.1 Molecular dynamics simulation

3.1.1 Fundamentals of molecular dynamics
simulations

Themolecular dynamics simulationmethod is based on physical
principles such as Newtonian mechanics and quantum mechanics,
and simulates the kinetic behavior of molecules under given
conditions by calculating the interaction forces between molecules
and the trajectories of molecular motion (Alder and Wainwright,
1957). In molecular dynamics simulations, matter is viewed as basic
units composed of atoms, and the kinetic properties of matter are
explored by simulating the changes in these basic units over time.
Molecular dynamics simulations play an important role in the fields
ofmaterials, physics, chemistry, biology, and the environment. In the
molecular dynamics simulation study of the kinetic characteristics of
shale oil, generally with the help of software for modeling and data
analysis, now the commonly used software are LAMMPS, Materials
Studio, GROMACS, VASP and so on.

In molecular dynamics simulations of fluids within nanopores,
most studies focus on fugacity, diffusion, and transport. Short-range
molecular interactions are typically described using the Lennard-
Jones potential, while long-range electrostatic forces are often
calculated using the Coulomb potential or the PPPM method. The
entire system is subject to periodic boundary conditions, and cutoff
distances are used to eliminate the influence of periodic atoms on
the system. The cutoff distance is usually not greater than half of the
simulation box. The entire system is maintained electrically neutral.
The temperature and pressure of the system are regulated by a Nose-
Hoover thermostat and a Parrinello-Rahman pressure regulator.The
specific simulation process is shown in Figure 1.

3.1.2 Molecular composition and force field
description of shale

As shown in Figure 2, themineral composition of shale reservoir
is complex and has strong heterogeneity. It not only contains
abundant organic matter, but also a large number of inorganic
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FIGURE 1
Specific process for molecular dynamics simulation studies.

minerals, including quartz, feldspar, calcite, dolomite and some clay
minerals (Clarkson et al., 2013). The organic fraction accounts for
5%of the total shale fraction, and the organicmatter pore seams have
very high porosity and specific surface area, which is an important
part of the reservoir space, while the inorganic fractions with the
highest percentage in the shale reservoir are mainly quartz and
clay minerals.

In molecular dynamics simulation studies related to shale oil, it
is crucial to study kerogen as it is the primary source of shale oil.
Kerogen is chemically and physically heterogeneous (Rexer et al.,
2014; Yang et al., 2021), and its physicochemical properties depend
on its genesis and depositional environment (Sui and Yao, 2016).
According to the H/C versus O/C diagrams, kerogen is classified
into three types: I, II, and III (Hutton et al., 1994). Type I kerogen
typically has anH/C atomic ratio greater than 1.5 and anO/C atomic
ratio less than 0.1. It is primarily derived from algal material lipids.
Type II kerogen typically has an H/C atomic ratio ranging from
1.0 to 1.3, while the O/C atomic ratio is usually around 0.15. This
type of kerogen can produce both oil and gas. In contrast, Type
III kerogens are typically only suitable for shale gas production.
The pores in the kerogen matrix are classified as micropores (pore
size <2 nm) and mesopores (2 nm < pore size <50 nm). A small
percentage of the micropores are isolated, while the mesopores are
connected in all directions within thematrix (Perez andDevegowda,
2019). As the organic matter fractions of shale samples differ in each
region, the elemental ratios and functional groups of the kerogen
models in molecular dynamics simulations also vary. Ungerer et al.
(Ungerer et al., 2015) usedmolecular dynamics simulations to study
a representative set of kerogen, based on previous elemental and
functional group analyses. The simulated density results were in
good agreement with experimental results and showed reasonable
thermodynamic and bulk properties. This kerogen model has since
been applied to the adsorption and diffusion of fluids in kerogen, as
well as kerogen swelling studies (Atmani et al., 2017; Pathak et al.,
2017; Pang et al., 2019; Takbiri-Borujeni et al., 2019). Li et al. (Li

and Sun, 2022) and Firoozabadi et al. (Tesson and Firoozabadi,
2018; Tesson and Firoozabadi, 2019) have shown that the flexible
nature of kerogen impacts the competing adsorption of fluids in the
pore space.

Existing molecular dynamics simulation studies usually use
single mineral crystals to compose the rock surface in order to
simplify the model and shorten the computation time, such as using
graphene or carbon nanotubes instead of complex organic reservoir
structures (Wang et al., 2015a; Wang et al., 2015b), and simple
quartz pore walls instead of actual complex hydrophilic nanopore
walls. Figure 3 lists some of the common modeled structures of
organic and inorganic shale reservoirs.

Force field in molecular dynamics simulation is a mathematical
model used to describe the intermolecular interactions and
is an important concept in molecular dynamics simulation
(Ul Samad et al., 2022). The choice of force field is related to the
success of molecular dynamics simulation and the reliability of the
simulated results, and different force fields have different scope of
application as well as defects. Fluid molecules in nanopores receive
different kinds of interaction forces, among which the short-range
van der Waals force obtainable by the Lennard-Jones (LJ) 12-6
potential and the long-range electrostatic force obtainable by the
Coulombpotential are themost common, and the potential function
of the combination of the two can be expressed as (Lange et al., 2016;
Hong et al., 2022):

u(rij) = 4εij|(
σij
rij
)

12
−[(

σij
rij
)

6
]| +

qiqj
4πε0rij

(1)

where ε is the well depth, kcal/mol; σ is the collision diameter,
Å; q is the charge of some atoms used to calculate the Coulomb
interaction; rij is the distance between particles i and j, Å; ε0 is the
dielectric constant.

Table 1 shows some common force fields and their range of
application. CVFF (consistent valence force field) can bewell applied
to the simulation of organic molecules, the disadvantage is that
its formula is extremely complicated. PCFF (polymer consistent
force field) can also calculate the properties of organic matter,
such as polymers and kerogen, etc. COMPASS (condensed-phase
optimized molecular potential for atomic simulation studies force
field) is the second generation of consistent force fieldwith improved
parameters based on PCFF. COMPASS shows better predictions
compared to other force fields (Moradi et al., 2023). Chemical
reactions are often involved in simulation studies for kerogen,
but none of the above mentioned force fields can describe the
chemical reactions. Van Duin et al. developed ReaxFF (Reactive
force field) in order to enable molecular dynamics simulations
of large-scale reactive chemical systems, which can describe the
stability and geometry of conjugated, non-conjugated, and free
radical-containing compounds, and can be used to characterize
the dissociation and formation of compounds in hydrocarbons
(Van Duin et al., 2001). In the flow characterization of shale oil
and in the drive-off studies, the commonly used force fields for
hydrocarbons areOPLS, and forCO2 are EPM2, TraPPE, andZhang.
If the transport properties of pure CO2 are studied, Zhang is the
force field with the best overall performance. TraPPE improves the
parameters based on Zhang. EPM2 improves on the rigid EPM force
field, and the EPM force field calculates a rigid EPM force field that
has the best overall performance. Improvements were made to the
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FIGURE 2
Comparison of mineralogical composition of the shale samples based on XRD analysis (Clarkson et al., 2013).

FIGURE 3
Modeled structures of common organic and inorganic shale reservoirs (from left to right and top to bottom, graphene, quartz (Yang et al., 2017),
kerogen (Yang et al., 2020b), montmorillonite, kaolinite, illite (Cao et al., 2021).

EPM force field to calculate a slightly higher critical value compared
to the experimental value. Jonathan introduced a flexible bond angle
energy, which can more accurately predict the coexistence curves of
the gas-liquid two-phase.

3.1.3 Calculation of relevant physical parameters
Molecular dynamics simulation can visualize the distribution

characteristics and kinetic properties of shale oil in the reservoir,
and the main physical characterization parameters are interaction
energy, density distribution, radial distribution function, mean

square displacement, diffusion coefficient and so on. The following
is a detailed introduction and example application of each physical
characterization parameter.

3.1.3.1 Interaction energy
For pores with different mineral properties and different

wettability, there are differences in the interaction force between the
fluid and the wall (Thomas et al., 2010). The ability of pore walls to
adsorb fluid is characterized in terms of interaction energy, which is
given by (Xu et al., 2011; Zhong et al., 2013):

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1401947
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Huang et al. 10.3389/feart.2024.1401947

TABLE 1 Common force fields and their applicability.

No. Force field Scope of application

1 CVFF (Chakraborty et al., 2015) For organic molecules, protein simulation

2 OPLS (Sonibare et al., 2020) Suitable for liquid systems such as peptides, proteins, nucleic acids, organic
solventsetc.

3 PCFF (Sun, 1995) Suitable for organic matter, including polymers and kerogenetc.

4 COMPASS (Kondratyuk and Pisarev, 2019) Suitable for common organic and inorganic small molecules and
macromolecules, but also for the simulation of metals, metal oxides and
metal halides

5 SPCE (Vassetti et al., 2019) Suitable for pure water systems

6 AMBER (Piana et al., 2020) Suitable for protein and nucleic acid systems, polysaccharides

7 GAFF (Wang et al., 2004) Pervasive organic small molecule force field with the same functional form
as the AMBER force field, fully compatible with the AMBER force field

8 CLAYFF (Tararushkin et al., 2022) Peptide nucleic acids, liquid systems of organic solvents

Einteraction = Etotal − (Esurface +Efluid ) (2)

Where Einteraction is the interaction energy, kJ/mol; Etotal is the energy
of the wall and crude oil (CO2) system, kJ/mol; Esurface is the
energy of the wall system, kJ/mol; Efluid is the energy of the fluid
system, kJ/mol.

Figure 4 shows the cohesive energy between crude oil molecules
and the interaction energy between crude oil and pores in pores
with different mineral properties (Zhang and Guo, 2021). It can
be observed that the cohesive energy of each system gradually
weakened during the process of crude oil being compressed into the
pores, so the cohesive energy is not the main factor preventing the
flow of crude oil in the nanopores, and the initial cohesive energy
of calcite pores is the lowest (Figure 4A), which is affected by the
interaction between crude oil and pore walls, and the interaction
energy between crude oil and calcite is the strongest at the beginning
of the simulation (Figure 4B), The stronger attraction disrupts the
adhesion between crude oil molecules. The interaction between
crude oil and the wall surface increases with simulation time, and
the final order of crude oil-pore interaction energies for different
systems is kaolinite (0 0–1) > calcite > kaolinite (0 0 1) > quartz
(Figure 4B).

3.1.3.2 Density distribution
The density distribution is one of the most important properties

in the resultant information from molecular dynamics simulations.
It is difficult to provide interfacial densities on the nanoscale
experimentally, and molecular dynamics simulations can fill this
gap. The density distribution in molecular dynamics simulations
is usually distributed by dividing a specified area, and the average
density of crude oil molecules in the nth cell from time step JN to JM
along the z-direction, which divides the entire shale pore space into
multiple cells of equal volume, is (Li et al., 2010):

ρn =
1

AΔz(JM − JN + 1)

JM
∑
j=JN

 
N

∑
i=1
 Hn(zi,j) (3)

where z is the normal direction of flow; J is the time step; zi is the
coordinate of the midpoint of the nth cell; and A is the area of the
XY surface.

The component of shale oil is complex, containing a
large number of alkanes, aromatic hydrocarbons, and various
compounds, among which the content of aromatic hydrocarbons
is larger than that of conventional oil and gas reservoirs (Hunt and
Jamieso, 1956; Hunt, 1961). In molecular dynamics simulations,
shale oil is usually replaced by a single component, such as
liquid alkanes such as n-pentane or n-octane. The hydrocarbon
molecules are not uniformly distributed in the nanopores, forming
multiple adsorption layers, which are characterized by periodic
distribution and symmetry at the interface of the pore center
(Figure 5) (Chilukoti et al., 2014; Wang et al., 2015b; Le et al., 2015;
Zhang et al., 2022).While the increase in pressure gradient increases
the overall fluid flow rate within the pores, which enhances the
mutual collision between hydrocarbon molecules, some adsorbed
layer molecules are desorbed down from the pore wall, resulting in
a decrease in the peak density of the adsorbed layer, and the increase
in the number of hydrocarbon molecules in the bulk phase further
strengthens the fluid flow ability.

3.1.3.3 Radial distribution function
The radial distribution function (RDF) can be used to

characterize the spatial distribution of oil and gas molecules in the
model, describing how the density varies with distance from the
central particle, with the value of the ratio of the local density to the
overall density. The RDF is defined by the following equation:

g(r) = dN
ρ4πr2dr

(4)

Where dN is the number ofmolecules in the regionwith distance
r→ r+ dr from the center, ρ is the density of the system. The radial
distribution function g(r) can be interpreted as the ratio of the
local density to the global density of the system, which reflects the
variation of particle density with distance. The density of the region
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FIGURE 4
Interaction energy changes during crude oil migration: (A) cohesive energy during crude oil migration; (B) interaction energy between crude oil and
the wall (Zhang and Guo, 2021).

FIGURE 5
Density distribution curve of methane in graphite slit (Zhang et al.,
2022).

near the referencemolecule, that is, the regionwith a small r value, is
different from the average density of the system, and the value of the
radial distribution function in the region with a large r value should
be close to 1.

The position of the RDF peak is very important in molecular
dynamics simulation studies, which can reflect many problems. The
peak of RDF is less than or equal to 3.5 Å, which indicates that
there are chemical or hydrogen bonding interactions between the
other atoms and the reference atoms; if the peak is greater than
3.5 Å, it indicates that van der Waals and electrostatic forces play a
dominant role in the system (Chen et al., 2021). Figure 6 shows the
RDF distributions of dodecane-dodecane and dodecane-CO2 RDF
distributions, revealing their changes during the separation process
(Fang et al., 2017). During the degreasing process the dodecanes
move away from each other and dissolve in CO2. The shortest
time for the system to reach equilibrium was observed when the
temperature was 343 K, indicating that CO2 molecules at this
temperature are more effective in swelling the oil film. From the
RDF distributions at 4,000 ps in Figures 6A–C, it can be seen that
the RDF peaks at 303 K and 383 K are significantly higher than those

at 343 K. This implies that the average distances between dodecane
molecules are smaller than those at 343 K at 303 K and 383 K. The
main reason for this is that the dodecanemolecules that are adsorbed
are compactly structured at 383 K, whereas the dodecane molecules
are entangled with each other at 303 K to form dodecane clusters,
and these aggregated dodecane molecules have compact structures
and small average distances.

3.1.3.4 Mean square displacement, diffusion coefficient
Both themean square displacement and the diffusion coefficient

are capable of reflecting the state of motion of the particles in the
system and characterizing the diffusion capacity of the molecules
in the system. The defining equation for MSD is derived from
Einstein’s equation (Cao et al., 2003; Kumar et al., 2005; Han et al.,
2008; Chen et al., 2015):

MSD = R(t) =< | ⃗r(t) − ⃗r(0)|2 > (5)

Where ⃗r(t) and ⃗r(0) are the position vectors of the particles at
the moment of t and the initial moment, respectively. According
to the statistical principle, when there are enough particles and the
simulation time is long enough, any instant of the system can be
treated as a time zero, and the computed averages should be the
same. Let the step time interval be δt.Themean square displacement
is calculated as follows:

R(δt) = 1
N

N

∑
i=1
 
| ⃗ri(2) − ⃗ri(1)|

2 +⋯+ | ⃗ri(n/2+ 1) − ⃗ri(n/2)|
2

n/2
(6)

R(2δt) = 1
N

N

∑
i=1
 
| ⃗ri(3) − ⃗ri(1)|

2 +⋯+ | ⃗ri(n/2+ 2) − ⃗ri(n/2)|
2

n/2
(7)

R(nδt/2) = 1
N

N

∑
i=1
 
| ⃗ri(n/2+ 1) − ⃗ri(1)|

2 +⋯+ | ⃗ri(n) − ⃗ri(n/2)|
2

n/2
(8)

where N is the number of system particles and n is the number of
simulation steps.

When the system is a liquid, R(t) increases exponentially for
small values of t. For large values of t, R(t) is approximately linear.
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FIGURE 6
RDF profiles of C (dodec)-C (dodec) for (A) 303 K, (B) 343 K and (C) 383 K, C (dodec)-C(CO2) for (D) 303 K, (E) 343 K and (F) 383 K (Fang et al., 2017).

According to Einstein’s law of diffusion, there is

lim
t→∞
  < | ⃗r(t) − ⃗r(0)|2 ≥ 6Dt (9)

where D is the diffusion constant. Thus when the time is long
enough, the slope of the MSD versus time curve is 6D.

The mean square displacement and diffusion coefficient reflect
the intensity of the movement of hydrocarbon molecules on the
pore surface. The mineral type has a significant effect on the fluid
movement behavior in the pore space, as shown in Figure 7A,
the diffusion coefficient of n-octane in clay minerals has a value
of 10–9 m2/s, which verifies the results of molecular dynamics
simulation done by Wang et al. (Wang H. et al., 2016). For the same
pore size, the diffusion coefficient of n-octane in the clay mineral
pores is smaller than that in the quartz pores, indicating that the
interaction between n-octane and the clay mineral is stronger,
which restricts the diffusion motion of n-octane. The diffusion
coefficient of n-octane in graphene slits is much larger than that
of clay minerals and quartz surfaces, which contradicts the strong
interaction between alkanes and organic surfaces, and based on
previous studies, the main reason is that the graphene surfaces are
very smooth, which allows hydrocarbon molecules to have a high
flow rate (Skoulidas et al., 2002). The diffusion ability of different oil
components also varies, as shown in Figure 7B, the longer the chain
length, the greater the intermolecular interaction and the weaker
the diffusion ability. The diffusion coefficients of alkanes increase
with increasing temperature, and the diffusion coefficients of n-
hexane and n-octane rise faster than those of decane and dodecane,
indicating that the temperature has a greater effect on the diffusion
ability of short-chain alkanes.

3.2 Application of molecular dynamics
simulation to shale oil flow
characterization and CO2 gas injection
development

3.2.1 Molecular dynamics simulation of shale oil
flow characteristics

The study utilized the nonequilibrium molecular dynamics
approach to analyze fluid dynamics behavior and evaluate the
relevance of this approach in describing flow under pressure
gradient conditions by a continuous hydrodynamic model
(Boţan et al., 2011; Zhang, 2016). Inorganic nanoporous materials,
such as calcite, quartz, and clay, are commonly used in the study
of fluid motion behavior (Zhang and Guo, 2021; Xu et al., 2022).
Organic matter materials, such as graphene, carbon nanotubes,
and kerogen, are also utilized. The kerogen matrix is known for its
flexibility, which accurately describes fluid behavior in the kerogen
cracks. The simulation may include various pore morphologies,
such as slits, twisted channels, and circular nanopores (Perez and
Devegowda, 2020; Dong et al., 2022; Liu et al., 2022; Xu et al., 2023).
It is important to note that the choice of morphology depends on
the specific needs of the simulation (Zhang et al., 2020).

The concept of nanofluid was first proposed by Choi and
Eastman in 1995, and the fluid transportation properties in
nanopores are different from those in conventional pores (Choi
and Eastman, 1995). There are many microscale effects in micro
and nano scale fluids, such as low Reynolds number effect,
molecular force effect, double-layer electric effect, and interfacial
slip phenomenon, etc., among which interfacial slip phenomenon
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FIGURE 7
(A) Diffusion coefficients of n-octane in slits composed of different mineral fractions; (B) Diffusion coefficients of various alkanes in shale (Zhang et al.,
2019).

has a great influence on flow prediction. The existence of these
phenomena makes the flow characteristics of nanoscale fluids in
micro and nanopores no longer conform to the Navier-Stokes (N-
S) equations. Molecular dynamics simulations are widely used to
study fluid flow behavior in individual shale nanopores. Wang
et al. (Wang et al., 2016b; Wang et al., 2016c; Wang et al., 2016d)
investigated the flow of n-octane in quartz, montmorillonite, calcite,
and graphene nanopores and found that organic surfaces are
more attractive to hydrocarbon molecules, resulting in a stronger
tendency for hydrocarbon molecules to adsorb on the organic
surfaces, which causes the organic pore fluid Velocity reduction.
Molecular dynamics studies show that the velocity distribution of
hydrocarbon molecules in the graphene slits is not the traditional
hydrodynamic parabolic distribution, but presents a plug flow,
which indicates that the fluid is very fast on the graphene surface,
mainly due to the fact that the surface of graphene is very smooth,
which results in an extremely strong slip effect. The slip length is
defined as the distance between the slip boundary and the position
where the extrapolated velocity is zero (Figure 8) (Neto et al.,
2005; Kannam et al., 2011). If the boundary slip phenomenon
and viscosity correction are ignored, the estimated total flow will
produce a great error (Majumder et al., 2005; Holt et al., 2006).
Meanwhile, Wang et al. (Wang et al., 2016b) also found that the
well-known Klinkenberg effect fails to characterize the transport
properties of light hydrocarbons in calcite nanoporous materials,
and the transport rate is slower than that predicted by the Hagen-
Poiseuille equation, which contradicts with the piston flow between
the graphene sheets and the slight enhancement in the quartz slit
(Figure 9), which is mainly due to the fact that calcite has a strong
attraction, the crude oil near the wall will form a solid-like layer, and
the pore surface is relatively rough, the friction during fluid flow is
high, resulting in the phenomenon of no slip or even negative slip,
which indicates that the roughness of the wall affects the velocity of
hydrocarbon molecules, and Yu et al. (Yu et al., 2020b) verified this
conclusion in their subsequent study.

Numerous molecular dynamics simulation studies conducted
by previous authors have summarized that the fluid viscosity

FIGURE 8
Slip phenomenon of fluid in nanopores (b is the slip length)
(Neto et al., 2005).

under extreme constraints has a large difference relative to the
bulk-phase fluid, ranging from an increase of four orders of
magnitude to a decrease of three orders of magnitude (Granick,
1991; Chen et al., 2008); the pore walls produce slip phenomena
as well as adhesion effects (Feng et al., 2018), and these changes
cause the fluid to no longer flow according to the flow velocity
predicted by the conventional Poiseuille equation (Jiang et al., 2017).
Wu et al. (Wu et al., 2017; Wu et al., 2019) proposed a model for
pressurized water flow based on the concept of effective slip, the
results of which agreedwithmost of the 53 experiments summarized
as well as molecular dynamics simulation studies, quantitatively
explaining the controversy about the increase or decrease of flow
rate in experiments and molecular dynamics simulations, and later
found that the velocity distributions and the flow rate of n-alkanes
in the nanoslit were affected by the wall surface of the nanopore
interfacial resistance of the nearby first adsorption layer and the
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FIGURE 9
Comparison of velocity profiles for CH4 transport in graphene, quartz,
and calcite nanopores (Karniadakis et al., 2006; Wang et al., 2016b).

mutual attraction of other n-alkanes in the pores, resulting in a
correction to the Poiseuille equation.

These single-phase and multiphase flow models in the extreme
confined space have laid the foundation for the development of shale
oil, but they also lead to many problems, such as how to judge the
slip boundary, whether the same law exists for single-component
hydrocarbons and multicomponent hydrocarbons and so on, which
are yet to be investigated by more in-depth theoretical studies, so as
to provide the theoretical basis for the shale oil enhancement of the
recovery in the future.

3.2.2 Molecular dynamics simulation of CO2
injection to enhance oil recovery in shale
reservoirs

The process of CO2 drive behavior in shale reservoirs is quite
different from conventional reservoirs (Luo et al., 2015; Rahmani
and Akkutlu, 2015). Nanopores have a great influence on the
distribution of each component in the reservoir, with large physical
changes, and affect the CO2 drive process (Teklu et al., 2014).
Whether CO2 and crude oil can realize miscibility depends on
whether the drive pressure is higher than the minimum miscibility
pressure, and the influencing factors of the minimum miscibility
pressure include the purity of CO2, the temperature, and the crude
oil components and so on. Among them, the reservoir temperature
and crude oil composition have the greatest influence. The lower the
reservoir temperature is, themore light hydrocarbon components in
crude oil are, and the easier it is for CO2 to miscible with crude oil
(Wang et al., 2021).

CO2 exhibits different properties under different temperature
and pressure conditions, which affects the interaction with crude
oil and walls. The bond angle of CO2 at room temperature and
pressure is 180°, and changes in temperature and pressure can
lead to changes in the bond angle, which prevents the centers of
positive and negative charges from overlapping, leading to localized
intermolecular aggregation (Zhu et al., 2009). However, the change
of CO2 bond angle with temperature and pressure has uncertainty,

which also increases the uncertainty of molecular action, which is
characterized by the uneven distribution of density. And the CO2 in
themicro and nanopores has a strong entrance effect, and there is an
obvious pressure difference at the entrance of the pore channel, and
this effect is greatly affected by the temperature and pressure, which
makes the CO2 pile up at the entrance of the pore channel, and it is
difficult to enter the pore channel, as shown in Figure 10, and it has a
great influence on the CO2 flooding process (Kirchofer et al., 2017).

CO2 is in a supercritical state when the temperature and
pressure exceed 31°C and 7.1 MPa, respectively (Riazi et al., 2011).
Supercritical CO2 dissolved in crude oil causes crude oil expansion,
which reduces the viscosity of crude oil, improves the fluidity,
and obtains higher crude oil recovery. As shown in Figure 11,
the molecular dynamics simulation divides the process of CO2
interaction with crude oil into three stages (Liu et al., 2017; Baek
and Yucel Akkutlu, 2019; Wang R. et al., 2022; Guo et al., 2022): (1)
CO2 dissolution and diffusion stage: CO2 enters the pore space,
overcomes the dispersion force between hydrocarbonmolecules and
dissolves into the crude oil, causing the volume of the crude oil
to expand, and some of the crude oil molecules are extracted into
the CO2 molecules, which weakens the interaction between the
crude oil molecules and the pore walls; (2) Competitive adsorption
stage. CO2 molecules continuously extract crude oil molecules and
approach the pore wall, and the interaction with the wall is further
strengthened, and the interaction between CO2 and the pore wall is
stronger than that of crude oil, which can displace the crude oil in the
adsorption layer; (3) CO2 sequestration, oil film push off stage. CO2
will strip the crude oil from the pore wall, gradually occupy the pore
wall, and push the displaced crude oil molecules further away from
the wall, the interaction force between CO2 and the wall is much
larger than that between the crude oil and the wall. In the actual
replacement process, the shale reservoir has complex components,
containing colloid, asphalt and other components unfavorable to the
extraction of crude oil, resulting in a slightly difficult replacement of
CO2 to crude oil.

The interaction between CO2 and shale oil is affected by
various factors such as temperature, CO2 content ratio, pore
structure, etc. Fang et al. (Atmani et al., 2017) investigated the de-
oiling process of CO2 in oil repelling at different temperatures,
and found that there existed two modes of stripping, one is the
overall stripping at low temperatures, and the other one is layer-
by-layer stripping at high temperatures, and the stripping effect
is the best when the temperature of the medium is 343 K. Pu
et al. (Pu et al., 2018) used molecular dynamics simulations to
evaluate the replacement efficiency and molecular orientation of
n-octane in quartz nanoseams at different CO2 injection rates.
After CO2 injection, it was found that the adsorbed n-octane
molecules were driven away from the surface by the injected CO2,
and the orientation of n-octane became more irregular, suggesting
CO2 injection could increase the oil recovery rate and weaken
the interaction between the two. Wang et al. (Wang L. et al., 2022)
investigated the effect of CO2 in oil repelling in wedge-shaped pores.
The oil repelling effect of CO2 in wedge-shaped pores, constructed
single and double pores of the wedge, and found that the wider
entrance and exit of both single and double pores had higher oil
repelling velocity and easier phase mixing, and the exit of the
wedge-shaped pores had a greater effect on CO2 oil repelling than
the entrance.
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FIGURE 10
Entrance effect of CO2 in micro and nanopores (Kirchofer et al., 2017). (A) Pure–Step–LJ–20 and (B) OH–Step–LJ–20.

FIGURE 11
Competitive adsorption process of CO2 and crude oil. (A) Initial model of competitive adsorption of CO2 and crude oil in nanopores (left: CO2, right:
n-octane); (B) Adsorption of crude oil molecules on the pore walls; (C) CO2 dissolved and diffused in crude oil; (D) CO2 molecules displacing crude oil
molecules adsorbed on the pore wall.

Through themolecular dynamics simulationmethod of CO2, we
can clarify the diffusion and mass transfer law of CO2 in the micro
and nanoscale pores of shale reservoirs, and put forward the new
method of shale oil development in a targeted way.

4 Conclusion

The development of shale oil presents significant challenges due
to the complex and non-homogeneous structure of shale reservoirs.
The fluid flow characteristics in these reservoirs differ greatly

from macroscopic dimensions. Compared with experimental-based
research, molecular dynamics simulation technology has a unique
advantage in the field of unconventional oil and gas, using the
powerful computational ability of computers and image display
capabilities, without the restriction of experimental conditions, to
constructmicro andnanopores close to the actual reservoir, simulate
the high temperature and high pressure environment, simulate the
molecular structure and dynamics of the molecular behavior from
the molecular scale, the simulation cost is low, and the results can be
visualized, which can be used to supplement experimental research.
This paper reviews the methods of fluid flow behavior in confined
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nanopores, the basic principles of molecular dynamics simulation,
and the relevant physical parameters. On this basis, the application
of molecular dynamics simulation in shale oil flow characterization
and gas injection is described. Conclusions and outlook are given:

(1) Experimental studies of fluid flow behavior in nanopores
require high instrument accuracy and long testing time.
Molecular dynamics simulation is widely used in shale
oil research to simulate various unconventional geological
conditions. The choice of force field directly affects the final
simulation results. The state of the fluid in the nanopore can be
analyzed using physical parameters such as interaction energy,
density distribution, radial distribution function, mean square
displacement, and diffusion coefficient.

(2) Ignoring the slippage phenomenon and viscosity correction
can result in a significant error between the estimated total
flow rate and the actual rate in the nanopore fluid. The CO2
oil drive mechanism is primarily controlled by the pressure
gradient and competitive adsorption. CO2 molecules are more
readily adsorbed on the wall than alkane molecules, and the
inlet effect of CO2 in the nanopore makes it challenging for it
to enter the pore space.

(3) Molecular dynamics simulation research has made
considerable progress, but there are obvious shortcomings,
such as molecular dynamics simulation to build the system is
idealized, only for single-factor analysis, the actual geological
conditions are very complex and variable, the need to
fit the physical experimental results and field reports to
ensure that the simulation results of the authenticity and
reliability. Molecular dynamics simulation is mostly applied
to the microscopic scale in shale oil research, which is the
advantage of molecular dynamics simulation, but in the
subsequent research, we should consider how to transfer
the results of molecular dynamics simulation to mesoscopic
or even macroscopic scales to realize cross-scale research.
When applied to oil and gas systems of larger sizes, the
computational efficiency is low, and large-scale calculations
cannot be carried out in a shorter time, and the combination of
molecular dynamics simulation and machine learning should
be considered to improve the computational efficiency.
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