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Influence of CyGNSS L2 wind
data on tropical cyclone analysis
and forecasts in the coupled
HAFS/HYCOM system

Bachir Annane* and Lewis J. Gramer

NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami FL and Cooperative Institute for
Marine and Atmospheric Studies, University of Miami, Miami, FL, United States

This study examines the influence of NASA Cyclone Global Navigation Satellite
System (CyGNSS) Level 2-derived 10 m (near-surface) wind speed over the
ocean on analyses and forecasts within the NOAA operational Hurricane Analysis
and Forecast System (HAFS). HAFS is coupled with a regional configuration of
the HYCOM ocean model. The primary advantages of data from the CyGNSS
constellation of satellites include higher revisit frequency compared to polar-
orbiting satellites, and the availability of reliable wind observations over the
ocean surface during convective precipitation. CyGNSS data are available early in
the life cycle of tropical cyclones (TCs) when aerial reconnaissance observations
are not available. We focus on TCs whose forecasts were initialized when the
TC was a depression or tropical storm. In the present study, we find first, that
assimilation of CyGNSS near-surface winds improves storm track, intensity, and
structure statistics in the analysis and early in the forecast, for many cases.
Second, we find that assimilation of CyGNSS observations provides additional
insights into the evolution of air-sea interaction in intensifying TCs: In effect, the
ocean responds in the coupled model to modifications in the initial 10 m wind
field, thereby impacting forecasts of intensity, storm structure, and sea surface
height, as demonstrated by two case studies. We also discuss some forecasts
where assimilating CYGNSS appears to degrade performance for either intensity
or structure.

KEYWORDS

tropical cyclones, numerical weather prediction, surface winds, data impact, data
assimilation, ocean models, air-sea heat fluxes

1 Introduction

Improving 10 m wind analyses is crucial to improving forecasts of potential hazards
from tropical cyclones (TCs) such as wind gusts and, in particular, perhaps the deadliest
TC hazard, storm surge (Rappaport et al., 2009; Powell and Reinhold, 2007). Storm surge
in recent US landfalling TCs has accounted for more deaths than any other cause. For
example, the National Hurricane Center (NHC), in its end-of-season report on landfall
damage fromHurricane Ian, states, “Ianwas responsible for at least 156 fatalities, 66 ofwhich
were considered deaths directly caused by the storm. […] Storm surge was the deadliest
hazard, claiming 41 lives, with 36 of the 41 surge fatalities occurring in Lee County, Florida
[…]Of other causes, only] 4were related towind, and 1was due to rough surf.” (NHC, 2023).
In the present study, we will see that assimilating near-surface wind data can significantly
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influence forecasts of TC intensity, of the ocean conditions beneath
the TC, and ultimately, the initial conditions upon which storm
surge forecasts are based.

Extensive literature shows that satellite 10 m wind observations
over the ocean help to improve the accuracy of numerical
weather analyses and forecasts (Atlas et al., 2001; Atlas, 1997;
Candy et al., 2009; Leidner et al., 2003; Schulz et al., 2007).However,
most existing satellite observing systems have limited temporal
resolution (e.g., 1–2 overpasses per day), and some of those based
on scatterometry may saturate at higher wind speeds, and may
provide less accurate ocean 10 m high wind speed data when there
is precipitation. Scatterometry performance depends on the type
of scatterometer: C-band scatterometers (e.g., ASCAT) perform
well in precipitation, but usually have smaller swaths, while Ku-
band scatterometers (e.g., QSCAT, OSCAT) experience significant
attenuation in precipitation. Both types of scatterometers, however,
tend to saturate at high wind speed (Dani et al., 2023).

Of satellite remote sensing instruments, only L-band receivers,
such as those on the NASA Cyclone Global Navigation Satellite
System (CyGNSS; Ruf C. S. et al., 2016; Ruf C. et al., 2016), can
observe winds in the presence of heavy rain - a ubiquitous feature
within the core and feeder bands of a TC. Thus, CyGNSS has
the potential to mitigate some of the previous shortcomings in
the temporal and spatial sampling of the 10 m wind field in TCs
(Rappaport et al., 2009). CyGNSS also provides more frequent wind
speed retrieval than other systems, which can be critical in sampling
the rapid evolution of TC wind structure (Rogers et al., 2013),
especially during rapid intensification (RI) or eyewall replacement
cycles. These features of CyGNSS also have the potential to improve
the accuracy of the forecast wind products which are required
for operational and research storm surge models, e.g., the Coastal
and Estuarine Storm Tide (CEST; Xiao et al., 2006) and the Sea,
Lake, and Overland Surges from Hurricane (SLOSH; Glahn et al.,
2009) models.

Due to coordinated efforts such as the Hurricane Forecast
Improvement Project (HFIP; Gopalakrishnan et al., 2021),
operational TC forecasting has improved markedly over the last
15 years. The accuracy of TC track forecasts has continued to
improve, particularly at longer lead times (4 and 5 days, e.g.,
Landsea and Cangialosi, 2018). Furthermore, research programs
have recently also improved intensity forecasts as measured
by either maximum 10 m winds or minimum central pressure
(Cangialosi et al., 2020; Alaka jr et al., 2024). Finally, recent research
has focused on other metrics important to forecasting TC hazards,
such as wind radii (e.g., Cangialosi and Landsea, 2016).

The current study presents the results of an observing system
experiment (OSE), building upon previous research which used
observing system simulation experiments (OSSEs). Numerous
studies have explored the effects of simulated CyGNSS-derived
winds through regional OSSEs (McNoldy et al., 2017; Zhang et al.,
2017; Annane et al., 2018; Leidner et al., 2018). OSSEs operate
on the same principle as OSEs, but utilize observations derived
from a simulated atmosphere to assess observations that are not
yet available (e.g., Hoffman and Atlas, 2016). The four CyGNSS
OSSE studies mentioned earlier employed a regional OSSE system,
wherein the Hurricane Weather Research and Forecasting (HWRF)
limited-area model was utilized to generate TC forecasts using
simulated observations.

McNoldy et al. (2017) and Zhang et al. (2017) investigated
scalar winds' impact and identified enhancements in the analyses
and forecasts of track, storm intensity, and storm structure.
McNoldy et al. (2017) proposed that incorporating a directional
component may improve results. Annane et al. (2018) observed
positive impacts on track and intensity forecasts from scalar and
vector winds, particularly when cycling every 3 h compared to 1- or
6-h cycling intervals. Leidner et al. (2018), on the other hand, noted
more consistent improvements fromwind data assimilation in storm
intensity (2-5 knots) than in track forecasts, but their findings also
showed that vector winds were more beneficial than scalar winds
in improving model representation of 10 m wind field structures.
Analyses without directional wind components were found to be
more susceptible to dynamic imbalances and non-physical storm
structure asymmetries.

This study focuses on the impact of CyGNSS-derived 10 mwind
speed observations over the ocean on numerical weather prediction
(NWP) analyses and forecasts of the NOAA operational Hurricane
Analysis and Forecast System (HAFS). The aim of the present study
is, first, to look at the impacts of CyGNSS on statistics for storm
track, intensity, and structure, then, second, to analyze the effects
of CyGNSS on the evolution of air-sea interaction in intensifying
TCs. In the discussion below, we also briefly note that such data can
contribute to improving NWP model parameterizations for surface
air-sea fluxes (wind stress and sensible and latent heat). However,
such improvements are beyond the scope of the present work. The
paper is structured as follows: Section 2 outlines theOSE framework
and presents the experimental design, while Section 3 discusses
the results. Section 4 summarizes this study, focusing on its findings
and limitations, and briefly outlines future planned studies.

2 Data and methods

Since a global modeling system is heavily parameterized and
cannot sufficiently resolve the small scales that are significant
contributors to the rapid intensification processes of TCs, a regional
model specifically developed for TCs is utilized in this study
(Mueller et al., 2021). A version of the operational HAFS model is
chosen (see Sec. 2.2). This approach enables the assessment of the
impact of CyGNSS Level 2 data through improved HAFS initial
conditions (ICs).We evaluated impacts of assimilatingCyGNSS data
on TC intensity and structure forecasts from the “B” configuration
(hereafter, HFSB) of NOAA HAFS v1.0 (Hazelton et al., 2023) using
two experiments (see Table 1). Initialization for all experiments
occurs at the specified time indicated in column 2 of Table 2, until
reaching the date and time specified in column 3. For each 5-day
forecast within a givenOSE experiment, Errormetrics are computed
every 6 h with respect to the Best Track data, where error is defined
as the difference between the experiment and the Best Track data.

The initial four cycles (full day) of the experimental period
for each storm is used to initialize the model state with CyGNSS
observations, while forecast cycles from all subsequent days
are utilized to generate TC statistics. Mueller et al. (2021)
took a similar approach, but used 15 days to initialize the
model state with CYGNSS observations; theirs however, was a
global model. Annane et al. (2018) on the other hand used 1 day
in the regional hurricane model HWRF.
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TABLE 1 List of experiments.

Experiment name Data assimilated

CNTL All data assimilated operationally: conventional
(including terrestrial, aircraft, and satellite
datasets), clear-sky satellite radiances,
ground-based radar, METAR, and reconnaissance
data

CV31 Conventional, Radiances, with CyGNSS v3.1

2.1 CyGNSS

The CyGNSS constellation, comprising GPS receivers aboard
eight minisats launched on 17 December 2016, captures reflected
ocean surface signals of opportunity emitted by existing GPS
satellites (level-1). Unlike traditional scatterometers with a
monostatic setup, where the transmitter and receiver are collocated,
CyGNSS utilizes a bistatic configuration as depicted in Figure 1,
where the transmitter and receiver are positioned on separate
platforms. CyGNSS Level 2 data comprises 10 m derived winds
extracted from the level-1 data. These level-1 data represent the raw
scattered GPS radio signals collected by CyGNSS receivers, initially
processed into Level-1 observables such as normalized bistatic radar
cross-section and leading-edge slope (Gleason et al., 2016; 2019;
Clarizia and Ruf, 2016a; Clarizia and Ruf, 2016b).

Various CyGNSS-retrieved ocean surface data versions are
generated through different processing and calibration methods
applied to the CyGNSS Level I data. The geophysical model
functions (GMFs) used to convert Level-1 to Level-2 data vary based
on the sea state (Ruf and Balasubramaniam, 2019). We have two sea
states: young seas with limited fetch (YSLF), characterized by rapidly
changing wind and sea state, often observed in stormy weather
conditions, and fully developed seas (FDS), characterized by mature
periodic waves without rapid changes in wind or sea state. For
this study, winds retrieved using the YSLF algorithm were chosen
because YSLF conditions prevail over a large portion of the ocean
surface where the HAFS storm-following moving nest operates.

The CyGNSS Level 2 wind speed data (Version 3.1) is extracted
from the NETCDF files available at the following link: https://
podaac.jpl.nasa.gov/dataset/CyGNSS_L2_V3.1.The data undergoes
quality control, where only winds with errors less than or equal to
3 m/s are retained. After this filtering, we are left with a relatively
small sample, particularly at high wind speeds. Discrepancies in
error statistics are observed when comparing different versions
of CyGNSS Level 2 winds, as discussed by Pu et al. (2022). The
latest operational versions, v3.0 and v3.1, show an increase in high
wind speeds relative to v2; however, they also come with larger
uncertainties. The 6-hourly prepbufr files required by HAFS DA are
generated from CYGNSS for the times listed in Table 2.

Incorporating CYGNSS data into assimilation poses a challenge
due to its spatial measurement density, which stands at 6 km along
the specular path. This leads to notable overlap between consecutive
observations, sampling much of the same ocean surface area within
seconds, thereby introducing a correlation between observations.
Using all these observations without adjustments risks overfitting
the model state to the data. In our OSE, we choose not to thin

the CyGNSS data but to utilize all available data and inflate the
errors associated with CyGNSS relative to other observation sources
with smaller observation samples, to avoid overfittingwithCyGNSS.
This follows the approach outlined by Mueller et al., 2021. Figure 2
depicts an example of CyGNSS Level 2 10 m winds for the analysis
time of 06:00 UTC on 7 October 2018.

2.2 Hurricane Analysis and Forecast System

The HFSB configuration of NOAA HAFS v1.0 was made
operational in 2023. HAFS is a hurricane application of NOAA’s
Unified Forecast System (UFS) framework, which couples a
regional configuration of the FV3 finite-volume atmospheric
model (Lin and Rood, 1996; Lin, 2004) using assimilation of
atmospheric observations, with the Hybrid-Coordinate Ocean
Model (HYCOM) (Bleck et al., 2002) through the Community
Mediator for Earth Prediction Systems (CMEPS). The HFSB version
of HAFS incorporates updated parameterizations for planetary
boundary layer (PBL) mass flux and atmospheric microphysics.
HFSB uses a fixed, storm-centric, 75x75° outer regional atmospheric
domain based on Extended Schmidt Gnomonic (ESG) projection
with horizontal resolution of 6 km. Coupled with this outer
domain is a moving nest of about 12x12° at 2 km horizontal
resolution (Figure 3). The moving nest vertical grid has 81 vertical
levels reaching 2 hPa. The HYCOM domain is fixed (non-storm
centric) and covers the NHC’s areas of responsibility for the North
Atlantic, Eastern North Pacific and Central North Pacific basins, at
1/12-degree horizontal grid spacing with 41 vertical ocean levels.

The Global Forecasting System version 16 (GFSv16) provides
atmospheric initial conditions and 3-hourly lateral boundary
conditions for the outer domain. HFSB also features vortex
initialization (e.g., Lin, 2004), comprising vortex relocation for all
cases and vortex modification (intensity and size) when initial TC
intensity is ≥30 m/s. Techniques used to assimilate atmospheric
observations include four-dimensional ensemble variational
(4DEnVar, using GDAS ENKF ensemble members) and First-Guess
at Appropriate Time (FGAT). HAFS also implements self-cycling
(warm-cycling) for the atmospheric model, initializing subsequent
forecast cycles utilizing the previous cycle. HAFS currently only
performs DA on the inner moving atmospheric nest. Ocean initial
conditions come from the operational Real Time Ocean Forecasting
System (RTOFSv2; Garraffo et al., 2020), which performs oceanDA;
HAFS HYCOM itself performs no ocean DA. At each coupling time
step, FV3 and HYCOM exchange coupling variables as outlined
in the companion paper by Gramer et al. (2024). HFSB uses
atmospheric physics parameterization options as documented in
Hazelton et al., 2023, including the scale-aware Simplified Arakawa-
Schubert (SAS) convective scheme (Han et al., 2017), the turbulent-
kinetic-energy (TKE)-based eddy diffusivity mass flux (EDMF-
TKE) PBL scheme (Han and Bretherton, 2019), and the Thompson
microphysics scheme (Thompson et al., 2004). See Hazelton et al.
(2023) for further details.

The version of HAFS described here can be obtained from the
production/hafs. v1 branch of the HAFS GitHub repository, https://
github.com/hafs-community/HAFS.

To assess the impact of CyGNSS, we generated forecasts from
the time of cyclogenesis for each TC case, taking advantage of
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TABLE 2 All forecast cycles (87 total) analyzed for the present study.

Year, storm ID, name First cycle Last cycle Total # of cycles

2021 12L Larry 2021/08/31 18Z 2021/09/03 06Z 10

2021 18L Sam 2021/09/23 00Z 2021/09/24 06Z 5

2022 06L Earl 2022/09/03 00Z 2022/09/06 00Z 13

2022 07L Fiona 2022/09/14 12Z 2022/09/18 06Z 15

2022 09L Ian 2022/09/23 06Z 2022/09/28 18Z 27

2022 13L Julia 2022/10/07 18Z 2022/10/09 00Z 6

2022 15L Lisa 2022/10/30 18Z 2022/11/02 06Z 11

FIGURE 1
The geometry of bistatic radar measurement involving GPS-based
quasi-specular surface scattering is depicted. The GPS direct signal,
the transmitter, furnishes location, timing, and frequency references.
Conversely, the forward scattered signal, received by CyGNSS as
the receiver, carries ocean surface information. Image credit:
Rose et al. (2014).

self-cycling atmospheric DA. The CyGNSS forecasts utilized an
identical atmospheric model configuration to that described above,
including atmospheric DA, but also incorporating CyGNSS v3.1
data as described above.

2.3 Experimental setup

Two experiments (Table 1) are conducted to evaluate the
simulated impact of CyGNSS observations on hurricane analysis
and forecasting. Firstly, a controlDAexperiment (CNTL) assimilates
standard conventional data routinely integrated into the 2023 HAFS
Global DA System (GDAS). This includes radiosondes, tail Doppler
radar, ground-based radar, atmosphericmotion vectors, and various
satellite-based observations, as listed in Zhang (2021), but excludes

CyGNSS data. The second experiment (CV31) involves adding
CyGNSS v3.1 Level 2 wind speeds to the control.

2.4 Case selection

Two criteria guide the selection of case studies for this analysis,
aiming to showcase the potential impact of CyGNSS data.

1. Intensity Forecast Errors: Based on previous OSSE results,
cases where the operational HWRF model exhibited notable
errors in intensity forecasting were chosen. The objective
is to assess whether CyGNSS data can enhance these
forecasts.

2. Early-Stage TCs: Specifically targeting initial forecasts of
tropical depressions and tropical storms, which often lack
adequate observation (e.g., TC Larry). Leveraging CyGNSS’s
frequent revisit time, valuable insights into the structure of
these developing systems can be obtained. However, CyGNSS
winds are not reliable at higher wind speeds (see above). In
addition, many of the TCs in this study began to display some
subtropical and extratropical features later in their life cycles,
making it increasingly less likely that ocean impacts would be
important. For both of these reasons, the full lifecycle of most
TCs was not evaluated, except for Ian.

All TCs listed in Table 2 meet the two criteria above and are
included in this data impact study. In each experiment, a 5-day
HAFS forecast is initiated every 6 h, with verification against the
NHC Best Track conducted for each case.

2.5 Diagnostic and evaluation methods

The TCs analyzed are illustrated in Figure 4. All TCs occurred
between 2021 and 2022. Tracking of TCs was performed using
the latest version of the GFDL vortex tracker (Marchok, 2021).
Forecast verification was conducted using Best Track data from the
NHC HURDAT-2 database (Landsea and Franklin, 2013). These
Best Track data provided TC location in increments of 0.1° for
latitude and longitude, maximum 10 m winds in increments of
5 kt, and minimum sea-level pressure in increments of 1 hPa. The
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FIGURE 2
CyGNSS Level 2 10 m winds for analysis time: 7 October 2018 06:00 UTC. Assimilation windows span 6 h ( ± 3 h) and are centered at the analysis
times. Each individual point on the plot corresponds to observations at specular points. Due to the scale of the plots, these points may appear to create
lines, commonly referred to as specular point tracks.

FIGURE 3
The black box represents the outer domain (fixed, initially storm-centric with 6-km grid spacing). The red box indicates the storm-centered moving
nest with 2-km grid spacing. The HYCOM ocean domain (with 9-km grid spacing) is depicted in blue.

results presented are based on homogeneous samples of all analyzed
forecasts for that experiment, andwere verified every 6 h. Additional
forecast metrics presented below include the consistency metric,
described in Ditchek et al. (2023), and other commonly calculated
mean absolute error (MAE) and bias statistics.MAE skill, as referred
to below, is the ratio between MAEs for two experiments, expressed
as a percentage.

Additional statistics were defined as follows: we calculated
100 km annular “footprint” averages and standard deviations,
centered at the forecast storm center, for each of sea surface
temperature (SST), total latent and sensible heat fluxes at the air-
sea interface, planetary boundary layer (PBL) height, and (average
only) warm core anomaly. PBL heights were determined based

on mean height of zero inflow (radial) velocity, following the
method of Zhang et al. (2020). The definition of warm core anomaly
used here is the difference between the azimuthal mean potential
temperature profile at each radial distance bin, and that of the
azimuthal mean potential temperature averaged in the 200–300 km
annulus from the center of the storm (Stern and Nolan, 2012;
Zhang et al., 2020).

3 Results

The outcomes of the experiments are presented in two parts:
First, we analyze forecast metrics from each experiment across
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FIGURE 4
Storm track from NHC Best Track (colored lines) for TCs investigated in this study: Ian 2022AL09, Fiona 2022AL07, Lisa (2022AL15), Sam (2021AL18),
Earl 2022AL06,Julia (2022AL13), and Larry (2021AL12).

all cycles (see Table 2 above), including absolute positional errors,
intensity in the form of minimum central pressure (PMIN), radius
from the TC center at which maximum 10 m wind occurs (radius of
maximum wind or RMW), and radii averaged over all four cardinal
quadrants for 34, 50, and 64 kts, respectively (R34, R50, R64). We
then examine two individual forecast case studies, which for the
CV31 experiment incorporate several previous cycles of CyGNSS
data, in order to elucidate likely mechanisms by which CyGNSS
10 m wind initialization impacted the above-mentioned forecast
metrics. As outlined below, these studies were chosen to represent
both an open ocean TC in the Atlantic and a landfalling TC case
that transited the Gulf of Mexico.

3.1 Statistical forecast results

Figure 5 compares the overall track results of the CNTL (red)
and CV31 (green) experiments. We see improvements in absolute
track accuracy across more than half of all lead times, excepting
hours 0 and 24 h. Overall, the MAE track skill showed a 4.7%
improvement over CNTL.

Figure 6 compares the overall PMIN and VMAX results of the
CNTL (red) and CV31 (green) experiments. In the panel at left,
we see enhanced performance of CV31 for PMIN in the initial
state (Figure 6A), and improvement (positive values) in skill space
(line graph) and in the consistency metric (shaded boxes; see
Ditchek et al., 2023) in five of the 22 forecast periods (every 6 h
through forecast hour 126), peaking at 20% MAE skill and positive
consistency metric at hours 0 and 84. However, we do note that
the only extended period of marginally consistent improvement was

FIGURE 5
Mean Absolute Error (MAE, top panels, [km]) and MAE skill (bottom
panels) for the CV31 (green) and CNTL (red) experiments for absolute
track error. Shaded boxes between the MAE and MAE skill panels
indicate, for individual forecast lead times, whether results were fully
consistent (dark green), marginally consistent (light green to light
orange), or not consistent (dark red, none in this figure). Sample size is
given below the x-axis in each panel. Mean relative skill percentage is
highlighted in boxes at the lower right of each panel.
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FIGURE 6
The MAE (top panels) and MAE skill (bottom panels) for the CV31 (green) and CNTL (red) experiments for (A) minimum central pressure (PMIN [hPa]), (B)
maximum wind speed (VMAX; [m/s]). Shaded boxes between the MAE and MAE skill panels indicate consistency for each forecast lead
time, as in Figure 5. The sample size is given below the x-axis in each panel. Mean relative skill percentage is highlighted in boxes at the lower right of
each panel.

forecast hours 84–90, and that there were three forecast periods
of marginally consistent degradation for hours 42, 48, and 96. In
addition, in the panel at right (Figure 6B), we see skill improvements
(positive line graph and positive consistency in the shaded boxes)
in maximum surface wind speed accuracy across nearly half of all
lead times. We also see forecast periods showing consistent CV31
degraded performance at hours 0, 6, and 48. Overall, the MAE skill
for PMIN in CV31 showed a 4.3% improvement over CNTL; for
MAE VMAX skill, this improvement was 5.8%. Statistical results
for RMW, R34, R50, and R64 (figures not shown) indicated mixed
outcomes when comparing CV31 to CNTL. At analysis time, when
DA has the most significant impact, both RMW and R34 for CV31
demonstrated improvements over CNTL (not shown).

Overall, we find that CyGNSS data enhanced TC intensity
forecasts statistically (Figure 6) relative to CNTL. We also note that
the consistency metric takes into account Frequency of Superior
Performance (FSP), MAE, and median absolute difference in
errors (MDAE), as well as MAE skill. Forecast track was also
improved at most forecast hours throughout 5 days forecasts with
the assimilation of CyGNSS data (Figure 5).

Supplementary Figure S1 in the Supplementary Information
(SI) plots percentage-point contributions (Ditchek et al., 2023) from
forecast life cycles of individual storms to mean absolute error
skill for intensity. Consistent with Figure 6, these results show
overall improvement in PMIN (Supplementary Figure S1A) and
slight degradation in VMAX (Supplementary Figure S1B) at hour
0. However, the degraded VMAX at analysis time is shown to be
largely the result of three storms, Earl, Fiona, and Ian - two of which
showmarkedpositive impact ofCV31onPMINat that same forecast
hour 0. We finally note that for VMAX, published observational

uncertainties in Best Track have been shown in prior studies to
exceed 10 kts (Landsea and Franklin, 2013).

Additional statistical analyses for two case studies follow in the
succeeding sections.

3.2 TC-ocean interaction case studies

We next examine individual forecast cycles for two storms, Ian
and Larry, chosen to represent the cumulative warm-start impact
of several previous cycles of CYGNSS DA. We chose the case
study for Ian at a cycle for which the CNTL had settled on a very
good track relative to Best Track, and just 24 h prior to its major
impact at Florida landfall; this case provides useful insights into
the interaction between the forecast TC and the continental shelf
and coast of western Florida. The other case study for Larry was
chosen to show the interaction of a major hurricane with the open
ocean in the central tropical Atlantic. The Ian forecast shows an over
intensification in the CNTL; the Larry cycle by contrast shows an
under forecast in CNTL.

3.2.1 Shelf and coastal interaction (TC Ian)
In this subsection, wewill delve intoTC Ian,whichmade landfall

in Florida as a Category 4 hurricane, one of the most impactful
hurricanes of 2022 (NHC, 2023). Ian originated over the Caribbean
Sea in late September and underwent rapid intensification before
crossing western Cuba. It then further intensified into a Category
5 hurricane in the Gulf of Mexico before hitting southwest
Florida with powerful winds, heavy rainfall, and destructive
storm surges. Figure 4A illustrates Ian’s track. Aerial reconnaissance
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FIGURE 7
A consistency scorecard detailing CyGNSS’s direct influence on all TC Ian forecasts considered for the present study, covering track, VMAX, PMIN, R34,
R50, R64, and RMW error metrics, arranged in descending order. Box colors are as described in Figure 5, with shades of green indicating improvement
in the CV31 results vs CNTL.

for Ian was initiated on September 21 when it was an INVEST, but
regular flights did not begin until after 09:38 UTC on September 23.

Initialization for the Ian case study starts at 23 September 2022
at 06:00 UTC, incorporating a CyGNSS overpass into the CV31
experiment. A 5-day HAFS forecast was initiated every 6 h. Cycling
continued until 28 September at 18:00 UTC, resulting in a total of
27 analyses and forecasts. Verification against the Best Track was
performed for each experiment.

In Figure 7, we look at statistical results for all forecasts of
TC Ian considered in this study. We see multiple forecast periods
with enhancements from CV31 relative to CNTL, in consistency
metrics for track, intensity (both VMAX and PMIN), R34, and R64
during the initial 18–24 h of all forecasts, with improvements in R34
apparent out to 48 h; these early results are then followed by varying
outcomes thereafter. Significant degradation is only seen in one
parameter, R64 at forecast hour 48. By contrast, we see marginally
consistent improvements with CV31 for track throughout much
of the 5 days forecasts represented in the figure, and persistent
improvements in R34 within the first 2 days of each forecast.
Overall, we see nine periods of improvement for CV31 in track,
seven periods of improvement in PMIN including fully consistent
improvement during the first forecast period, and eight periods of
improvement in R34.

We now examine in more detail, as a case study, a single forecast
for Ian initialized on 27 September 2022, at 18:00 UTC, because it
shows the impact of 4 days of accumulated cycled DA with CyGNSS
on a TC which is also close to landfall. (Note that the prior statistical
results in Figure 7 included a number of forecasts where Ian was
primarily over the Caribbean, and where the track bias in HFSB
tended to bring Ian to the west and north of its final landfall
location.). Landfall in this forecast occurred between hours 21 and
24 in each of the CNTL and CV31, matchingNHC-reported landfall
at 20:20 UTC on September 28 (NHC, 2023). The track for both the

CNTL forecast (plotted in red in Figure 8A) and CV31 forecast (in
blue) matched well with the Best Track (in black) up through Ian’s
landfall and passage over Florida.

The intensity (Figure 8B) for the CNTL shows an increase
relative to CV31 and Best Track at forecast hours 0–18, just prior
to Ian’s landfall in west Florida. The CV31 experiment by contrast
matches the NHC Best Track intensity (plotted in black) more
closely through landfall and the rapid weakening which followed.
After passage of the storm center onto land, 10 m winds for CV31
decay less rapidly (9 h to decrease below hurricane intensity) than
for CNTL (6 h), matching the Best Trackmore closely for a period of
12 h. The 10 m wind field analysis for the CNTL (Figure 8C) shows
broader 34 and 64 kt wind fields than CV31 (Figure 8D), with CV
31 verifying more closely with Best Track (figure not shown). Both
of these initial outer core wind fields show pronounced asymmetry.
However, the inner core winds for the CNTL (>83 kt, shown in
yellow and red) not only are broader than those of CV31 but also,
unlike CV31, wrap nearly the entire way around the center.

We next examine the available enthalpy at the air-sea interface in
the two coupled model configurations, to identify differences which
may be related to these disparate intensity forecasts. In Figure 9, we
observe broader and more intense air-sea enthalpy fluxes (ASEF)
around the eyewall in the CNTL (left; brighter, broader yellows)
as compared to CV31 (right; dimmer, darker greens and yellows)
throughout the initial period of the forecast. The enthalpy fluxes
also show greater symmetry around the inner core for the CTRL.
In the CTRL, these broader, more symmetric features in the ASEF
correlate well with a broader initial wind field, and greater wind-field
symmetry in the inner core (compare winds >83 kt, shown in yellow
and red in Figure 8C, with Figure 9B) relative to CV31 (compare
Figures 8D, 9D).

In Figure 10, we see azimuthal (“footprint”) averages within
100 km around the storm center at each forecast hour, for SST
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FIGURE 8
Hurricane Ian forecasts initialized on 27 September 2022 at 18:00 UTC. (A) Track from NHC Best Track (black), CV31 (blue), and CNTL (red). (B) Intensity
[kts]. Wind field at analysis time [kts] for (C) CNTL, and (D) CV31.

(Figure 10A), ASEF (Figure 10B), and PBL height (Figure 10C), as
well as warm-core temperature anomaly (WCA, Figure 10D), for
both CTRL (red) and CV31 (blue). Figure 10A shows identical

footprint average SSTs between the two experiments at hour
0; however, the average and standard deviations increase more
rapidly for the CNTL in the first 18 h. We note here that the
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FIGURE 9
As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022, at 18:00 UTC. Net (sensible + latent) enthalpy fluxes [W/m2] at hours 6 (panels
a and c) and 12 (B, D) for CTRL (A, B) and CV31 (C, D).

two forecasts made landfall within approximately 3 h of one
another, between forecast hours 24 (CNTL) and 27 (CV31).
Similarly, ASEF (Figure 10B) for the CNTL is slightly less than
CV31 at hour 0, but then also increases much more rapidly,
already surpassing CV31 at hour 6. Finally, footprint statistics
for PBL height (Figure 10C) and WCA (Figure 10D) for the
CTRL begin at lower values, but then increase more rapidly,
surpassing CV31 by hour 12. As a result of assimilating CyGNSS,

Ian’s initial outer-core wind field in CV31 was weaker but
more symmetric (Figure 8D) than the CTRL (Figure 8C). The
greater initial symmetry in the CV31 winds explains the fact
that the footprint average ASEF for CV31 was slightly greater
than for CNTL (Figure 10B) at hour 0.

Interestingly, CTRL’s broader and stronger initial wind field
(Figure 8C) relative to CV31 (Figure 8D) corresponds to a more
rapid footprint SST warming in CNTL than in CV31 (Figure 10A).
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FIGURE 10
As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022 at 18:00 UTC. 100-km azimuthal averages (solid lines) and standard deviations
(dashed) from CTRL (red) and CV31 (blue) for: (A) SST [°C], (B) ASEF [W/m2], (C) PBL height [m], and (D) warm-core-anomaly [K].

The reasons for this are apparent in the differences between
sea-surface heights produced by the ocean models in the two
experiments over the west Florida ocean shelf (Figure 11A, with
corresponding SST differences in Figure 11B). At forecast hour 18,
red areas along the southern Florida shelf break in Figure 11C
show that the larger, stronger wind field of the CNTL was
already forcing significant convergence in ocean surface currents
(Supplementary Figure S2A, showing convergence at hour 12),
resulting in a pronounced sea-surface “bulge” relative to CV31
(Figure 11D; Supplementary Figure S2B). Such bulges in shelf sea

surface height over one or more inertial periods are associated
with the development of coastal downwelling (Gramer et al., 2022),
resulting in sustenance or enhancement of SST over the shelf. The
differences in SST between CNTL and CV31 at the same forecast
hour (Figure 11B) bear this result out, with a region of significantly
warmer SST beneath the core of the TC on the outer shelf shown at
hour 18. As a final comment, we note again that the improvement
in intensity in the first 24 h of this CV31 forecast relative to CNTL,
as seen in Figure 8A, differs from the overall intensity statistics as
presented in Figure 7.
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FIGURE 11
As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022, at 18:00 UTC. (A, B) Differences at forecast hour 18 between CNTL and CV31
for TC Ian, in (A) sea surface height [m], and (B) SST [K]. (C, D) Sea surface height at forecast hour 18, just before Florida landfall, in (C) CNTL and
(D) CV31.

The impact of the enhanced initial 10 m wind field in the
CNTL was not limited to its greater forecast maximum intensity: as
Figure 11C shows, the broader, stronger wind field in CNTL may
have produced a greater likelihood of widespread storm-flooding

on Florida’s west coast than CV31. The region of sea surface height
above 1 m in the CNTL stretched from Tampa Bay to Florida
Bay, as compared with a narrower, shorter band of extreme sea-
surface height increase for CV31 (Figure 11D). This is a direct
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consequence of the enhanced coastal Ekman convergence associated
with the wind fields in CNTL, and would have likely produced a
forecast for more widespread inundation than the corresponding
CV31 forecast would have done. Corresponding differences in the
expected impacts to coastal and shelf marine ecosystems from the
CNTL vs CV31 forecasts could have resulted as well.

The more rapid SST warming in CTRL in hours 3–18
(Figure 10A), in combination with higher 10 m winds, led to
more rapidly increasing ASEF in hours 6–18 (Figures 9, 10B).
Greater ASEF in the CTRL would have been consistent with more
buoyant uplift near the surface and a higher PBL (Figure 9A)
for hours 6 through landfall. Inflow of this increased buoyancy
would have been consistent with a more buoyant eyewall and
greater WCA (Figure 9B) for CNTL. The ensuant deepening of
convection associated with this enhanced WCA would very likely
have contributed to the anomalous over intensification of the CTRL
forecast vs CV31 in those later forecast hours.

The authors clearly acknowledge however, that the anomalous
intensification of the CTRL in the very early forecast (hours 3–12)
would have been driven largely by other differences in the near-
storm environment between the experiments, beyond the scope of
the present analysis; the above results however demonstrate that as
the forecast progressed, the dynamic ocean response to the surface
wind field, evolving from the different analysis in CV31 vs CNTL,
appears to have influenced the available enthalpy, in a way that was
consistent with and likely contributed to the evolution of the forecast
intensity during hours 9 through Florida landfall. Finally, the
enhanced breadth and strength of the wind field for CNTL produced
greater convergence and larger areas of enhanced sea-surface height
near the coast (Figure 11C) relative to CV31 (Figure 11D). Although
a storm surge model was not a part of the present study, the sea-
surface height difference just offshore of the coast highlighted here
would have provided substantially different boundary conditions for
storm surge modeling.

Supplementary Figure S3A is a histogram of data points
assimilated from CYGNSS per cycle for TC Ian, from tropical
depression through hurricane landfall in Florida. In general,
we have three passes over the storm per day, and the data
coverage is often inconsistent; coincidentally, the cycles with
greatest coverage in the vicinity of Ian were 25/12Z, 26/12Z,
and 27/12Z. Supplementary Figure S3B–M show data coverage and
quality-controlled speed retrievals for individual overpasses over
the moving model nest for Ian. The 00Z and 06Z cycles for this
period, particularly 06Z, have much less data than the 12Z cycles;
there is no coverage for 18Z cycles.

We previously noted (discussion of Supplementary Figure S1
above) that in the early cycles of several of the TCs from our
experiment, the impact of initial CYGNSS data assimilation on
forecast metrics was more mixed. In Supplementary Figure S4, we
show track and intensity (VMAX), translation speed, and the
structure metrics (RWM, R34, R50, R64) for a forecast earlier
in the life cycle of Ian, initialized on 25 September 2022 at 06Z.
This cycle forecast landfall further west in Cuba, and much
further north and west in Florida and Alabama. CV31 VMAX
was stronger from the analysis time until continental landfall, as
a result of initializing with a slightly stronger, substantially more
symmetric near-surface wind field (Supplementary Figure S5A) as
compared to CNTL (Supplementary Figure S5B).

3.2.2 Open ocean interaction (TC Larry)
TC Larry (12L) originated from a tropical wave that emerged

off the coast of Africa, coalescing into a tropical depression on 2021
August 31. Within a day, the depression intensified into a tropical
storm named Larry. Rapidly traversing the far eastern tropical
Atlantic, it escalated into a Category 1 hurricane by the morning
of September 2. After a period of swift intensification, Larry surged
to a major Category 3 hurricane early on September 4. Figure 4G
illustrates Larry’s track. Aerial reconnaissance for Larry was not
initiated until September 5.

Initialization for the Larry case study started at 31August 2021 at
18:00 UTC. A 5-day HAFS forecast was initiated every 6 h. Cycling
continued until 03 September at 12:00 UTC, resulting in a total of 12
analyses. Verification against the Best Track data was performed for
each experiment.

Larry is a TC which intensified rapidly over the open, tropical
ocean. For our second case study we examine the forecast of Larry
initialized on 2021 September 03 at 12Z, when several overpasses
of CyGNSS had previously provided surface winds for atmospheric
DA. For this cycle, both experiments performed well in forecasting
the center position relative to Best Track throughout the 5 days
forecasts (Figure 12A). However, unlike in the case of Ian, CV31
forecast a strongerTC (Figure 12B, blue) relative toCNTL (red).This
stronger forecast verified better versus Best Track (black) for hours
6–66, but worse thereafter.

The initial 10 m wind field for CNTL (Figure 12C) was both
smaller (narrow fields between 34 and 83 kts in cyan and green),
and more intense (>96 kts in the northwestern quadrant, bright red)
than that for CV31 (Figure 12D). However, an important feature of
the hour 0 wind field in CNTL was the presence of 105 kts wind in
the inner core (Figures 12B, red), a feature which was not present
in either CV31 or the Best Track. The rapid intensification in the
CV31 forecast occurred within 9 h of initialization. Although this
was a more rapid intensification than Best Track, it does suggest that
the improvement in intensity forecast was closely associatedwith the
additional information on the initial 10 m winds from CyGNSS.

In the CNTL experiment, DA produced a vortex at analysis
time that had a substantial imbalance as evidenced by the initial
10 m wind field in Figure 12. The result of this imbalance was a
spindown between hours 0 and 3 (Tong et al., 2018). This spindown
was not present in CV31. The impact of this difference between the
experiments on the ocean, and on the evolving structure of the TC
after hour 6 is examined in Figure 13. In particular, this difference
in 10 m wind field analysis and early evolution between CNTL and
CV31 corresponds to differences in the SST (Figure 13A) and ASEF
(Figure 13B) beginning in forecast hour 6. Although footprint SST
at hours 6–18 cooled rapidly for both CNTL and CV31, the patterns
of this cooling differed between the experiments: initially, through
hour 6, CV31 cooled more rapidly than CNTL. Nevertheless, by
hour 9, this pattern reversed, with CNTL SST continuing to cool
rapidly, while CV31 cooling began to moderate. What these results
show is that the initial spindown in theCNTL corresponded formost
of the hours 9–54 with reduced ASEF (Figure 13B), PBL height, and
WCA, relative to CV31.

The result of the reduced 10 m wind in the CNTL forecast,
together with the enhanced cooling, was to substantially reduce
production of buoyancy by ASEF within 100 km of the center. This
reducedASEF in turn correspondedwith reduced PBL height within

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1418158
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Annane and Gramer 10.3389/feart.2024.1418158

FIGURE 12
Larry forecasts initialized 2021 September 03 at 12Z. (A) Track from NHC Best Track (black), CV31 (blue), and CNTL (red). (B) Intensity in kts. Wind field at
analysis time for (C) CNTL, and (D) CV31.

CNTL relative to CV31 (Figure 13C) beginning at hour 18, reaching
a peak difference from CV31 at hour 42. The impact of an initial
vortex imbalance in theCNTLwas reflected very quickly (by forecast

hour 6) in the reduced WCA peak temperature in the CNTL relative
to CV31 (Figure 13D). However, thisWCA difference was enhanced
up to hour 18, and maintained itself through hour 45. These features
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FIGURE 13
As for Figure 12, Larry forecasts initialized 2021 September 03 at 12Z. 100-km azimuthal averages (solid lines) and standard deviations (dashed) from
CTRL (red) and CV31 (blue) for (A) SST [°C], (B) ASEF [W/m2], (C) PBL height [m], and (D) warm-core-anomaly [K].

were all coincident with the weaker intensification of CNTL relative
to both CV31 and Best Track (Figure 12B).

4 Conclusion

In this study, we utilized the Hurricane Analysis and
Forecast System (HAFS) to assess the impact of CyGNSS-
derived scalar (CV31) near-surface winds on TC track,

intensity, and storm structure forecasts. The initial day of the
experimental period for each storm was used to spin up the
model state with CyGNSS observations, while subsequent days
were utilized for generating TC statistics. All observational
data were assimilated using the hybrid 4DEnVar, which was
the assimilation method employed in operational settings
during the experimental period. Observations were assimilated
within 6-h windows centered on four daily analysis times
(0000, 0600, 1,200, and 1800 UTC).
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As a newly established observing system, CyGNSS posed a
challenge to the current study by necessitating the consideration
of serial correlation in the information content and errors inherent
in the 1-Hz CyGNSS specular point tracks of retrieved winds.
Future research endeavors will prioritize the development of a
more foundational approach to address CyGNSS observation error
correlation within each specular point track and its integration into
the operational model.

For the present study, 7 TCs were selected for OSEs in
the Atlantic Basin using HFSB, a configuration of the coupled
operational HAFS. These TCs covered a range of conditions such as
deep water, shelf, Gulf storms, weakening and intensifying storms
(Table 2). A broad summary of the conclusions in the present study
included the following.

• CyGNSS enhanced initial TC intensity forecasts as evidenced
by PMIN (Figures 5, 7).

• Forecast track improved with the assimilation of
CyGNSS data (Figure 5).

• PMIN for CV31 showed an overall improvement of 4.7%;
VMAX showed overall improvement of 5.8%.

• Later CV31 forecasts in the sample for five out of 7 TCs showed
more consistent improvement in PMIN vs CNTL within the
first 36 h, resulting from the accumulation of several days of
CYGNSS data assimilation. For four of the TCs, later CV31
forecasts showed marginal or fully consistent improvements in
early-forecast VMAX as well.

• For one case study, that of a late, landfalling forecast for TC
Ian, assimilating near-surface winds modified the modeling of
ocean mixing and transport (e.g., upwelling and downwelling)
in such a way as to potentially contribute to an improved
intensity forecast (Figure 8), and modified the sea-surface
height forecast (Figure 11) in a way which would have
substantially modified surge-model boundary conditions and
so could well have significantly modified storm surge forecasts
(Dullaart et al., 2024; Powell and Reinhold, 2007). We also
briefly examined an earlier forecast for Ian, showing an example
where the experiment produced some forecast degradation.

• An additional case study over the open ocean, TC Larry, also
showed improvement in intensity and structure from CyGNSS
data. In this case, coastal and shelf interaction played no role.
Furthermore, this was a case where the CNTL persistently
underforecast the TC’s intensity relative to both Best Track
and CV31. However, in this case, as for Ian, the ocean is
implicated as playing a role, albeit a somewhat different one,
and in this case, in the later evolution of intensity from forecast
hours 9 onward.

• For the present study, CyGNSS provided critical observations
early in the TC lifecycle, when aerial reconnaissance is seldom
available.

Some inconsistencies in CV31 improvements in surface
wind and MSLP fields presented here suggest that assimilating
purely dynamical observations may lead to inconsistencies in
thermodynamic fields from cross-variable corrections. Previous
studies. Like Lu and Wang (2020), showed that this issue
can be addressed by assimilating more coincident near-storm
thermodynamic observations during DA. The maximum wind

speed is closely tied to MSLP through the relationship between
wind and pressure gradient (Knaff and Zehr, 2007). Commenting
on the wind-pressure relationship in HAFS is a complicated topic
(e.g., Chavas et al., 2017) and beyond the scope of the present study;
however, we note that our sample was dominated by early life-
cycle forecasts (when systems were tropical depressions or tropical
storms), when the wind-pressure gradient relationship would have
been weaker (Hazelton et al., 2023). Furthermore, given that this
study is limited to a small sample, future work could address this
question more directly using larger samples, incorporating full life
cycles of multiple TCs.

Including CyGNSS led to improvements in average wind radii
for the first 6 hours of forecasts analyzed here. Mixed results at
later forecast hours relative to Best Track, including times when
there were no aerial or ground observations of TC wind fields,
will bear further examination in future work. Previous analyses
have acknowledged (Cangialosi and Landsea, 2016) considerable
uncertainty in wind radii estimates from Best Track, particularly
for TCs that are not yet monitored by aircraft reconnaissance or
ground radar, which are precisely the candidate cycles we chose for
the present work. We therefore hypothesize that, notwithstanding
the limitations to structure validation statistics for the present
study, CyGNSS data may actually prove useful to improve the
uncertainty in Best Track estimates of these important wind radii
in further studies.

Understanding how these results align with previous efforts
to enhance TC forecasts using CyGNSS data is crucial. As
outlined in section 1, prior OSSEs conducted with the HWRF
model (Annane et al., 2018; Leidner et al., 2018) reported neutral
impacts on track forecasts and modest improvements (generally ≤5
knots) in maximum wind speed (VMAX) forecasts for individual
TC case studies. Previous OSEs (Pu et al., 2022; Cui et al., 2019),
which also utilized HWRF, demonstrated generally neutral to
positive impacts on track and intensity forecasts, offering promising
results. In the Mueller et al. (2021) OSE, CyGNSS was globally
assimilated, and this run was used as a lateral boundary condition
(LBC) in HWRF, also showing an improvement in track and
intensity. The present study, however, is the first that the authors are
aware of that looks at operational HAFS retrospective forecasts, and
the first to examine over 50 individual forecasts spanning 7 TCs.

The current study identified enhancements in track forecasts and
improvements in intensity metrics. A primary distinction between
the findings of this study and those of previous studies is the
utilization of a coupled model that integrates HYCOM, which may
contribute to HAFS’s superiority over HWRF in providing greater
skill at modeling the air-sea dynamics which can be critical to TC
forecasting (e.g., Kim et al., 2024). As a result of the considerations
above, any direct comparisons between the outcomes of previous
studies and this study should be approached with caution, as
the methodologies employed here represent a significant break
with past work.

It is critical to point out that the impact of assimilating
observations from CyGNSS for the initial 10 m wind field were
not limited simply to improved intensity and structure forecasts.
As both case studies (TC Ian in Figure 11, TC Larry in Figure 13)
demonstrate, the near-surface wind structure in hour 0 analysis
can also significantly impact the evolution of the ocean beneath
the storm. As the Ian case showed, storm flooding for landfalling
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TCs may also be significantly impacted as a result. Corresponding
differences in the forecast impact to marine ecosystems may also
occur.Verifying these hypotheseswill require inputting surfacewind
and sea level data into storm inundation models in future studies.

Finally, the present study highlights an important mechanism
by which near-surface wind analysis can impact both sea-surface
height and TC intensity structure, namely, by modifying the air-sea
enthalpy fluxes during early forecast hours. Changes in SSTwarming
or cooling, in combination with differing 10 m winds, can lead to
significant differences in air-sea enthalpy fluxes. These modified
inputs of moisture and heat in turn result in modifications to the
forecast buoyant uplift within the PBL, and thus to modifications in
the buoyancy in the TC core as evidenced by warm-core anomaly
differences in the present study (Figures 11, 13). Finally, moving
forward, we hope that future observational studies utilizingCyGNSS
as a component will allow for improvement and verification of
air-sea enthalpy parameterizations for TC forecasting models.

We further hope that future modeling studies will be able to
provide additional insights into the broader impacts of improving
near-surface analyses using CyGNSS and future observational
systems. Ultimately, we wish to more directly address the
mechanisms by which improving surface wind analysis with
CYGNSS can improve intensity forecasts with HAFS, particularly
in the case of RI. Based on analyses carried out with the sample
in this study, not described, our approach in a future work will
be to examine the impact of CYGNSS DA on inflow for rapidly
intensifying TCs.
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