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In the red-bed areas of southwestern China, subgrade uplift deformation
poses a serious safety concern for high-speed trains. However, the subgrade
uplift mechanisms are still not well-defined, and there is a lack of effective
prediction methods for addressing this issue. The objective of this study is
to build prediction model of subgrade uplift using three machine learning
techniques (MLTs): artificial neural network (ANN), random forest (RF), and
support vector machine (SVM). The Chengdu-Chongqing passenger dedicated
line (CCPDL) was selected as the research object, and a total of 200 cuttings
along the CCPDL were randomly divided into two groups: a training set
(70%) and a testing set (30%). The subgrade uplift mechanism was concluded
by conducting the laboratory test, field investigation and mathematical
statistics. Then six subgrade uplift-conditioning factorswere identified, including
subgrade excavation height, subgrade excavation width, dip angle, interbedded
characteristics between sandstone and mudstone, mudstone rheology, and
mudstone swelling. To assess the model performance, various evaluation
metrics were employed, including receiver operating characteristic curve (ROC),
area under the curve (AUC), accuracy, precision, recall, specificity, and F-
1 score. The results demonstrate that the RF model outperforms the other
MLTs in predicting subgrade uplift. Notably, among the six factors considered,
subgrade excavation height was identified as the most influential factor. These
findings provide valuable insights into the prediction of subgrade uplift and
offer guidance for mitigating the risks associated with subgrade uplift during the
construction of high-speed railways.

KEYWORDS

subgrade uplift prediction, high speed railway, red-bed mudstone, artificial neural
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1 Introduction

The smoothness of the track surface in high-speed railways (HSRs) is an essential
assurance for the high-speed operation of trains (Murray et al., 2015). However, in recent
years, HSRs situated in the red-bed areas of Southwest China have encountered significant
uplift deformations ranging from 20 to 60 mm. These deformations present a critical safety
risk to train operations and result in substantial economic losses (Dai et al., 2021). In order to
prevent subgrade uplift deformation and take appropriate measures during the early stages
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of railway construction, it is essential to clarify the subgrade uplift
mechanism and utilize suitable prediction methods.

The subgrade uplift mechanism in railways is typically
determined by the geological environment characteristics in
which they are located. For example, in permafrost regions, the
subgrade deformation is controlled by environmental conditions
(e.g., permafrost environment, natural environment, engineering
environment), and the ice content can be considered as the main
factor affecting the stability of the subgrade (Huang et al., 2019). As
for the HSRs in the swelling rock area, some scholars carried out
the field investigation and laboratory swelling tests to analyze the
subgrade deformationmechanism, and it is found that the content of
the swelling rock and thewater in the foundation are themain causes
of the uplift deformation (Tang et al., 2009; Hendry et al., 2013;
Kong et al., 2018). Moreover, in the soft rock strata, the subgrade
uplift was mainly caused by the long-term creep deformation of
the mudstone in the deep excavation cuttings (Zhong et al., 2020).
However, the subgrade uplift of theHSRs in Southwest China, which
mainly located in the red-bed strata, has just attracted the attention
of scholars in recent years, and the subgrade uplift mechanism in
red-bed strata remains unclear.

Red-bed is a continental clastic stratum deposited under high
temperature and oxidizing environments, mainly formed during the
Jurassic and Cretaceous (Tan et al., 2003; Eren et al., 2014; Jin et al.,
2015). The red-bed mudstone, as a typical soft rock, possesses
swelling (Tang et al., 2009; Jiang et al., 2018; Wang et al., 2021) and
significant rheological properties (Lu et al., 2017; Du et al., 2018;
Wang et al., 2020; Jia et al., 2021).Many scholars (Zhong et al., 2019;
Dai et al., 2021) have analyzed the subgrade upliftmechanism based
on the swelling characteristics of red-bed mudstone. For instance,
Zhong et al. (2019) conducted extensive swelling tests on red-bed
mudstone, revealing its inherent swelling potential. The resultant
swelling deformation, induced by water absorption, poses a threat to
the smoothness of the track surface. Other scholars have examined
the subgrade uplift mechanism from the perspective of the creep
behavior of red-bed mudstone. For example, Yan (2023) considered
the creep of red-bedmudstone as a predictive indicator for subgrade
uplift prediction.Through the collection of information from typical
uplift sections, it was verified that the creep characteristic of
mudstone is also a key factor affecting subgrade uplift. In fact, under
the action of water and unloading stress, the basement mudstone
will produce long-term uplift deformation in the deep cuttings
of a railway (Zhong et al., 2020). Moreover, besides the inherent
deformation characteristics of mudstone (swelling and rheology),
the cutting excavation is a key predisposing factor causingmudstone
deformation, because the stress and humidity field around basement
mudstone could be changed after cutting excavation. Although the
scholars have analyzed the subgrade uplift problem based on the
different influencing factors, no unified understanding has been
formed so far.

Although there have been achievements in the subgrade uplift
mechanism, the research on subgrade uplift prediction is still in
the exploratory stage. Dai et al. (2021) have predicted the subgrade
deformation using themonitoring data of the subgrade deformation,
but the practical applicability of the prediction results is limited,
because the subgrade uplift has already been produced. Jiang et al.
(2018) used a simple method to predict the subgrade uplift
based on the one-dimensional swelling test results. However, the

consideration of only a single factor in the prediction process makes
the results less convincing, and the prediction model may not be
applicable to other similar engineering scenarios. In fact, subgrade
uplift has multiple and interconnected causes which are usually of
complex parameterization. To address this type of issue, machine
learning techniques (MLTs) is an applicable method of predicting
a subject with multiple factors. MLTs have been widely used in the
geology yield, such as spatial predictionmodels for shallow landslide
hazards (Bui et al., 2016), accurate classification of hyperspectral
images (Tarabalka et al., 2010), and landslide susceptibility mapping
(Kavzoglu et al., 2014), but few scholars predict the subgrade uplift
of HSR using MLTs.

In this research, the Chengdu-Chongqing passenger dedicated
line (CCPDL) was selected as the object, and the main objectives
are as follows: (1) clarifying the subgrade uplift mechanism of HSR
in red-bed areas and selecting the subgrade uplift conditioning-
factors for prediction; (2) building the subgrade uplift prediction
models and assessing the performance of the prediction models; (3)
evaluating the variable importance of the conditioning-factors. In
addition, the output of this study will be useful to decision makers
and engineers in railway design institute to identify the subgrade
uplift-prone areas.

2 Material and methods

2.1 Study area

Chengdu-Chongqing Passenger Dedicated Line (CCPDL),
which is designed with a speed of 350 km, was completed in March
2010. In April 2015, it was found that the elevation of the track was
about 20 mm higher than the design elevation at Neijiang North
Railway Station. The 20 mm over-limit uplift deformation forced
the train to run at a speed of 60–80 km/h, causing lots of economic
losses.

The study area is located in Sichuan and Chongqing Provinces,
China (Figure 1A), and 95% of the CCPDL were built in the
red-bed areas, which are mainly composed of the Jurassic and
Cretaceous strata (Figure 1B). The main lithologies consist of grey
hard sandstone (Figure 2A) and purple soft mudstone (Figure 2B),
and they commonly occur as interbedded structures (Figure 2C).

2.2 Methodology

There are four main steps of subgrade uplift prediction in this
research (Figure 3):

Step1. Determination of the subgrade uplift-conditioning factors;
Step2. Preparing of the dataset, analysis of subgrade uplift-

conditioning factors;
Step3. Application of the three MLTs to build subgrade uplift

prediction models;
Step4. Performance evaluation of the three prediction models.

In this research, the field investigations comprise twomain parts:
the collection of field survey data from other scholars (Zhong et al.,
2020; Dai et al., 2021); our investigations into the engineering
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FIGURE 1
(A) Distribution of Sichuan red-bed and several HSRs experiencing subgrade uplift (B) Distribution map of the study area.

FIGURE 2
(A) Rock sample of grey sandstone (B) Rock sample of purple mudstone (C) Interbedded strata composed of sandstone and mudstone.

geological conditions along the CCPDL, including lithology, dip
angles, and strata structure of both uplift and non-uplift sections
(More details are described in Sections 2.3.3, 2.3.4). The laboratory
tests primarily focus on the swelling and creep characteristics of
red bed mudstone. They mainly include X-ray diffraction (XRD)
tests (the results were showed in Section 2.3.6) and uniaxial
compression creep tests (Zhong et al., 2020), which were conducted
to verify the swelling and creep properties of red bed mudstone,
respectively.

All the steps are further explained in the following sections
(Sections 2.3–2.8).

2.3 Subgrade uplift-conditioning factors

In order to elucidate the mechanism of subgrade uplift in
red bed areas, scholars have conducted many physical-mechanical
experiments on red-bed mudstone and analyzed field monitoring
data (Zhong et al., 2019; Dai et al., 2023; Yan et al., 2023).The results
indicate that the swelling and creep deformations of red bed
mudstone are key factors leading to subgrade uplift. Moreover,
the engineering experience indicates that typical uplift sections
of high-speed railway in red bed mudstone areas exhibit several
characteristics: the higher content of mudstone, smaller dip angles,
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FIGURE 3
Flow chart of subgrade uplift prediction.

and deeper excavation height. Based on the aforementioned
conclusions from previous studies and engineering experience,
three main causes of subgrade uplift of HSR in red-bed areas,
including cutting excavation, strata and mudstone (Figure 4) were
determined. Based on these three causes, six subgrade uplift-
conditioning factors were determined through laboratory tests,
field investigations, and mathematical statistics. These factors
include: cutting excavation width, cutting excavation height,
dip angle, interbedded characteristics between sandstone and
mudstone, mudstone rheological, and mudstone swelling. These
six subgrade uplift-conditioning factors are further explained in
Sections 2.3.1–2.3.6.

2.3.1 Cutting excavation height
The excavation of cuttings is widely recognized as a primary

triggering factor for subgrade uplift in red-bed areas of HSRs.
The cutting excavation height (CEH), represented by the variable
'h' (Figure 5A), controls the unloading stress in the underlying
bedrock. Statistical analysis of the relationship between subgrade
uplift deformation and CEH (Figure 5B) has led to the conclusion
that there is a positive correlation between subgrade uplift
deformation and CEH. Therefore, it is reasonable to select
CEH as one of the subgrade uplift-conditioning factors. The
data for CEH is obtained from the cutting design drawings of
the CCPDL.

2.3.2 Cutting excavation width
The cutting excavation width (CEW), represented by the

variable 'l' (Figure 5A), is another important factor that controls the
unloading stress in the underlying bedrock. Based on engineering
experience, it has been observed that cuttings with larger excavation
widths are more prone to subgrade uplift. Therefore, the CEW has
been determined as one of the subgrade uplift-conditioning factors
in this study. The data for CEW is obtained from the cutting design
drawings of CCPDL.

2.3.3 Dip angle
The dip angle, represented by the variable 'θ' in Figure 5A, plays

a significant role in subgrade uplift deformation (Chen et al., 2021).
It has been observed that the uplift sections of the CCPDL generally
have smaller dip angles compared to other sections.

2.3.4 Interbedded characteristics between
sandstone and mudstone

In the red-bed formations of Sichuan, China, mudstone and
sandstone often occur as interbedded structures. It is well known
that sandstone exhibits higher strength compared to mudstone
(Zhong et al., 2020), providing significant deformation resistance in
the underlying bedrock. Quantifying the interbedded relationship
between mudstone and sandstone through field investigations can
be challenging. Therefore, this study proposes five categories to

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1403965
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yan et al. 10.3389/feart.2024.1403965

FIGURE 4
The subgrade uplift-conditioning factors.

FIGURE 5
(A) Schematic diagram illustrating cutting excavation and interbedding characteristics in a red-bed area (B) Relationship between the subgrade uplift
deformation and the cutting excavation height.

describe the interbedded characteristics (Figure 5A):mudstonewith
no sandstone, mudstone intercalated with sandstone, mudstone
interbedded with sandstone, sandstone intercalated with mudstone,
sandstone with no mudstone.

2.3.5 Mudstone rheology
The rheology of soft rock is widely recognized as a critical

factor contributing to engineering deformation (Chu et al., 2019).
In the context of red-bed areas, mudstone is commonly categorized
as soft rock, and its rheological behavior is considered an
important factor in subgrade uplift deformation. However, due
to the time-consuming nature of mudstone rheological tests
and the challenges associated with obtaining accurate rheological
parameters, it is not feasible to select rheological parameters as
subgrade uplift-conditioning factors. In sedimentary rocks, there is

a positive correlation between uniaxial compressive strength and
elastic modulus. Therefore, in this study, the uniaxial compressive
strength will be used to characterize the rheological properties
of mudstone.

To account for the spatial variability of soil layers, it is expected
that the uniaxial compressive strength of mudstone samples taken
at different depths within the same location may vary. In order to
minimize errors arising from sample variations when determining
the uniaxial compressive strength of mudstones, five samples were
collected from the boreholes in each uplift section. To ensure the
reliability of the results, any abnormal values were identified and
removed using Grubbs’s Test (Jian et al., 2022). The average value of
the remaining sampleswas thendetermined as the saturated uniaxial
compressive strength for that specific uplift section. Furthermore,
the selection of these five samples was done with consideration for
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FIGURE 6
XRD results of the red-bed mudstone.

TABLE 1 XRD mineral analysis results of mudstone.

Mineral Illite Quartz Clinochlore Albite Anorthite Hematite

Content/% 46.1 23.2 10.10 9.3 6.10 5.2

weak weathering conditions. Specifically, all samples were chosen
from the depth range of 10–15m, where the borehole survey report
indicated the presence of predominantlyweakweatheredmudstone.

2.3.6 Mudstone swelling
Mudstone swelling is recognized as a significant factor

contributing to subgrade uplift deformation (Zhong et al., 2019).
The extent of mudstone swelling is typically related to the content of
swelling clay minerals present. In this study, mudstone samples
were collected from the Neijiang North Railway Station, and
their mineral composition and content were determined using
XRD analysis. The XRD results of the mudstone are presented in
Figure 6 and Table 1 provides the XRD mineral analysis results.
The analysis reveals that the mudstone contains a significant
amount of hydrophilic clay mineral (illite) with a content of
46.1%. This finding suggests that the red mudstone observed in
CCPDL possesses the necessary material characteristics for swelling
deformation.

Thirteen displacement monitoring points were established at
equal intervals betweenK152+670 andK152+910 along theCCPDL.
The relationship between subgrade uplift deformation and monthly
mean precipitation was investigated, and the findings are presented
in Figure 7. The plot demonstrates that the three deceleration
stages coincided with months of low precipitation. This observation
indicates a positive correlation between subgrade uplift deformation
and precipitation. Hence, it can be inferred that mudstone swelling
plays a significant role in predicting subgrade uplift.

The extent of mudstone swelling is closely related to the
presence of swelling clay minerals, such as illite, kaolinite, and
montmorillonite (Hendry et al., 2013; Jiang et al., 2018; Zhong et al.,

2020). In this study, the subgrade uplift-conditioning factor
“mudstone swelling” is categorized into four types (strong
swelling-1, medium swelling-2, weak swelling-3, non-swelling-
4) based on the classification standard presented in Table 2
(Zhu and Yang, 2009).

2.4 Preparation of training and testing data

A total of 200 sections along the CCPDL were investigated,
comprising 100 uplifted railway sections and 100 unuplifted railway
sections. Among these, 70% (70 uplifted railway sections and 70
unuplifted railway sections) were randomly assigned as training
data, while the remaining 30% (30 uplifted railway sections and
30 unuplifted railway sections) were designated as test data (After
conducting comparative analyses on different train-validation-test
splitmethods, it was found that the 70%–30% splitmethod exhibited
the highest prediction accuracy). The histogram and kernel density
curve (KDE) of the six subgrade uplift-conditioning factors are
presented in Figure 8.

As showed in Figure 8A, the cutting excavation height in
the study area varies between 25 and 45 m, with the subgrade
uplift predominantly observed in sections with excavation heights
ranging from 35 to 45 m. Regarding the cutting excavation width
(Figure 8B), it ranges from 15 to 55 m, with the subgrade uplift
primarily occurring in sections with excavation widths of 35–45 m.
The dip angle (Figure 8C) spans from 0°–13°, and the subgrade
uplift is more prominent in sections with dip angles of 0°–5°.
In terms of the interbedded characteristics between sandstone
and mudstone (Figure 8D), the occurrence of subgrade uplift is
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FIGURE 7
Relationship between subgrade uplift deformation and precipitation.

TABLE 2 Summary of grading criteria for expansive rocks.

Mudstone swelling level Content of hydrophilic
mineral components/%

Non <10

weak 10–30

Medium 30–60

Strong >60

more likely in strata with a higher proportion of mudstone. The
uniaxial compressive strength of mudstone (Figure 8E) ranges from
2.5 to 10 MPa, with the subgrade uplift being more pronounced
in sections with mudstone strengths of 2.5–5 MPa. Furthermore,
the mudstone in the study area is predominantly classified as
weak-swelling and non-swelling, with the sections containing
non-swelling mudstone tending to exhibit greater stability
(Figure 8F).

2.5 Multicollinearity analysis of subgrade
uplift-conditioning factors

In order to assess the presence of multicollinearity among
the predictor variables, commonly used metrics such as tolerance
(TOL) and variance inflation factor (VIF) were employed. Tolerance
values greater than 0.2 or VIF values less than five indicate no
significant multicollinearity issues between variables (Chen and
Huang, 2019; Yi et al., 2020). By examining these metrics, we can
evaluate the independence and stability of the predictor variables in
the analysis.

The results of the multicollinearity analysis for the subgrade
uplift-conditioning factors are presented in Table 3. The

analysis revealed that the minimum tolerance (TOL) value
observed was 0.23, while the maximum variance inflation
factor (VIF) value was 4.31. These findings suggest that there
is no significant multicollinearity issue among the independent
factors examined. The values of TOL and VIF indicate that
the predictor variables are sufficiently independent and do not
suffer from excessive correlation, ensuring the reliability of
the analysis.

2.6 Importance analysis of subgrade
uplift-conditioning factors

To gain a deeper understanding of the relationship between
subgrade uplift and the uplift-conditioning factors, the learning
vector quantization (LVQ) algorithm was employed to assess
the influence of each uplift-conditioning factor on subgrade
uplift. LVQ is a supervised learning algorithm commonly
used in computer science for statistical classification purposes
(Kohonen and Kohonen, 1995). In recent years, the LVQ technique
has been applied in various fields, including groundwater
potential mapping (Naghibi et al., 2016; Rahmati et al., 2016)
and landslide susceptibility prediction (Pourghasemi et al.,
2018), to quantify the importance of variables. By employing
the LVQ algorithm, this study aims to determine the
significance of each uplift-conditioning factor in predicting
subgrade uplift.

2.7 Application of the machine learning
techniques

2.7.1 Artificial neural networks
Artificial neural networks (ANNs) are widely used in the field

of engineering geology. ANNs consist of interconnected artificial
neurons that have the ability to learn and uncover intricate
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FIGURE 8
The kernel density estimation curves and the histogram, (A) subgrade excavation height, (B) subgrade excavation width, (C) dip angle, (D) interbedded
characteristics between sandstone and mudstone, (E) mudstone rheology, and (F) mudstone swelling.

TABLE 3 The outcomes derived from the VIF statistical tests.

Indexes VIF TOL

Cutting excavation height 2.75 0.36

Cutting excavation width 3.25 0.31

Dip angle 4.31 0.23

Interbedded characteristics between sandstone and mudstone 2.38 0.42

Mudstone rheology 1.46 0.68

Mudstone swelling 2.32 0.43

relationships between input and output variables (Fausett, 1994).
The application of ANNs offers several advantages compared to
other statistical methods. One significant advantage is their ability
to operate independently of the distribution of the variables,
eliminating the need for specific statistical assumptions (Pradhan
and Lee, 2010). This makes ANNs a versatile and powerful tool for

analyzing complex geotechnical and geological data in engineering
geology research.

In this study, the Multi-Layer Perceptron (MLP) trained with
the back-propagation algorithm (BPA) was selected as the analytical
framework (Figure 9). The MLP, which is the most commonly used
neural network methodology, aims to establish a model that can
predict outputs based on new inputs. To train the MLP using BPA,
a set of input and output values was used as examples. The MLP
consists of an input layer, a hidden layer, and an output layer. The
neurons in the hidden and output layers process their inputs by
assigning weights to each input, summing the weighted inputs, and
passing the sum through a nonlinear transfer function to generate
an output. The artificial neural network “learns” by adjusting the
weights between the neurons to minimize the differences between
the predicted outputs and the target outputs. After the training
phase, the neural networkmodel should be capable of predicting the
target value for a given input value.

In addition, the optimal number of neurons in the hidden layer
was determined through a thorough optimization process, as it
has a significant impact on the model’s performance (Kuo et al.,
2004). The implementation of the ANN model in this research was
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FIGURE 9
Architecture of neural network model.

conducted using the Jupyter Notebook application, running on the
Python 3.6.5 environment.

2.7.2 Random forest
Another highly efficient algorithm commonly used for

regression and classification problems is RandomForest (RF), which
is based on the concept of model aggregation and was introduced
by Breiman (2001).

The RF algorithm consists of two main steps. Firstly, multiple
bootstrap samples, also known as training sets, are created, and a
classification rule or tree is constructed for each sample. During this
process, some observations are excluded from the training set and
form a test set called out-of-bag (OOB) samples.TheseOOB samples
are used to evaluatemisclassification error and estimate the expected
predictive accuracy (Pourghasemi et al., 2018).

Compared to other methods such as classification or
multivariate regression, the Random Forest (RF) method provides
several advantages. Firstly, it eliminates the need for assumptions
regarding the distribution of explanatory factors. This flexibility
allows for the inclusion of both categorical and numerical factors
without the need for indicator variables. Secondly, RF has the
capability to capture interactions and nonlinear relationships
between factors, as highlighted by Aertsen et al. (2010). These
characteristics make RF a versatile and powerful tool for data
analysis and prediction in various fields. The implementation of
the RF model in this research was conducted using the Jupyter
Notebook application, running on the Python 3.6.5 environment.

2.7.3 Support vector machine
Vapnik (1999) defines a support vector machine (SVM) as a

generalized linear classifier that employs supervised learning for
binary classification tasks. The decision boundary of an SVM is
determined by the maximum margin hyperplane, which separates
the learning samples. In SVM, the empirical risk is calculated using
the hinge loss function, and regularization terms are incorporated

into the solution system to optimize the structural risk. SVM is
widely recognized for its ability to handle complex classification
problems and provide robust decision boundaries.

In order to achieve accurate predictions, careful selection of
a kernel function is crucial for a support vector machine (SVM).
Among various kernel functions, the Gaussian radial basis function
(RBF) is particularly promising due to its strong localization and
ability to map samples to a higher dimensional space. The RBF
kernel function is widely recognized for its excellent performance in
both large and small sample scenarios, requiring fewer parameters
compared to polynomial kernel functions (Pourghasemi and
Rahmati, 2018). In this study, the RBF kernel function was chosen,
and the SVM model was implemented using the Python 3.6.5
environment.

2.8 Model evaluation

The performance of the model was assessed using a
comprehensive set of metrics, including the receiver operating
characteristic curve (ROC), area under the curve (AUC), accuracy,
precision, recall, specificity, and F-1 score. The ROC and AUC are
well-established measures for evaluating model performance, with
a higher AUC indicating better predictive capabilities (Xi et al.,
2022). Additionally, accuracy, precision, recall, specificity, and F-1
score were calculated as Eqs 1–5:

Accuracy = TP+TN
TP+TN+ FN+ FP

(1)

Precision = TP
TP+ FP

(2)

Recall = TP
TP+ FN

(3)

Specificity = TN
TN+ FP

(4)
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FIGURE 10
Tuning results of (A) learning rate and (B) number of hidden layer nodes.

F1− score = 2×Precision×Recall
Precision+Recall

(5)

3 Results

3.1 Prediction results using ANN model

Parameter tuning plays a crucial role in optimizing the
performance of artificial neural networks. In this study, the learning
rate and the number of hidden layer nodes were identified
as the key parameters that significantly impact the prediction
results. Through preliminary debugging and previous calculation
experience, a comprehensive analysis was conducted to determine
the optimal values for these parameters. Figure 10 illustrates the
evaluation of different learning rates in terms of loss, as well
as the accuracy under different numbers of hidden layer nodes.
The results of this analysis indicate that the optimal learning rate
for the neural network is determined to be 0.24. Furthermore,
it was determined that the optimal number of hidden layer
nodes is 14, based on the accuracy achieved by the network.
By carefully tuning these parameters, the neural network can
achieve improved prediction accuracy and enhance its overall
performance.

The results obtained from the artificial neural network (ANN)
models are presented in Table 4.The performance of themodels was
evaluated using both the training dataset and the validation dataset.
In the training dataset, the ANN model successfully predicted
65 out of 70 subgrade uplift segments accurately, indicating a
high level of prediction accuracy. Similarly, the model accurately
predicted 64 out of 70 segments with no subgrade uplift. These
results demonstrate the effectiveness of the ANN model in
capturing the patterns and relationships in the training dataset.

TABLE 4 Prediction results using ANNmodel.

Parameter Training data Validation data

True positive (TP) 65 25

True negative (TN) 64 23

False positive (FP) 6 7

False negative (FN) 5 5

Furthermore, when the ANN model was applied to the validation
dataset, it achieved a satisfactory level of performance. Out of
the 30 segments in the validation dataset, the model correctly
predicted 25 subgrade uplift segments, showcasing its ability to
identify potential areas of subgrade uplift. Additionally, the model
accurately predicted 23 out of 30 segments with no subgrade
uplift. These findings indicate that the ANN model exhibits good
performance in both training and validation datasets, suggesting its
applicability and reliability for predicting subgrade uplift in the study
area.

3.2 Prediction results using RF model

The number of trees in the Random Forest (RF) model plays
a crucial role in determining its performance. A small number of
trees may result in low accuracy and limited generalization ability,
while an excessively large number of trees can significantly increase
the training time of the model. Therefore, it is important to select
an appropriate number of trees that balances performance and
efficiency. To assess the performance of the RFmodels with different
numbers of trees, the Out-of-Bag Error (OOBE) was employed as
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FIGURE 11
Tuning results of No. of Trees.

TABLE 5 Prediction results using RF model.

Parameter Training data Validation data

True positive (TP) 70 27

True negative (TN) 70 26

False positive (FP) 0 4

False negative (FN) 0 3

an evaluation metric. The OOBE provides an estimate of the model’s
prediction error based on the samples not included in the bootstrap
training set. As shown in Figure 11, the OOBE values of the RF
models were plotted against the number of trees. It can be observed
that as the number of trees increases, the OOBE initially decreases
and then reaches a plateau. The RF model with 71 trees achieved
the lowest OOBE value of 0.032, indicating superior performance
and predictive accuracy. Based on these results, it can be concluded
that selecting 71 trees for the RF model strikes a balance between
accuracy and computational efficiency.This optimal number of trees
ensures reliable predictions while minimizing the training time of
the model.

The performance of the Random Forest (RF) models was
evaluated based on the results presented in Table 5. In the training
dataset, all the segments were correctly predicted. In the validation
dataset, the RF model correctly predicted 27 out of 30 subgrade
uplift segments, indicating a prediction accuracy rate of 90%.
Additionally, the model correctly predicted 26 out of 30 segments
with no subgrade uplift, resulting in an accuracy rate of 87%. These
results indicate that although the RF model has exhibited signs of
overfitting, its overall accuracy remains high, allowing it to perform
reasonably well in prediction.

TABLE 6 Prediction results using SVMmodel.

Parameter Training data Validation data

True positive (TP) 62 22

True negative (TN) 63 23

False positive (FP) 7 7

False negative (FN) 8 8

3.3 Prediction results using SVM model

The penalty parameter 'C' is a crucial factor in training the
SVM model. Through grid search, it was determined that setting 'C'
to 4.2 resulted in the highest accuracy. This optimized parameter
selection improved the model’s performance in predicting
subgrade uplift.

The performance of the SVM models was evaluated and the
results are presented in Table 6. In the training dataset, the SVM
model correctly predicted 62 out of 70 subgrade uplift segments and
63 out of 70 segments with no subgrade uplift. This indicates that
the training results of the SVM model are favorable, demonstrating
its ability to accurately classify subgrade uplift. Similarly, in the
validation dataset, the SVM model achieved a high level of accuracy
by correctly predicting 22 subgrade uplift segments out of 30 and 23
segments with no subgrade uplift out of 30. These results highlight
the SVM model’s good applicability and its potential for effectively
predicting subgrade uplift in practical applications.

4 Discussion

4.1 Accuracy assessment and comparison

The evaluation of different machine learning approaches for
subgrade uplift prediction is crucial, considering the limited
research in this area. The ROC curves and AUC values are presented
in Figure 12. The AUC values of the ANN, RF, and SVM models
using the training dataset are 0.74, 1.00, and 0.81, respectively,
as shown in Figure 12A. These results indicate that the RF model
demonstrates the best predictive accuracy among the three models
for the training dataset. Similarly, in the validation dataset, the
AUC values of the ANN, RF, and SVM models are 0.73, 0.81, and
0.78, respectively, as depicted in Figure 12B. The RF model again
exhibits the highest suitability for predicting subgrade uplift in the
validation dataset. Thus, based on the analysis of the ROC curves,
it can be concluded that the RF model outperforms the ANN and
SVMmodels in terms of predictive performance, making it themost
effective approach for subgrade uplift prediction.

The prediction results obtained using the ANN, RF, and SVM
methods are presented in Figure 13. All three prediction models
demonstrate excellent performance in terms of prediction accuracy,
precision, recall, specificity, and F1-score. Specifically, the RF model
exhibits the highest performance among the three models, followed
by the ANN model and the SVM model.
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FIGURE 12
The ROC curves of the ANN, RF, SVM models using the (A) training and (B) validation dataset.

FIGURE 13
Performances of ANN, RF, SVM models using the (A) training and (B) validation dataset.

4.2 K-fold cross-validation

To evaluate the robustness of the predictive models against
variations in data distribution, K-fold cross-validation was
employed to validate the model and test its accuracy. The data
(comprising 100 uplifted railway sections and 100 unuplifted railway
sections) were randomly divided into five groups. For each group,
the other four groups were used to train the prediction model. The
selected group was then used to predict the subgrade uplift intensity
based on the proposed model.

As showed in Figure 14, the average accuracy of the five k-
fold cross-validation results for the three predictive models were

89% (RF model), 86% (ANN model), and 80% (SVM model),
respectively. This average predictive accuracy is consistent with the
predictive accuracy (Figure 13) obtained in this study, indicating
that the robustness of the predictivemodels against variations in data
distribution is satisfactory.

4.3 Variables contribution analysis

The weights (ANN) of the conditioning factors were calculated
after training the model, and the averaged weights are presented
in Table 7. To account for the variability caused by the random
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FIGURE 14
K-fold cross-validation result plot using (A) RF (B)ANN (C) SVM prediction models.

TABLE 7 Determination of the weight of each factor using ANNmodel.

Number of tests 1 2 3 4 5 Mean Standard

Factors

Excavation
Height 0.21 0.22 0.29 0.26 0.27 0.25 0.03

Width 0.08 0.11 0.15 0.19 0.14 0.13 0.04

Strata
Dip angle 0.12 0.08 0.04 0.09 0.07 0.08 0.03

Interbedded relationship 0.13 0.16 0.10 0.12 0.14 0.13 0.02

Rock
Swelling 0.20 0.24 0.15 0.17 0.19 0.19 0.03

Rheology 0.21 0.16 0.28 0.21 0.12 0.20 0.06

initialization of weights, the model was trained five times, and the
weights were averaged. The standard deviation values, ranging from
0.02 to 0.06, indicate that the random sampling has minimal impact
on the weight calculation, ensuring the credibility of the obtained
weights. The results indicate that the excavation height holds
the highest weight (0.25), followed by rock rheology (0.20), rock
swelling (0.19), excavation width (0.13), interbedded relationship
(0.13), and the dip angle has the lowest weight (0.08).

In the RF model, Mean Decrease Accuracy (MDA) and Mean
Decrease Gini (MDG) are commonly used measures to assess
the importance of each factor in the model. Based on the MDA
results (Figure 15), excavation height (0.08) has the highest impact
on subgrade uplift, followed by mudstone swelling (0.064) and
mudstone rheology (0.061). The interbedded relationship and
excavation width have the same MDA importance, while the dip
angle (0.026) has the lowest effect on subgrade uplift. The MDG
results also indicate a similar ranking of factor importance, with the
only difference being an increased influence of cutting excavation on
subgrade uplift.

Due to the discrepancies in the importance ranking of factors
obtained from ANN and RF, further exploration and validation of
the factor importance were conducted using the Learning Vector
Quantization (LVQ) method. The results, as depicted in Figure 16,

indicate that the ranking of factor importance from LVQ analysis
aligns well with those from ANN and RF. Therefore, it can be
concluded that cutting height and mudstone expansion have the
greatest influence on subgrade uplift.They are followed bymudstone
creep and excavation width. On the other hand, the interbedding
relationship and rock dip angle have the least impact on
subgrade uplift.

4.4 The scalability of the predictive models

To verify whether the subgrade uplift prediction model
proposed is applicable to other railways in red mudstone areas, we
selected the Chengdu-Guiyang Passenger Dedicated Line (CGPDL)
and the Xi’an-Chengdu Passenger Dedicated Line (XCPDL), both of
which have also experienced subgrade uplift deformation (Figure 1),
as the prediction subjects. From the two HSRs, ten typical uplift
sections (five from CGPDL, five from XCPDL) and ten non-uplift
sections (five from CGPDL, five from XCPDL) were randomly
selected as the validation set. After applying the validation set to
the three subgrade uplift prediction models (RF, ANN, SVM), the
prediction results (Figure 17) indicate that the RF model exhibits
the best scalability among the threemodels.The prediction accuracy
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FIGURE 15
(A) Mean decrease accuracy and (B) mean decrease Gini of effective factors in RF model.

FIGURE 16
The variable importance of effective factors using LVQ method.

for CGPDL exceeds 80% and for XCPDL exceeds 90%. The results
suggest that the subgrade uplift prediction model (RF) proposed in
this study still has good applicability for other high-speed railways
in red mudstone areas.

4.5 The limitations and future directions of
this study

According to the results, the subgrade uplift prediction model
established in this study demonstrates good applicability for high-
speed railways in red bed areas. However, modifications to the
prediction model may be necessary in practical applications,
depending on actual engineering conditions. For example, if the
high-speed railway traverses active fault zones, the seismic effects
on track deformation should be considered in the prediction
model. Therefore, to enhance the applicability of the subgrade uplift

FIGURE 17
The prediction results of CGPDL and XCPDL using the three subgrade
uplift prediction models.

prediction model for high-speed railways in red bed areas, future
research efforts could focus on conducting tailored uplift prediction
studies based on specific geological conditions.

Moreover, the successful implementation of the subgrade uplift
prediction model relies heavily on the availability of comprehensive
and accurate data regarding geological conditions and other relevant
factors. Obtaining such data may be challenging, particularly in
remote or inaccessible areas.

5 Conclusion

In this study, 200 cuttings of the CCPDL were examined to
develop a subgrade uplift prediction model utilizing artificial neural
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networks (ANN), random forests (RF), and support vector machine
(SVM). The key findings are as follows:

(1) Six subgrade uplift-conditioning factors, which include
subgrade excavation width, subgrade excavation height, dip
angle, interbedded characteristics between sandstone and
mudstone, mudstone rheology, and mudstone swelling, were
determined through laboratory tests, field investigations, and
mathematical statistics.These factors were found to be effective
predictors of subgrade uplift in the high-speed railway within
the red-bed area.

(2) Three machine learning techniques, namely, ANN, RF, and
SVM, were employed to construct subgrade uplift prediction
models. All three models exhibited strong predictive
performance, with RF demonstrating the highest accuracy.

(3) Among the conditioning factors, the cutting height and
mudstone expansion exerted the most significant influence on
subgrade uplift, followed by mudstone creep and excavation
width. The interbedding relationship and rock dip angle had
a comparatively lesser impact on subgrade uplift.
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