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Tunnel water inrushmay not only cause hundreds ofmillions of economic losses
and serious casualties, but also leads to a series of ecological and environmental
problems such as the decline of groundwater level, soil salinization and surface
vegetation degradation. In this study, considering hydrogeology, construction,
and dynamic monitoring factors, a new risk prediction model of water inrush
is proposed based on fuzzy mathematical theory. The element of novelty is
that this approach comprehensively considers nonlinearity and randomness
factors, and the index values, weights, and membership are expressed as
interval numbers instead of constant values. The interval membership degree
of each index is calculated by an improved sigmoid membership function
(SMF). A coupling algorithm of improved analytic hierarchy process and entropy
method is used to calculate the index weight. In addition, the Boolean matrix
is introduced into the relative advantage analysis of the interval vector, and the
final risk level of water inrush is determined by the ranking result. The proposed
model is applied to the analysis of the water inrush risk in the Ka−Shuang 2
(KS2) tunnel in Xinjiang, China. The predicted results align well with the actual
excavation results, which indicates that this novel model has high accuracy and
reliability. Simultaneously, a risk management response mechanism for different
risk levels of water inrush is discussed, which is expected to provide a new
research perspective for risk control of other related projects and promote
regional sustainable development.
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1 Introduction

Currently, China has become one of the countries with the most significant tunnel
scales and the most complicated tunnel structures in the world (Zhang et al., 2019). In
the process of tunnel construction, various uncertain risks may be encountered, such as
water inrush, collapse, rock burst and other geological disasters, which cause huge economic
losses every year in the world. Particularly for water inrush, it not only seriously threatens
the lives and safety of construction personnel, but also brings great challenges to local
environmental protection (Beard, 2010; Ma et al., 2018). When the tunnel passes through
water-rich areas such as rivers, lakes, and oceans, the hydrological and geological conditions
are more complex, the construction conditions are more difficult, and various uncertainties
are more prominent, which further increases the risk of tunnel water inrush. Therefore, an
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accurate and useful prediction of water inrush risk is of great
practical significance to ensure engineering safety and promote
regional sustainable development.

Water inrush is an extremely complex dynamic process
influenced by multiple factors (Cui et al., 2015; Wang et al, 2019a).
How to precisely predict water inrush has become a worldwide
research focus. In recent years, many researchers have conducted
theoretical research on the mechanism of water inrush from
different perspectives and put forth corresponding methods for
water inrush risk prediction. These methods mainly include
geological analysis method (Li et al, 2017a), random forest method
(Zhao et al., 2018; Zhao et al., 2020), geography information system
method (Liu et al., 2018; Lyu et al., 2018), attribute mathematical
theory (Yang and Zhang, 2018), cloud model theory (Lin et al.,
2020; Wang et al., 2020), and Numerical Simulation Method
(Cao et al., 2024; Wu et al., 2024). The above methods have their
advantages and provide some scientific judgment for the prediction
of water inrush risk. However, many methods do not consider
the dynamic monitoring factor, which makes them have some
limitations in practical engineering application. Besides, due to the
complexity of water inrush risk prediction, such as multivariable,
nonlinearity and randomness, the index value expressed as a
constant cannot clearly reflect the uncertainty of water inrush
risk prediction. Therefore, it is necessary to develop some more
suitable approaches to improve the accuracy of water inrush
risk prediction.

In this paper, a new risk prediction model of water
inrush based on fuzzy mathematical theory is proposed. This
model comprehensively considers the impact of hydrogeology,
construction and dynamic monitoring factors on water inrush.
At the same time, in view of the uncertainty of water inrush risk
prediction, the index value, weight and membership degree are
expressed as interval numbers instead of constant values, which
is more in line with the actual project. The main purpose of this
paper is to provide a scientific basis for the risk management of
water inrush.

The remainder of this paper is organized as follows: Section 2
presents the general situation of the study area. Section 3 proposes
a new risk prediction model of water inrush based on fuzzy
mathematical theory and the coupling weight algorithm. Section 4
discusses the prediction results of the proposed model applied to
KS2 tunnel. Section 5 verifies that the actual excavation situations
are consistent with the prediction results and establishes a risk
management response mechanism. Finally, Section 6 summarizes
the research of this paper.

2 Study area

2.1 Topography and physiognomy

TheKS2 tunnel is located at the northeastern edge of the Jungger
Basin in Xinjiang Province, China (Figure 1). The total length of
the tunnel is 8.35 km, the longitudinal slope is 1/2,583, and the
depth of the overburden is 158–215 m. The elevation is 790–816 m,
the degree of topography change is small, and the general height
difference is 10–30 m. The section KS80+140−KS82+494 is located
in the valley area of Ulungur River, where the terrain is flat and open,

and it is a floodplain and river terrace. The width of the river valley
is 1.6–2.0 km, the heart beach and floodplains are developed, and
the main channel is about 40–160 m wide. The physiognomy of the
study area is presented as Figure 2.

2.2 Geological structure

The Ulungur River fault is a large-scale fault near the KS2
tunnel. The fault extends from southwest to northeast and has
a length of more than 170 km. It is a compressive fault with an
occurrence of 305°–325° SW∠80° and a crushing bandwidth of
about 100–150 m. According to the exploration drilling, the strata
passing through KS80+140−KS82+494 are mainly Carboniferous
strata. The stratigraphic lithology of KS80+140−KS81+227 is basalt,
the lithology of KS81+227−KS82+177 is lithic tuff, and the lithology
of KS82+177−KS82+494 is tuffaceous sandstone. Besides, there
are 16 faults developed in this section, with a NE or NW strike
direction, a steep dip angle of 60–80°, and a fault-breaking
bandwidth of 0.5–4.8 m. The geological profile of the KS2 tunnel
is shown in Figure 3.

2.3 Hydrological conditions

Thetypes of groundwater in the section ofKS80+140−KS82+494
are mainly Quaternary pore water and bedrock fissure water.
Quaternary pore diving water is mainly located in the overburden
of the river valley. It is replenished by the river water and the water
volume is abundant. Bedrock fissure water is mainly distributed
in structural fracture zones or tensile fissures and in a linear way
along the structure. It mainly receives recharge from river water,
Quaternary pore diving water, and atmospheric precipitation, and it
infiltrates deep into the structural belt.

3 Risk prediction model of water
inrush

To improve the risk management level in the process of
tunnel construction, this paper proposes a novel model for risk
prediction of tunnel water inrush based on nonlinear fuzzy
mathematical methods, as shown in Figure 4. Firstly, a multi-index
prediction system was established based on the mechanism of
water inrush. Secondly, the improved SMF was used to construct
the membership degree matrix of the prediction index. Thirdly,
the index weight was calculated by the coupling algorithm of
subjective and objective weights. Finally, the Boolean matrix was
introduced into the relative advantage analysis of the interval
vector, and the risk grade of water inrush was determined by the
ranking result.

3.1 Establishing a set of risk prediction
indices for water inrush

In actual projects, various objective and subjective
factors cause the water inrush. Based on previous research
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FIGURE 1
The geographical location of the study area.

FIGURE 2
The physiognomy of the study area.

results (Li and Yang, 2018; Wang et al., 2020), we adopted
ten indices (Table 1) to quantitatively predict the risk of
water inrush, including landform and physiognomy (LP),
unfavorable geological conditions (UGC), strata inclination
(SI), elevation head (EH), water supply (WS), strength
of surrounding rock (SSR), excavation disturbance (ED),
supporting measures (SM), monitoring measurement (MM)
and geological prediction (GP). X1−X6 are hydrogeological
factors (H1), X7 and X8 are construction factors (H2), X9
and X10 are dynamic monitoring factors (H3). The prediction
indices were quantitatively classified into four levels, as shown
in Table 1.

3.1.1 Hydrogeological factors (H1)
3.1.1.1 LP (X1)

To a certain extent, the variation characteristics of the
topography above the tunnel can reflect the possibility of tunnel
water inrush. If the topography is undulating and a large area
of depression exists, atmospheric precipitation and groundwater
gather easily in this area, and there is a high possibility of water
inrush.This paper quantified the proportion of negative terrain area
above the tunnel (Li and Wu, 2019). It divided this area into four
levels: nonegative terrain [0, 0.25], small-scale negative terrain [0.25,
0.50], medium-scale negative terrain [0.50, 0.75] and large-scale
negative terrain [0.75, 1], as shown in Table 1.
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FIGURE 3
Geological profile of the KS2 tunnel (KS80+140−KS82+494).

FIGURE 4
The proposed prediction model of water inrush risk.

3.1.1.2 UGC (X2)
Under normal circumstances, the UGC encountered during

the construction of tunnels refer to faults and surrounding rock
fissures. Infiltration channels for groundwater form because of the
existing faults and fissures. During the construction process, the
groundwater’s spatial distribution balance in the strata is destroyed,
and the groundwater stored in the strata pours easily into the tunnel
along these channels, which increases the probability of tunnel water
inrush. Considering the degree of development of faults and fissures

(Li et al, 2017b), this paper classified the UGC into four grades:
undeveloped strata [0, 0.25], weakly developed strata [0.25, 0.50],
moderately developed strata [0.50, 0.75], and strongly developed
strata [0.75, 1], as shown in Table 1.

3.1.1.3 SI (X3)
The degree of groundwater infiltration in the rock formation is

related to the size of SI.The higher the SI, the greater the penetration
rate of groundwater in the rock formation. In this paper, the angle
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TABLE 1 The classification standards of prediction indices for
water inrush.

Prediction
indices

I II III IV

LP (X1) [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

UGC (X2) [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

SI (X3)/° [0, 10] [10, 35] [35, 75] [75, 90]

EH (X4)/m [0, 10] [10, 30] [30, 60] >60

WS (X5) [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

SSR (X6) >450 [350, 450] [250, 350] [0, 250]

ED (X7) [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

SM (X8) [0.75, 1] [0.50, 0.75] [0.25, 0.50] [0, 0.25]

MM (X9) [0.75, 1] [0.50, 0.75] [0.25, 0.50] [0, 0.25]

GP (X10) [0.75, 1] [0.50, 0.75] [0.25, 0.50] [0, 0.25]

β (0–90°) between the trend of stratum and the tunnel axis was
selected as the SI, and it was classified into four grades (Yang and
Zhang, 2018), as shown in Table 1.

3.1.1.4 EH (X4)
EH reflects the distribution characteristics of groundwater in the

rock layer. A high water pressure on the tunnel increase the risk of
tunnel water inrush. In this study, EH was classified into four grades
(Wang et al., 2017), as shown in Table 1.

3.1.1.5 WS (X5)
When a tunnel crosses a river, the river water is the main source

of groundwater recharge, and the connected groundwater recharge
channel becomes a significant element that leads to a large scale of
water inrush and long duration (Li and Yang, 2018). Considering
the replenishment capacity of the water source, it was classified into
four grades in this study: weak [0, 0.25], low-medium [0.25, 0.50],
medium [0.50, 0.75], and strong [0.75, 1], as shown in Table 1.

3.1.1.6 SSR (X6)
If the surrounding rocks’ strength level is low, they are more

likely to collapse and deform, increasing thewater inrush risk. In this
study, the basic quality (BQ) of surrounding rocks was selected as
their strength index, and it was divided into four grades (Wang et al,
2019b), as shown in Table 1.

3.1.2 Construction factors (H2)
3.1.2.1 ED (X7)

The smaller the ED, the lower the risk of tunnel water
inrush. Considering the disturbance degree of surrounding rocks
during the tunnel excavation, this paper divided ED into four
levels: small disturbance [0, 0.25], medium disturbance [0.25,
0.50], large disturbance [0.50, 0.75], relatively high disturbance
[0.75, 1] (Table 1).

3.1.2.2 SM (X8)
After tunnel excavation, the surrounding rocks need to be

supported in time to reduce the amount of settlement and
deformation in them. Reasonable SM can prevent weathering and
reduce groundwater erosion in the surrounding rocks (Xu et al.,
2011). Considering the rationality of SM, this paper divided it into
four grades: unreasonable [0, 0.25], basically reasonable [0.25, 0.50],
reasonable [0.50, 0.75], and more reasonable [0.75, 1] (Table 1).

3.1.3 Dynamic monitoring factors (H3)
3.1.3.1 MM (X9)

MM are important means to achieve information design and
dynamic construction.Through continuous on-site observation and
measurement, a large amount of dynamic changes information of
hydrogeological conditions and deformation of surrounding rocks
can be obtained, which provides a basis for judging the stability
of surrounding rocks and the water inrush risk. Considering the
rationality of the measurement program, this paper divided MM
into four grades: unreasonable [0, 0.25], basically reasonable [0.25,
0.50], reasonable [0.50, 0.75], more reasonable [0.75, 1] (Table 1).

3.1.3.2 GP (X10)
GP is an essential technical means to analyze the size and

distribution of water storage in front of the tunnel face, which
can reduce the probability of geological disasters and the degree
of damage (Li and Wu, 2019). Reasonable geological prediction
methods can not only warn the construction personnel of any
potential risk early on, but it can also provide technical support
for optimizing construction plans. In this paper, it was classified
into four grades: unreasonable [0, 0.25], basically reasonable [0.25,
0.50], reasonable [0.50, 0.75], and more reasonable [0.75, 1],
as shown in Table 1.

3.2 Membership degree based on
improved SMF

3.2.1 Improved SMF
Fuzzy mathematics is an effective method to study uncertainty

and randomness with fuzzy set theory (Moore and Lodwick, 2003).
SMF is a monotone continuous nonlinear membership function
whose output value is mapped between [0, 1], as shown in Figure 5.
The function curve has good stability and a clear physical meaning,
which is widely used in classification studies (Liu et al., 2013). For a
variable x ∈ [−∞,+∞], the SMF is defined as:

S(x) = 1
1+ e−ax

(1)

where a is the shape parameter of SMF. If a < 0, the function opening
direction is left. If a > 0, the function opening direction is right.
According to the actual situation, a can be set to an appropriate value
to ensure that the shape of the function is reasonable.

Let [Xmin,Xmax] be an interval number. For any variable x ∈
[−∞,+∞], the membership of x to [Xmin,Xmax] can be defined as:

L(S) = 1
1+ ea(x−Xmin)

 x ∈ (−∞,Xmin] (2)

L(S) = 1
1+ e−a(x−Xmax)

 x ∈ [Xmax,+∞) (3)
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FIGURE 5
A sigmoid membership function with the shape parameter a=0.2.

L(S) = 1
1+ e−a(x−X1)

− 1
1+ e−a(x−X2)

 x ∈ [X1,X2] (4)

where [X1,X2] ⊆ [Xmin,Xmax].

3.2.2 Construct interval membership degree
matrix

In the actual engineering survey and tunnel construction
process, many prediction indices are mainly descriptive, which
should be quantified during the prediction process. To facilitate the
calculation, the value range of the qualitative index is set to [0, 1],
and the width of the range belonging to different risk grades is 0.25.
According to the grading standard ofwater inrush risk, the improved
SMF of different indices were defined as:

3.2.2.1 The improved SMF of quantitative indices
For index X3, the improved SMF is (Figure 6A):

L3(I) =
1

1+ e(x−10)
(5)

L3(II) =
1

1+ e−(x−10)
− 1
1+ e−(x−35)

(6)

L3(III) =
1

1+ e−(x−35)
− 1
1+ e−(x−75)

(7)

L3(IV) =
1

1+ e−(x−75)
(8)

For index X4, the improved SMF is (Figure 6B):

L4(I) =
1

1+ e(x−10)
(9)

L4(II) =
1

1+ e−(x−10)
− 1
1+ e−(x−30)

(10)

L4(III) =
1

1+ e−(x−30)
− 1
1+ e−(x−60)

(11)

L4(IV) =
1

1+ e−(x−60)
(12)

For index X6, the improved SMF is (Figure 6C):

L6(I) =
1

1+ e−0.3(x−450)
(13)

L6(II) =
1

1+ e−0.3(x−350)
− 1
1+ e−0.3(x−450)

(14)

L6(III) =
1

1+ e−0.3(x−250)
− 1
1+ e−0.3(x−350)

(15)

L6(IV) =
1

1+ e0.3(x−250)
(16)

3.2.2.2 The improved SMF of qualitative indices
For indices X1, X2, X5, and X7, the improved SMF is

(Figure 6D):

L(I) = 1
1+ e120(x−0.25)

(17)

L(II) = 1
1+ e−120(x−0.25)

− 1
1+ e−120(x−0.5)

(18)

L(III) = 1
1+ e−120(x−0.5)

− 1
1+ e−120(x−0.75)

(19)

L(IV) = 1
1+ e−120(x−0.75)

(20)

For indices X8, X9, and X10, the improved SMF is (Figure 6E):

L(I) = 1
1+ e−120(x−0.75)

(21)

L(II) = 1
1+ e−120(x−0.5)

− 1
1+ e−120(x−0.75)

(22)

L(III) = 1
1+ e−120(x−0.25)

− 1
1+ e120(x−0.5)

(23)

L(IV) = 1
1+ e120(x−0.25)

(24)

According to Eqs 5–24, the interval membership degree
matrix L of the prediction index belonging to different water
inrush risk grades can be obtained as:

L =
[[[[

[

[L1(I)
−,L1(I)

+] [L1(II)
−,L1(II)

+] [L1(III)
−,L1(III)

+] [L1(IV)
−,L1(IV)

+]
[L2(I)−,L2(I)+] [L2(II)−,L2(II)+] [L2(III)−,L2(III)+] [L2(IV)−,L2(IV)+]
⋮ ⋮ ⋮ ⋮

[L10(I)
−,L10(I)

+] [L10(II)
−,L10(II)

+] [L10(III)
−,L10(III)

+] [L10(IV)
−,L10(IV)

+]

]]]]

]
(25)

3.3 Interval weights of prediction indices

3.3.1 Subjective weight
Analytic hierarchy process (AHP), proposed by American

operations researcher Thomas Saaty, is a method to solve
the multi-criteria problem (Saaty, 2003). It can quantitatively
analyze the potential logical relationship between research
objects and has the characteristics of simplicity, flexibility, and
applicability. In this paper, the improved analytic hierarchy
process (IAHP) is used to calculate the subjective weight
of indices, and the specific steps of IAHP are as follows
(Wang et al., 2012; Zhang et al., 2013):
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FIGURE 6
The improved SMF of prediction indices (A) SI (X3), (B) EH (X4), (C) SSR (X6), (D) LP (X1), UGC (X2), WS (X5), and ED (X7), and (E) SM (X8), MM (X9), and GP
(X10).

Firstly, according to the established prediction index set,
using 1–9 scale method to compare pairs of two indices at the
same level (Liu et al., 2018), the interval judgment matrix Ã of the
prediction index is obtained as:

Ã = [aij]n×n = [[a
−
ij ,a
+
ij]]n×n (26)

where [a−ij]n×n and [a
+
ij]n×n are the upper and lower bound matrices

of Ã, respectively.

Secondly, the normalized eigenvectors corresponding
to the maximum eigenvalues of [a−ij]n×n and [a+ij]n×n are
calculated using Eq. 27:

w±ij =
(∏n

j=1
a±ij)

1/n

∑n
i=1
(∏n

j=1
a±ij)

1/n
(27)

where wij is the normalized feature vector.
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TABLE 2 The prediction index values of water inrush risk in the section KS82+494−KS82+077.

Prediction index KS82+494−
KS82+314

KS82+314−
KS82+185

KS82+185−
KS82+150

KS82+150−
KS82+077

X1 [0.2, 0.35] [0.15, 0.3] [0.3, 0.4] [0.35, 0.5]

X2 [0, 0.25] [0, 0.25] [0.5, 0.75] [0.3, 0.6]

X3 [67, 70] [67, 72] [68, 71] [66, 70]

X4 [168, 178] [165, 167] [164, 165] [162, 164]

X5 [0.15, 0.25] [0.2, 0.4] [0.5, 0.75] [0.6, 0.8]

X6 [370, 410] [350, 390] [280, 300] [330, 370]

X7 [0.15, 0.25] [0.15, 0.25] [0.3, 0.5] [0.25, 0.4]

X8 [0.7, 0.8] [0.75, 0.85] [0.5, 0.7] [0.6, 0.75]

X9 [0.75, 0.85] [0.8, 0.9] [0.5, 0.75] [0.65, 0.8]

X10 [0.75, 0.85] [0.75, 0.85] [0.5, 0.6] [0.6, 0.75]

TABLE 3 Judgment matrix of Ã −H.

Ã −H H1 H2 H3

H1 [1, 1] [1/2, 3] [3, 6]

H2 [1/3, 2] [1, 1] [2, 5]

H3 [1/6, 1/3] [1/5, 1/2] [1, 1]

TABLE 4 Judgment matrix of H1−X.

H1-X X1 X2 X3 X4 X5 X6

X1 [1, 1] [1/6,
1/3]

[2, 3] [1/3,
1/2]

[1/4,
1/2]

[1/2, 2]

X2 [3, 6] [1, 1] [4, 7] [2, 4] [1, 5] [2, 7]

X3 [1/3,
1/2]

[1/7,
1/4]

[1, 1] [1/4,
1/2]

[1/5,
1/2]

[1/3,
1/2]

X4 [2, 3] [1/4,
1/2]

[2, 4] [1, 1] [1/3, 2] [1, 3]

X5 [2, 4] [1/5, 1] [2, 5] [1/2, 3] [1, 1] [2, 6]

X6 [1/2, 2] [1/7,
1/2]

[2, 3] [1/3, 1] [1/6,
1/2]

[1, 1]

Finally, the subjective weight w⋇ of the prediction index is
calculated by Eqs 28–30:

w⋇ = [wij]1×n = [[αw
−
ij ,βw
+
ij]]1×n (28)

TABLE 5 Judgment matrix of H2−X and H3−X.

H2−X X7 X8 H3−X X9 X10

X7 [1, 1] [1/2, 4] X9 [1, 1] [1/6, 2]

X8 [1/4, 2] [1, 1] X10 [1/2, 6] [1, 1]

Then the subjective weight w⋇ of the prediction index can be obtained by Eqs 27–30, as
presented in Table 6.

α = √
n

∑
j=1
(1/

n

∑
i=1

a+ij) (29)

β = √
n

∑
j=1
(1/

n

∑
i=1

a−ij) (30)

3.3.2 Objective weight
Entropy was originally a thermodynamic concept. Entropy can

measure the uncertainty of the system when it is introduced into
information theory. The greater the difference in the probability
of random occurrence of various events in the system, the
smaller the uncertainty, and the greater the amount of useful
information provided by the event. The basic idea of entropy
method is to determine the index weight according to the amount
of information provided by the index value (Mehdi et al., 2019;
Perera et al., 2019).

Suppose there arem tunnel water inrush cases and n prediction
indices. The index value is standardized and expressed by the
standardized matrix ̃B:

̃B = [bij]m×n = [[b
−
ij ,b
+
ij]]m×n (31)
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TABLE 6 The weight of the prediction index.

Prediction index Subjective weight Objective weight Comprehensive weight

X1 [0.0302, 0.0585] [0.0866, 0.1064] [0.0584, 0.0824]

X2 [0.1174, 0.2788] [0.1109, 0.1173] [0.1142, 0.1980]

X3 [0.0187, 0.0328] [0.0853, 0.1015] [0.0520, 0.0672]

X4 [0.0513, 0.1193] [0.0863, 0.0921] [0.0688, 0.1057]

X5 [0.0594, 0.1751] [0.1198, 0.1236] [0.0896, 0.1494]

X6 [0.0275, 0.0702] [0.0926, 0.0974] [0.0600, 0.0838]

X7 [0.1243, 0.3421] [0.1080, 0.1169] [0.1161, 0.2295]

X8 [0.0879, 0.2419] [0.0828, 0.0887] [0.0853, 0.1653]

X9 [0.0270, 0.0557] [0.0828, 0.0930] [0.0549, 0.0743]

X10 [0.0468, 0.0964] [0.1002, 0.1080] [0.0735, 0.1022]

TABLE 7 Risk prediction results of KS82+494−KS82+077 for
water inrush.

Engineering case M Prediction result

I II III IV

KS82+494−KS82+314 4 3 1 2 I

KS82+314−KS82+185 4 3 1 2 I

KS82+185−KS82+150 1 3 4 2 III

KS82+150−KS82+077 1 4 3 2 II

where [b−ij]m×n and [b
+
ij]m×n are the upper and lower bounds of the

matrix ̃B, i = 1,2,⋯,m, j = 1,2,⋯,n.
Based on the basic principle of information entropy, the entropy

value of the prediction index Xj is determined by Eqs 32, 33:

E−j = −(lnm)−1∑m
i=1

1+ b−ij
∑m

i=1
(1+ b−ij)

ln(
1+ b−ij
∑m

i=1
(1+ b−ij)

) (32)

E+j = −(lnm)−1∑m
i=1

1+ b+ij
∑m

i=1
(1+ b+ij)

ln(
1+ b+ij
∑m

i=1
(1+ b+ij)

) (33)

E−j = − (lnm)−1 where E−j and E+j are the entropy values of the
matrices [b−ij]m×n and [b

+
ij]m×n, respectively.

The objective weight w⋆j of the prediction index Xj is:

w⋆j = [w
−
j ,w
+
j ] (34)

w−j =
1−E−j
∑n

j=1
(1−E−j )

(35)

w+j =
1−E+j
∑n

j=1
(1−E+j )

(36)

where w−j and w
+
j are the weight vectors of the matrices [b−ij]m×n and

[b+ij]m×n, respectively.

3.3.3 Comprehensive weight
Comprehensive weight is the coupling of subjective

and objective weights to make the weight value more
consistent with the actual situation. Based on the subjective
weight w⋇ = (w⋇1 ,w

⋇
2 ,⋯,w

⋇
n)

T and the objective weight
w⋆ = (w⋆1 ,w

⋆
2 ,⋯,w

⋆
n)

T, the comprehensive weight w of the
prediction index is:

w = [[w−1 ,w
+
1 ], [w
−
2 ,w
+
2 ],⋯,[w

−
j ,w
+
j ]] (37)

wj = k1w
⋇
j + k2w

⋆
j (38)

where k1 and k2 are weight coefficients, and k1 + k2 = 1. The values
k1 and k2 are determined by the expert scoring method. If the
decision is inclined to expert experience, k1 ∈ [0.5,1],k2 ∈ [0,0.5],
vice versa (Xu et al., 2011; Li et al., 2018). In this paper, k1 and k2
are both 0.5.

3.4 Relative advantage analysis of interval
vector based on the Boolean matrix

According to Eqs 25, 37, the interval vector F can be obtained as:

F = Lw = [[ f−I , f
+
I ], [ f
−
II, f
+
II], [ f
−
III, f
+
III], [ f

−
IV, f
+
IV]] (39)

Suppose fi = [ f
−
i , f
+
i ] and fj = [ f

−
j , f
+
j ] are two interval

vectors belonging to different risk levels of water inrush, and
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FIGURE 7
Three-dimensional imaging of the seismic wave at KS82+172.

FIGURE 8
Three-dimensional imaging of the induced polarization method at KS82+172.

g( fi) = f
+
i − f
−
i , g( fj) = f

+
j − f
−
j . Then the probability pij( fi > fj) is

(Li et al., 2016):

pij( fi > fj) =

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{
{

1 f−j ≤ f
+
j ≤ f
−
i ≤ f
+
i

1−
( f+j − f

−
i )

2

2g( fi)g( fj)
f−j ≤ f
−
i ≤ f
+
j ≤ f
+
i

f+i + f
−
i − 2 f

−
j

2g( fj)
f−j ≤ f
−
i ≤ f
+
i ≤ f
+
j

2 f+i − f
+
j − f
−
j

2g( fi)
f−i ≤ f
−
j ≤ f
+
j ≤ f
+
i

( f+i − f
−
j )

2

2g( fi)g( fj)
f−i ≤ f
−
j ≤ f
+
i ≤ f
+
j

0 f−i ≤ f
+
i ≤ f
−
j ≤ f
+
j

(40)

The Boolean matrix Q = [qij]4×4 is defined as:

Q =

[[[[[[[

[

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

]]]]]]]

]

(41)

qij =
{
{
{

1 pij ≥ 0.5

0 pij < 0.5
(42)

Based on the sorting method of a Boolean matrix, the result
vectorM is obtained as:

Mi =
n

∑
j=1

qij (43)

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1404133
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Pi et al. 10.3389/feart.2024.1404133

FIGURE 9
The actual situation of the KS2 tunnel water inrush.

The final water inrush risk grade can be determined by the
maximum value ofM.

4 Results

Currently, theKS2tunnelhasbeenexcavatedfromthedownstream
to the upstream to KS82+077. In this paper, KS82+494−KS82+077
was selected as the research area. The surface cover thickness in this
section is 31–36.4 m, which is mainly Quaternary Holocene sand
and gravel. It is a strong permeable layer. The underlying stratum
is Carboniferous tuff sandstone, with developed joint fissures, and
with F1, F2, F4, and F5 faults passing through. F1 fault width is 3-
4 m, the occurrence is 300° SW∠70°, while F2 fault width is 1 m,
and the occurrence is 79° SE∠76°. In addition, the width of F4 and
F5 faults are 0.5 m and 0.6m, and the occurrences are 11°NW∠65°
and 320°NE∠75°, respectively. According to the geological survey,
hydrological conditions, construction management, and geological
forecast of the KS2 tunnel, the research area was divided into four
sections,andthecorrespondingpredictionindexvalueswereobtained,
as shown in Table 2.

4.1 Index weight

Based on the set of prediction indices established
in this paper, the judgment matrices Ã −H, H1−X,

H2−X, and H3−X were obtained by IAHP, as shown in
Tables 3–5.

According to Eqs 31–36 and the prediction index values
(Table 2), the objective weight w⋆ of the prediction index
is presented in Table 6. Then the comprehensive weight w
of the index is calculated using Eqs 37, 38, as presented in
Table 6.

4.2 The membership degree of the
prediction index

Themembership degree matrix L of the prediction index can be
constructed by Eq. 25.

L1 =

[[[[[[[[[[[[[[[[[[[[

[

[0,0.9975] [0.0025,1] 0 0
[0.5,1] [0,0.5] 0 0

0 0 [0.9933,0.9997] [0,0.0067]
0 0 0 1
[0.5,1] [0,0.5] 0 0

0 [0.9975,1] [0,0.0025] 0
[0.5,1] [0,0.5] 0 0

[0.0025,0.9975] [0.0025,0.9975] 0 0
[0.5,1] [0,0.5] 0 0
[0.5,1] [0,0.5] 0 0

]]]]]]]]]]]]]]]]]]]]

]
(44)
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L2 =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

[0.0025,1] [0,0.9975] 0 0

[0.5,1] [0,0.5] 0 0

0 0 [0.9526,0.9997] [0,0.0474]

0 0 0 1

[0,0.9975] [0.0025,1] 0 0

0 [0.5,1] [0,0.5] 0

[0.5,1] [0,0.5] 0 0

[0.5,1] [0,0.5] 0 0

[0.9975,1] [0,0.0025] 0 0

[0.5,1] [0,0.5] 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(45)

L3 =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

[0,0.0025] [0.9975,1] 0 0

0 [0,0.5] [0.5,1] [0,0.5]

0 0 [0.9820,0.9991] [0,0.018]

0 0 0 1

0 [0,0.5] [0.5,1] [0,0.5]

0 0 1 0

[0,0.0025] [0.5,0.9975] [0.0025,0.5] 0

[0,0.0025] [0.5,0.9975] [0,0.5] 0

[0,0.5] [0.5,1] [0,0.5] 0

0 [0.5,1] [0,0.5] 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(46)

L4 =

[[[[[[[[[[[[[[[[[[[[

[

0 [0.5,1] [0,0.5] 0
[0,0.0025] [0,0.9975] [0,1] 0

0 0 1 [0,0.0067]
0 0 0 1
0 0 [0.0025,1] [0,0.9975]
0 [0.0025,0.9975] [0.0025,9975] 0
[0,0.5] [0.5,1] 0 0
[0,0.5] [0.5,1] 0 0
[0,0.9975] [0.0025,1] 0 0
[0,0.5] [0.5,1] 0 0

]]]]]]]]]]]]]]]]]]]]

]

(47)

In Eqs 44–47, L1, L2 L3, and L4 are the membership
degree matrix of KS82+ 494−KS82+314, KS82+314−KS82+185,
KS82+185−KS 82+150, and KS82+150−KS82+077, respectively.

4.3 Relative advantage analysis of interval
vector

According to Eqs 40–43, the prediction results of
KS82+494−KS82+077 were obtained, as shown in Table 7.

In Table 7, the result vector M of KS82+494−KS82+314 and
KS82+314−KS82+185 belonging to the different risk levels is M1 >
M2 >M4 >M3. Hence, the risk level of water inrush in these two
sections is level I. For the section KS82+185−KS82+150,M3 >M2 >
M4 >M1, which indicates that the risk level of water inrush in
this section is level III (high risk). The maximum value of M of
KS82+150−KS82+077 is: M2 = 4, which shows that the probability
of water inrush in this section is level II.

5 Discussion

5.1 Excavation verification

After the KS2 tunnel was excavated to KS82+494, water seepage
and linear inrush began to appear on the wall. According to the
construction record, the measured maximum water inrush volumes
in sections KS82+494−KS82+314 and KS82+314−KS82+185 were
45 m3/h and 95 m3/h, respectively. To further understand the
hydrogeological conditions in front of the tunnel face, the
seismic wave method and induced polarization method were
used to enhance the advanced geological prediction of the KS2
tunnel. The detection results show that the surrounding rock
of KS82+172−KS82+150 has poor integrity, joint fractures are
developed, and there is a possible risk of water inrush, as shown in
Figures 7, 8.

When the KS2 tunnel was excavated to KS82+172, a large area of
collapse occurred on the right wall of the tunnel face. The width of
the collapse was about 10.5 m, themaximum depth of the collapsing
cavity was 5 m. Simultaneously, large-scale water inrush occurred,
and the maximum water inrush is 880 m3/h. Due to the insufficient
drainage capacity in the tunnel, the KS2 tunnel was submerged,
as shown in Figure 9. Moreover, water inrush occurred again at
KS82+145 on 20 April 2020, and the maximum water inrush is
320 m3/h.

Through comparison and analysis with the prediction results of
the proposed model, the prediction results are in good agreement
with the actual excavation conditions, indicating that the proposed
model has high accuracy and reliability.

5.2 Risk management

To improve the risk control ability during the construction
process, developing a risk management response mechanism is
very necessary. If the risk level of water inrush is level I, the
disturbance to the surrounding rock should be minimized and
the supporting measures should be strengthened in the process
of tunnel construction. For tunnel water inrush with a risk grade
of II, monitoring measurement and geological prediction should
be strengthened during tunnel construction, and the construction
scheme should be dynamically adjusted in time. When the risk
level of tunnel water inrush is level III or IV, the construction
of the tunnel should be stopped immediately and the emergency
drainage scheme should be formulated. Meanwhile, advance
grouting intercept water is carried out in front of the tunnel face,
and the next excavation cycle will be carried out after the grouting is
completed.

6 Conclusion

This research proposes a novel risk prediction model of water
inrush based on improved SMF, the approach can improve the
accuracy of water inrush prediction considering nonlinearity,
randomness and dynamic monitoring factors. The model used
interval value to predict the risk of tunnel water inrush, avoiding
the situation that the traditional single index value is directly
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applied to the risk prediction, and which is more in line with
the engineering practice. According to the IAHP and entropy
methods, a coupling algorithm of subjective and objective weights
was proposed to calculate the index weight, which reflected both
subjective experience and objective facts. In addition, the Boolean
matrix was introduced into the relative advantage analysis of interval
vector, and the final risk grade of water inrushwas determined by the
maximum value of the result vectorM.

The proposed model was applied to the analysis of the water
inrush risk in the KS2 tunnel. The predicted results have a
high consistency with the actual situation, indicating that this
model is of high accuracy and reliability. In addition, a risk
management response mechanism for different risk levels of water
inrush is discussed, which is expected to provide a view for risk
control of other related projects and promote regional sustainable
development.

Since water inrush is characterized as complex, fuzzy, and
random, the application of fuzzy mathematical theory to the risk
prediction of water inrush is only a preliminary attempt, and
there are still some issues to be further studied, such as the flow
mechanism and distribution characteristics of groundwater in the
fractures of the surrounding rock. In addition, it is worth exploring
the introduction of the numerical simulation into the risk analysis of
water inrush, which can be combined with othermethods to analyze
and predict the risk of water inrush.
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