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Uncertainty of microseismic
sources identification and
probabilistic location in
underground excavation

Xu Liang*

Shaanxi Xiaobaodang Mining Co., Ltd., Yulin, China

Microseismic (MS) source location is an integral component of MS technology
and essential to understanding the rock failure mechanism and avoiding
potential geological hazards in underground rock excavation. However,
accurate location remains challenging owing to the complex geological
conditions and unknown rock failure mechanisms. In this study, a novel
location framework was developed to locate the MS source positions and their
uncertainties based on probabilistic programming. Probabilistic programming
was utilized to determine the coordinates of the MS source and its variation
using the Markov Chain Monte Carlo (MCMC) method based on the waveform
equation. A classical benchmark problem was utilized to verify and illustrate
the developed framework. The developed framework can not only locate the
position of the MS source but also determine its variation due to the uncertainty
during the monitoring and excavation. The located MS source is in agreement
with the actual positions. The results show that the developed framework is
a scientific, accurate, reasonable, and promising tool for the location of MS
sources. Then, the developed framework was applied to locate the position
of the blasting in a practical mine. This further proved that the developed
framework could locate the MS source, providing an excellent uncertainty
analysis tool for underground rock excavation.
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1 Introduction

Microseismic (MS) technology is an essential tool that has been widely applied to
rock engineering fields, such as mines, tunnels, reservoir characterization, CO2 geological
sequestrations, and radioactive waste repositories (Luo and Hatherly, 1998; Shapiro et al.,
2002; Hirata et al., 2007; Jiang et al., 2010; Maxwell et al., 2010; Lagos and Velis, 2018;
Wang et al., 2021). The spatiotemporal data of MS events can provide a significant
amount of information concerning the surrounding rock mass, including geomechanical
deformation, fracture initiation, and failure (Xia et al., 2020; Li and Xu, 2021). The
interpretation of the MS event depends on the MS source location during monitoring
in underground rock excavation. The location of the MS event is the first step and
most valuable feature of the MS technique owing to its ability to delineate unstable
regions. Knowledge of the MS location allows scientists to investigate the spatiotemporal
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information concerning the stress redistribution and energy release
of rock fracture (Si et al., 2020). Accurately determining the position
of the MS event helps further our understanding of the rock
failure mechanism, which is of great interest not only for adjusting
design and construction schema but also for avoiding potential
engineering hazards such as rockburst (Xia et al., 2019; Zhang et al.,
2023). Therefore, developing an efficient and accurate location
technology is an integral part ofMS technology for rock engineering.
Various location approaches have been developed to determine the
MS source location in the past decades (Pavlis and Booker, 1983;
Thurber, 1985; Pavlis, 1986; Husen et al., 1999; Waldhauser and
Ellsworth, 2000; Reyes-Montes et al., 2005; Feng et al., 2017; Lagos
and Velis, 2018; Ma et al., 2019; Zhou et al., 2021; Zhao et al., 2023).

MS source location is a classic inverse problem in underground
excavation. The Geiger method and several linear methods are the

most popular and widely used in practical applications (Geiger,
1912). However, the convergence of these methods depends on
selecting an iterative initial value. Therefore, optimal technology
was adopted to locate the MS source by minimizing the difference
between the observed and computed arrival times. The traditional
gradient-based optimization technology is not suitable owing to
the complexity of MS events in underground rock excavation. In
addition, the computational complexity increases because of the
application of the second-order partial derivatives. Fortunately,
the optimal intelligent technology, such as genetic algorithm,
particle swarm optimization (PSO), and simulated annealing,
provide an excellent tool for locating the MS source through
global optimization performance (Sambridge and Gallagher, 1993;
Pei et al., 2009; Bisrat et al., 2012; Alavi et al., 2016; Ray et al., 2021;
Wang et al., 2021). A competitive PSO was developed to avoid

FIGURE 1
The position of the sensor and MS sources.
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the local extrema and improve the location accuracy (Luu et al.,
2018). The neighborhood algorithm was applied in the three-
dimensional MS source location based on P and S wave travel times
in hydrocarbon reservoirs (Oye and Roth, 2003). The differential
evolution was used to improve the accuracy and stability of the
location based on Bayesian theory (Song et al., 2013). PSO was used
to improve the computational efficiency of the location algorithm.
The stochastic optimization algorithm was utilized to accelerate
the identification of the MS location based on the waveform-based
location method (Li et al., 2019). The performance and feasibility
of the location methods were studied and analyzed using PSO
(Feng et al., 2017).

In the past decades, various location methods have been
developed to improve the efficiency and accuracy of MS technology
in rock engineering. Unfortunately, the current location methods
are limited and cannot handle uncertainty, which is an intrinsic
property of the engineering system (Wang and Ge, 2008;
Hassani et al., 2018; Duan et al., 2022). Uncertainty is common
in MS events because of the complexity of MS events and
geological conditions in rock engineering, and it is an inevitable
factor in locating the MS source. In this study, a novel location
framework was developed to determine the position of the MS
source and deal with the uncertainty during MS monitoring and
excavation. Probabilistic programming was adopted to characterize
and handle the uncertainty based on the Bayesian theory
and MS data.

Probabilistic programming, which exists at the intersection
of the Bayesian inference, machine learning, and process-based
modeling, is a novel technology that handles uncertainty based
on probabilistic inference and computer programming (Zhao et al.,
2021). Probabilistic models and inference algorithms are the main

TABLE 1 Coordinates of the monitoring system sensors.

No.Sensor
Coordinate/m

x y Z

A 0 0 0

B 0 500 0

C 1,000 500 0

D 1,000 0 0

E 1,000 0 300

F 1,000 500 300

G 0 0 300

H 0 500 300

I 500 500 300

J 500 0 300

K 500 0 0

L 500 500 0

parts of probabilistic programming. PyMC3 is an innovative
probabilistic programming framework, open-source in nature,
featuring an intuitive, readable, and potent syntax reminiscent
of the natural language statisticians employ to define models
(Salvatier et al., 2016). The remainder of this study is organized as
follows. First, the theory and idea of probabilistic programming
are introduced in Section 2. Probabilistic programming was used
to handle the uncertainty during the MS source location. The
idea and procedure of the developed framework are presented in
brief. Then, the developed framework is verified and illustrated
using a numerical example in Section 3. In Section 4, the developed
framework is applied to a practical mine. Concluding remarks are
given in Section 5.

2 Probabilistic programming

2.1 Probabilistic programming

Probabilistic programming is a versatile interdisciplinary
methodology grounded in Bayesian statistics, machine learning,
and process-based modeling. This approach encompasses
a probabilistic model alongside an inference algorithm,
constructing a novel framework for probabilistic reasoning,
enabling predictions and inferences about unknown entities
from observed data. It utilizes computer programs to represent
probabilistic models. The data simulator, designed to generate
various data sets based on a probabilistic model utilizing a
random number generator, was developed using probabilistic
programming (Ghahramani, 2015). Constructing recursion and
control flow statements is straightforward with probabilistic
programming, whereas achieving these functionalities in
a finite graph can be challenging or even impossible.
Probabilistic programming can handle any computable probability
distribution.

In an engineering system, probabilistic programming can infer
unknown variables in themodel based on the observed information.
The uncertainty inherent in the system model is encapsulated
by the probability distributions employed in the simulator. The
inference algorithm can then condition the output of this program
on the observation data and automatically infer the property of

TABLE 2 Coordinates of the MS sources.

MS source
Coordinate/m

x Y Z

1 150 260 167

2 95 72 280

3 899 400 25

4 531 110 121

5 369 598 411

6 753 355 531
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TABLE 3 Arrival time at each sensor.

No. Sensor
MS event arrival time/ms

Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

A 81.332 72.626 223.731 128.469 185.901 224.426

B 78.026 120.6 206.087 153.856 129.66 212.275

C 204.752 236.005 37.069 143.19 173.755 139.071

D 205.984 216.124 96.847 115.376 218.69 157.185

E 204.727 206.796 115.18 119.202 199.757 113.956

F 203.487 227.512 73.791 146.265 149.031 86.769

G 77.958 31.86 232.04 131.901 163.088 196.987

H 74.492 102.527 215.094 156.715 93.356 182.971

I 103.83 136.019 114.955 100.608 48.934 87.67

J 106.298 96.519 144.634 52.194 143.258 114.634

K 108.754 115.579 130.674 41.987 168.856 157.671

L 106.346 149.975 96.578 96.003 103.303 139.623

TABLE 4 Determined positions of MS sources.

MS source Coordinates Real/m Mean/m Std Relative error/%

1

x 150.00 149.58 3.26 0.28

y 260.00 260.07 2.24 −0.03

z 167.00 167.53 3.79 −0.32

2

x 95.00 94.81 3.73 0.20

y 72.00 71.95 2.94 0.08

z 280.00 280.40 4.36 −0.14

3

x 899.00 898.75 3.49 0.03

y 400.00 399.91 2.66 0.02

z 25.00 25.75 4.26 −3.01

4

x 531.00 530.87 1.86 0.03

y 110.00 109.69 2.97 0.29

z 121.00 121.43 3.09 −0.35

5

x 369.00 368.90 2.06 0.03

y 598.00 598.24 4.99 −0.04

z 411.00 410.94 5.97 0.01

6

x 753.00 753.05 3.15 −0.01

y 355.00 355.00 3.33 0.00

z 531.00 531.09 7.89 −0.02
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FIGURE 2
Determined positions and their comparison with the real position. (A)
y-x coordinate. (B) z-y coordinate. (C) z-x coordinate.

the unknown mechanical behavior of the engineering system and
other uncertain model parameters. There are a growing number
of probabilistic programming models such as BUGS (Lunn et al.,
2000) and AutoBayes (Fischer and Schumann, 2003). In this study,
PyMC3 was adopted to locate the MS source and characterize its
uncertainty.

FIGURE 3
Comparison between real and determined velocity.

2.2 Probabilistic programming

Well-known Bayesian theory enables one to locate the position
of the MS source based on MS data. According to Bayesian theory
(Ghahramani, 2015), the probabilistic model can be expressed
as follows:

p(x|y) =
L(y|x)p(x)

p(y)
(1)

where x is the initial information of MS event and y is the observed
data. p(x) denotes the prior probability distribution of theMS events,
which gives the initial information of MS event x before including
the new MS information. L(y|x) denotes the likelihood function,
which is the knowledge obtained from a set of observation data (y)
on MS events (x). p (y) denotes the model evidence of the model
and when it is defined as p (y)=∫ L(y|x)p(x) d x, which denotes the
normalizing constant that ensures p (x| y) integrates to one, and p
(x| y) denotes the posterior distribution of the MS source updated
by MS monitoring, which integrates both the subjective judgment
and MS data.

When conducting Bayesian inferences, we must determine the
full posterior joint distribution over a set of random variables. For
example, given the information of the input variables, we were able
to locate the MS source in this study. Assuming that observations
(MS data) are conditionally independent of a given x, the updated
posterior distribution is obtained by solving:

p(ŷ|y ) = ∫
y

x
p(ŷ|x)p(x|y)dx (2)

where ŷ denotes the predicted variable. Computing the intractable
integrals is difficult because of the complexity of p(ŷ|x ) or p(x|y) due
to the high dimensionality of the distributions in practice. There is
no close-form solution for the integral available. In this scenario, we
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FIGURE 4
Position x, y, z coordinate uncertainty and their comparison with the real position. (A) MS source 1. (B) MS source 2. (C) MS source 3. (D) MS source 4.
(E) MS source 5. (F) MS source 6.

utilize sampling techniques grounded inMarkovChainMonteCarlo
(MCMC) methods.

The Markov chain is a mathematical model used to describe a
sequence of events where the probability of each event depends only
on the state of the previous event.Markov chain can be used to assess
system reliability and predict failure probabilities. Monte Carlo
integration is known as numerical integration for approximating the
definite integral of a function using random numbers. The MCMC

method is a powerful tool for determining the integration (Eq. 2) by
combining the Markov chain and Monte Carlo integration. Markov
chains sample from the distribution whose integral is targeted
for approximation, while the Monte Carlo integration performs
the approximation. The construction of a Markov chain ultimately
converges to the posterior distribution p(x|y). A Markov chain is
a sequential stochastic model that transitions between different
states, where each state depends only on the previous state. In

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1419330
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liang 10.3389/feart.2024.1419330

FIGURE 5
Uncertainty location and their comparison with the real position.

this investigation, the MCMC procedure was conducted using
probabilistic programming with PyMC3.

2.3 PyMC3

Various probabilistic programming methods have been
proposed in the past decades. The No-U-Turn Sampler (NUTS)
(Hoffman andGelman, 2014) andHamiltonianMonteCarlo (HMC)
(Duane et al., 1987) represent advancements inMarkov chainMonte
Carlo (MCMC) sampling technology, adept at handling high-
dimensional and intricate posterior distributions. These methods
enable the fitting of numerous complexmodelswithout necessitating
specialized knowledge of fitting techniques. By leveraging gradient
information, HMC andNUTS achieve faster convergence compared
to traditional sampling methods, especially advantageous for

larger models like the MS waveform model. PyMC3 stands out
as an innovative, open-source probabilistic programming toolkit
featuring an intuitive, readable, yet potent syntax akin to the natural
language statisticians employ to articulatemodels (Song et al., 2013).
PyMC3 was utilized to address general Bayesian statistical inference
and prediction tasks.

3 MS source location and uncertainty
quantification

Accurate location of theMS source is essential for understanding
the rock failure mechanism and avoiding potential geological
hazards in rock engineering (Li et al., 2023). The location of the
MS source depends on the monitoring system, properties of rock
mass media, geological conditions, and the travel time and velocity
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FIGURE 6
Trace distribution of samples based on MCMC.

of the P wave. For the monitoring system, the number, layout and
sensitivity of sensors have influence on the MS location. The more
sensors with high sensitivity and the more reasonably they are
arranged, the positioning accuracy can be improved much better.
The location identification relies on the mechanical model, which
consists of rock properties. Accurate rock parameters can establish a
more accurate velocitymodel. Faults and other geological conditions
will also affect the propagation of waves.The travel time and velocity
are essential for the calculation model, which directly affect the
location accuracy. However, significant uncertainty remains in the
above factors. It is impossible to reduce the uncertainty entirely
(Sitharam et al., 2015). Therefore, there is an ideal and reasonable
method for rationally quantifying and evaluating uncertainty during
the location of the MS source. In this research, a novel location
framework was created to manage uncertainty through the use of
probabilistic programming.

3.1 The location method of MS source

In underground rock excavation, n MS sensors were utilized
to constitute a spatial monitoring structure. xi, yi, and zi are

the coordinates of the ith MS sensor, respectively. x0, y0, and z0
denote the coordinates of the MS source. The traveling equation
can be determined based on the coordinates of the MS sensor and
corresponding arrival time.TheMS positions can be obtained based
on the following equation groups.

√(xi − x0)
2 + (yi − y0)

2(zi − z0)
2 = (ti − t)v (3)

where ti denotes the arrival time of the P wave, t is the seismogenic
time of theMS source, and v denotes the velocity of the P wave from
the MS source to the sensor in the rock mass. The wave velocity
can be measured on-site using a wave tester, or it can be calculated
by obtaining the mechanical parameters of the specimen through
indoor testing and then calculating the wave velocity. Considering
the uncertainty of the wave velocity due to uneven rock properties
distribution, the wave velocity in this study was viewed as the
parameter to be inverted. In general, the MS source positions were
determined based on the difference between the observed and
theoretical travel time of the P wave. The target function can be
gained based on Eq. 3 as follows:

f =
n

∑
i=1
(ti − t−

Ri

v
)
m

(4)
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FIGURE 7
Determined positions based the different prior distributions for 6 MS source. (A) MS source 1. (B) MS source 2. (C) MS source 3. (D) MS source 4. (E) MS
source 5. (F) MS source 6.

where f denotes the residual of time, and m denotes the
norm. In this study, m equals 2 and corresponds to an L2
norm approach. Ri is the distance between the MS source and
ith sensor.

Ri = √(xi − x0)
2 + (yi − y0)

2(zi − z0)
2 (5)

In general, optimization technology has been used to locate
the MS source by minimizing the target function (Eq. 4). However,
uncertainty is inevitable owing to the complexity of the geological
and MS monitoring conditions. In this study, probabilistic
programming was utilized to determine the MS source location
with uncertainty.
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FIGURE 8
Uncertainty location based the different prior distributions.

TABLE 5 Different initial positions and ranges.

Coordinate x/m y/m z/m

Initial value Mean Std Mean Std Mean Std

range1 6,000 2000 8,000 2000 500 100

range2 3,000 1,000 4,000 1,000 400 80

range3 1,500 500 2000 500 300 60

range4 500 100 600 100 200 40

range5 200 40 300 50 180 30

range6 150 15 260 26 167 17

3.2 The uncertainty-based MS source
location

To accurately locate the positions of the MS source, computing
the travel time and location method, which includes the uncertainty
due to the complexity of geological conditions, are essential.
This study employed probabilistic programming to articulate and
delineate the positional uncertainty of the MS source, thereby
enriching the comprehension of the MS event. Leveraging prior
knowledge, MS data, and amethodology forMS source localization,
probabilistic programming was utilized to quantify the positional
uncertainty of the MS source. Bayesian inference served as the
mechanism for quantifying the uncertainty of the MS location
based on the monitored data. The prior information was derived
from empirical knowledge and investigations conducted at the
project site. The MS data (observation data) were obtained from
the MS monitoring system. The MS location method was utilized
to determine the location coordinates.The positional uncertainty of
the MS source can be evaluated based on the monitored MS data.

TheMS sensor obtained the waveform information that traveled
from the MS source. To assess the uncertainty, Eq. 4 was treated
as the traveling equation for locating MS source position x0, y0,

and z0 and determining MS wave velocity v. In this study, the
predicted residual of time f was regarded as the normal distributed
observations with mean value fµ to determine the traveling equation
ofMS source coordinates x0, y0, and z0 andMSwave velocity v based
on the travel time of each sensor. The predicted residual of time is
expressed by Eq. 6:

f ∼ N(μ f ,σ
2
f) (6)

where µf is determined by Eqs. 4, 5, and σ f is determined based
on the MS technology. A normal distribution was applied to fitting
MS source coordinates x0, y0, and z0 and MS wave velocity v,
corresponding to weak information for the actual values. MS source
coordinates according to a normal distribution are expressed by
Eqs 7–10.

x0 ∼ N(μx,σ
2
x) (7)

y0 ∼ N(μy,σ
2
y) (8)

z0 ∼ N(μz,σ
2
z) (9)

v ∼ N(μv,σ
2
v) (10)

Once the aforementioned model was defined within the PyMC3
software, the subsequent step involved estimating the posterior
distribution for the unknown MS source coordinates x0, y0, and
z0 within the residual of the time model (Eq. 4). MCMC sampling
techniques were employed to quantify the uncertainty related to
the MS events. The mean and standard variance of MS source
coordinates x0, y0, and z0 were located based on theMS information
obtained by the sensor. Thus, the developed framework located the
MS source and quantified its uncertainty.

3.3 The procedure

The developed location method was utilized to locate the
positions of the MS source and determine its uncertainty.
Below outlines the primary procedure of the developed location
framework.
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FIGURE 9
MS sources and their uncertainties at different initial positions.

Step 1: Collect the information of MS monitoring system, project
data, geological conditions, etc.

Step 2: Pick the travel time at each sensor using the MS
technology.

Step 3: Construct the traveling equation of the MS wave based on
the corresponding MS system.

Step 4: Build the equation for the time residual based on the
traveling equation of the MS wave.

Step 5: Determine the statistical feature and its parameters for the
MS source coordinates and wave velocity using the MS
monitoring system and engineering information.

Step 6: Implement Bayesian inference andMCMC using PyMC3.
Step 7: Locate the coordinates of the MS source and its

uncertainty.
Step 8: Further update the coordinates of the MS source and

its uncertainty by repeating Steps 5–7 if new MS data
are obtained.

4 Verification

In this section, an MS location system consisting of 12 sensors
was adopted to verify and illustrate the developed uncertainty
location framework (Figure 1). Table 1 lists the coordinates of the
12 sensors in the monitoring space, which cover the range 1,000 m
× 500 m × 300 m (Lü et al., 2013). The velocity of the MS P wave
(v) was 4.5 km/s in this rock medium, and the seismogenic time
of the MS source (t) was 5 ms. We assumed that there were 6 MS
sources in this example (Figure 1). The positions of six MS sources
and their corresponding arrival times are listed in Tables 2, 3. MS
sources 1–4 were located in the monitoring space, which consisted
of 12 sensors. MS sources 5 and 6 were located out of themonitoring
space (Figure 1).

4.1 Determination of MS source and its
uncertainty

The developed location framework determined the positions of
the six MS sources. Table 4 lists the coordinates determined by the

uncertainty location method. It is obvious that the mean of the
determined coordinates agrees well with the actual positions. The
maximum relative error falls below 3%. The actual space position
is extremely close to the positions determined by the developed
framework (Figure 2). The developed framework determines the
positions of the MS source (MS sources 1–4) in the enclosure
monitoring space and recognizes MS sources 5 and 6 located
outside the enclosure monitoring space.This further proved that the
developed location framework could feasibly locate theMS source in
rock engineering.

Uncertainty and random error are unavoidable in the location
of MS sources owing to the complexity in rock engineering.
The traditional location method neglects the uncertainty and
error to obtain a determinative position, which is inconsistent
with practical engineering. The developed framework obtains the
mean positions of the MS source and determines its uncertainty
(Table 4). Figures 3, 4 show the wave velocity and coordinate
distributions of the MS source. For MS source 1, Figure 5 shows
the located position and uncertainty in space using the developed
framework. The developed framework can determine the MS wave
velocity, which agrees with the actual wave velocity of 4.5 km/s.
The relative error is less than 1%. The located mean position is
nearly identical to the real MS source. Moreover, the established
framework also has the capability to assess the uncertainty of
positions resulting from the intricate nature of geological media,
monitored errors, and computational models. Figure 6 shows the
sample traces using the MCMC. There is approximately a 10 m and
0.2 km/s plausible span for a significant change in positions and
wave velocity, but a narrower span contains most of the
probability mass.

4.2 Affection of distribution

In this study, probabilistic programming was utilized to
determine the MS source locations and their uncertainty based on
MCMC.The prior information is essential to theMCMC algorithm.
The normal and uniform distribution of prior information was
adopted. Figure 7 compares the actual and determined positions
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FIGURE 10
MS sources and their uncertainties using different numbers of sensors. (A) MS source 1. (B) MS source 2. (C) MS source 3. (D) MS source 4. (E) MS
source 5. (F) MS source 6.

by the developed framework using the different prior information
distribution. The determined mean position of MS source based on
the normal and uniform distribution agrees well with the actual
positions of the six MS sources. In other words, the developed
framework is robust to the prior information and does not depend
on the prior distribution. Figure 8 shows the uncertainty of the

MS source positions using the different prior distributions (normal
and uniform). The results show that the prior distribution does
not affect the uncertainty of the MS source positions. It further
proved that the developed framework is robust. This is important
to practical rock engineering because of the complexity, uncertainty,
and fuzzy.
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TABLE 6 Positions and arrival times of the sensors.

No.Sensor x/m y/m z/m Arrival time/ms

9# 8,761 6,614 522 34.9

21# 8,737 6,609 565 36.6

5# 8,666 6,600 520 39.3

17# 8,668 6,599 565 41.1

4# 8,641 6,515 520 42.3

8# 8,691 6,684 520 44.5

2# 8,721 6,449 520 47.8

26# 8,702 6,604 647 50

FIGURE 11
Positions of sensors and the artificial blasting source.
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FIGURE 12
Uncertainty distribution of the predicted coordinates. (A) x coordinate.
(B) y coordinate. (C) z coordinate.

4.3 Affection of initial value

Various optimal technologies have been adopted to locate the
MS source. However, the location result depends on the initial value
of the optimal algorithm, and the selection of the initial value is
difficult in practical application.The initial position selection affects
the location accuracy and hinders the optimal algorithm application
in locatingMS source. In this study, the six different initial positions
illustrate the developed framework for the six MS sources. Table 5

FIGURE 13
Uncertainty of the MS wave velocity.

lists the six different initial positions and their range. Figure 9 shows
the MS sources and their uncertainties at different initial positions
using the developed framework for MS source 1. It is clear that
the developed framework does not depend on the initial location
selection. The initial location selection does not affect the results.
Furthermore, the developed framework can locate the position of
the MS source in the more extensive range (Range 1). In practical
engineering, the MS source is unknown and only has a rough
range. Therefore, the developed framework has good performance
in practical engineering.

4.4 Affection of the sensor number

The number of sensors is integral to the MS monitoring system
and directly influences the location accuracy and precision. The
number and position of the sensors are essential for locating
the MS source. In this study, the position comparison was
implemented based on the different numbers and positions of the
sensors. Figure 10 shows the MS source and its uncertainty using
different numbers of sensor and combinations. The results show
that the location obtained by the 12 sensors is generally more
accurate than that obtained by eight sensors. With the increase in
the number of sensors, the location accuracy is normally enhanced.
The sensor positions have also affected the MS source location. The
number of sensors should be maximized in practical application,
and the positions should be determined based on the engineering
conditions.

5 Application

The developed location framework was applied to the
Shizhuyuan Polymetallic Mine (Lin et al., 2010). Since Shizhuyuan
Polymetallic Mine adopted the sublevel drilling and stage room
mining method, the underground mined-out area (room) has not
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FIGURE 14
Coordinate comparison between the real and predicted source
locations using different methods. (A) Constant velocity. (B)
Uncertainty velocity.

been backfilled owing to various reasons, leaving a pillar ore volume
of approximately 60% and a huge mined-out area of approximately
300 × 104 m2. During pillar mining from the northwest to southeast
corner, stress concentration and mining ground pressure activities
led to higher stress fields caused by the stress redistribution, and
more rockburst and MS phenomena occurred. To monitor MS
events during mining, an MS monitoring system was installed on
10 November 2008. The MS system monitors the ore body in the
volume range of roughly 600 m × 600 m × 200 m and adopts the
30-channel uniaxial acceleration sensor with the largest number

of channels in China, which can realize fast data transmission,
analysis and preservation, automatic event positioning, and source
parameter analysis.

An artificial blasting positioning test was carried out, and the
artificial focal point was selected on 11 November 2008.The sensors
measured and recorded the blasting coordinates on site.The blasting
was conducted, and the ground monitoring personnel obtained the
blasting location in the system on time. A total of eight sensors
obtained the blasting waveform and arrival time (Table 6). Figure 11
shows the positions of the sensors and artificial blasting source.

Once the arrival time of each sensor was obtained, the developed
framework was used to locate the MS source. For the practical
underground, the MS wave velocity is uncertain and unknown in
the rock mass owing to the complexity of geological conditions.
Lin et al. (2010) located the MS source based on the Geiger method
for a 5 km/s wave velocity, and the error was 4.49 m. In this study,
the developed framework was used to locate the MS source and
determine the uncertainty. The error was 3.75 m, lower than that
of the Geiger method based on the determined mean positions
(Figure 12). However, this is not in line with engineering practice
because the MS wave velocity is not certain. Thus, the developed
framework was adopted to locate the MS source based on the
uncertainty of theMSwave velocity. Figure 12 shows the comparison
of artificial blasting sources located based on the constant and
uncertain velocity. The error based on uncertain velocity was
4.917 m, slightly larger than the error based on the constant velocity.
However, the developed framework located the MS source and its
uncertainty, and the located coordinates were close to the actual
artificial blasting sources.Thus, the developed framework can locate
the MS source while the MS wave velocity is unknown.

Figure 13 shows the distribution of the MS wave velocity using
the developed framework. Figure 14 shows the comparison of the
MS source located by the developed framework, linear group
method, and Geiger method. The developed framework is better
than the linear group method and is close to the actual and
predicted MS source locations determined by the Geiger method.
The location error (4.917 m) is larger than that of the Geiger
method (4.49 m) using MCMC. The findings demonstrate that the
constructed framework is capable of pinpointing the MS source.
Moreover, the developed framework can determine the variation
of MS source positions. As we know, underground engineering is
very complex, and many uncertainty factors influence the location
identification. Uncertainty is an intrinsic property of the MS event
in underground engineering. Therefore, the developed framework
can characterize the MS event well and capture the uncertainty
of the MS information. It is consistent with the uncertainty and
actual situation of the underground engineering. Figure 15 shows
the sample traces using theMCMC.There is a span of approximately
1.5 km/s and 20 m that is larger than the above numerical example.
Thus, it is difficult to locate the MS source owing to the complexity
and uncertainty of the practical underground excavation. However,
a narrower span contains most of the probability mass using
the developed framework. This further proves that the developed
framework can locate the MS source and capture the uncertainty in
practical underground rock excavation.

There are two main types of fracture monitoring: indirect
monitoring and direct monitoring. The MS monitoring, AE
(acoustic emissions) monitoring, displacement and stress
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FIGURE 15
Sample traces based on the uncertain MS wave velocity.

monitoring all belong to the indirect monitoring. Indirect
monitoring is a non-destructive method of fracture monitoring.
Direct monitoring is a method of monitoring fractures by directly
observing the fracture surface, such as visual inspection. For
example, Zhang et al. (2023) explored the borehole observation
and borehole stress test to investigate the fracture distribution and
damage during the first mining process.The actual observations can
also be conducted and combined on-site to verify and increase the
accuracy of the fracture location.

6 Conclusion

In this study, an innovative location framework was devised
for identifying the MS source through probabilistic programming.
A classical benchmark problem and underground application were
used to verify and illustrate the accuracy and feasibility of the
method. The locations of the MS sources and their associated
uncertainties were established using data gathered from the MS
monitoring system. The results show that the developed framework
accurately determined the MS source and scientifically captured
the uncertainty of the MS events. The following conclusions
were drawn.

(1) Location of the MS source is an integral part of the MS
monitoring system. The appropriate and accurate location of
the MS source is essential for understanding the rock failure
mechanism and avoiding potential geological hazards. The
developed location framework provides an excellent tool for
locating the positions of MS sources accurately.

(2) Uncertainty is an intrinsic feature of underground MS events.
Appropriate characterization of uncertainty is essential for
locating the MS event and understanding the engineering
phenomenon. The developed location framework is a robust
method for quantifying the uncertainty of MS events.

(3) The accuracy of the location relies on the configuration of the
sensor array, the velocity equation utilized, and the method
of location determination. Employing a greater number of
sensors significantly enhances the accuracy of the location.
Nevertheless, due to the constrained underground space
in rock engineering, the number and spatial arrangement
of sensors may not entirely encompass the MS area. The
developed framework is not sensitive to the positions of
the sensor, and it is essential for the complex and practical
underground.

(4) In the traditional optimal location method, the location of
the MS source depends on the selection of its initial position.
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However, it is difficult to determine the initial positions due to
the complexity of the MS event.The developed framework can
avoid selecting the initial MS source and accurately locate the
position of MS events.

(5) The prior information ofMS events is essential for determining
the proper location. However, this knowledge is insufficient
due to geological complexity. The developed framework
provides an excellent, robust, global location method for
the MS event.
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