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The Andes is the longest mountain range in the world, stretching from
tropical South America to austral Patagonia (12°N-55°S). Along with the
climate differences associated with latitude, the Andean region also features
contrasting slopes and elevations, reaching altitudes of more than 4,000 m.
a.s.l., in a relatively narrow crosswise section, and hosts diverse ecosystems
and human settlements. This complex landscape poses a great challenge
to weather and climate simulations. The interaction of the topography with
the large-scale atmospheric motions controls meteorological phenomena
at scales of a few kilometers, often inadequately represented in global
(grid spacing ∼200–50 km) and regional (∼50–25 km) climate simulations
previously studied for the Andes. These simulations typically exhibit large
biases in precipitation, wind and near-surface temperature over the Andes,
and they are not suited to represent strong gradients associated with the
regional processes. In recent years (∼2010–2024), a number of modeling
studies, including convection permitting simulations, have contributed to our
understanding of the characteristics and distribution of a variety of systems
and processes along the Andes, including orographic precipitation, precipitation
hotspots, mountain circulations, gravity waves, among others. This is Part I
of a two-part review about atmospheric modeling over the Andes. In Part
I we review the current strengths and limitations of numerical modeling in
simulating key atmospheric-orographic processes for the weather and climate
of the Andean region, including low-level jets, downslope winds, gravity
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waves, and orographic precipitation, among others. In Part II, we review how
climate models simulate surface-atmosphere interactions and hydroclimate
processes in the Andes Cordillera to offer information on projections for land-
cover/land-use change or climate change. With a focus on the hydroclimate, we
also address some of the main challenges in numerical modeling for the region.

KEYWORDS

atmospheric modeling, Andes, complex terrain, mountain hydroclimate, mesoscale
meteorology

1 Introduction

The Andes mountain chain extends for more than 7,000 km
and spans over 7 countries in South America. The so-called
Andean region is home to over 50 million inhabitants, and to
a rich biodiversity. The hydrological regimes under the influence
of the Andes, as well as major water storages such as mountain
lakes, glaciers, paramos, and aquifers affect most of the continent.
Hence, understanding the mountain hydroclimate along the Andes
is important for human safety and development, as well as for
the preservation of water resources and ecosystems in South
America. Today, in the context of climate and other global
changes, specific interests for this region include the current
characterization, understanding, and assessment of future scenarios
for water security and the risks associated with hydrometeorological
extremes (e.g., Poveda et al., 2020; Pabón-Caicedo et al., 2020;
Junquas et al., 2024). Regarding these goals, the Andes region
presents particular challenges owing to its complex topography,
leading to large gradients in hydroclimatic variables that are
difficult to extrapolate and simulate (see e.g., Espinoza et al., 2020;
Arias et al., 2021). Additionally, in comparison to other regions,
there is a limited network of in situ measurement stations and
a scarcity of homogeneous long-term records of essential climate
variables, hindering a detailed picture of Andean atmospheric
and hydroclimate systems (e.g., Condom et al., 2020; Cavazos et al.,
2024). Despite the progress in measuring hydrological variables
derived from remote sensing (e.g., Fassoni-Andrade et al. 2021),
there are still large limitations inmeasuring key variables at different
levels in the atmosphere. In this context, numerical modeling
(grounded in principles of conservation (e.g., energy) and other
basic laws) is an essential tool to examine the complex–regional
scale–climate phenomena and providemuch-needed information in
the Andes (Cavazos et al., 2024).

Regional Climate Models (RCMs) are a type of Limited
Area Models (LAMs) used over continental or subcontinental
domains. The focus on a smaller domain allows the use of RCMs
for simulating atmospheric phenomena with more spatial detail
than General Circulation Models (GCMs). Compared to previous
generations of GCM simulations (grid spacings 100–200 km), the
higher resolution of RCMs (25–50 km) has improved the simulation
of some particular features of weather and climate of South
America (e.g., Garreaud, 1999; Garreaud et al., 2010; Insel et al.,
2010; Saurral et al., 2015; Junquas et al., 2016; Martinez et al., 2019).
In particular, some of these RCM simulations provided important
insights on the role of the Andes on regional circulation patterns
and weather processes such as moisture transport, low-level
jets and topographic blocking (Garreaud, 1999; Insel et al., 2010;

Trachte, 2018; Martinez et al., 2019; Sauter, 2020; Böhm et al.,
2021). In addition, international collaborative efforts on RCM
applications over South America (e.g., CORDEX and CLARIS-
LPB) have contributed to our understanding of regional and
local scale climate features of South America as well as the
sources of RCM uncertainties (Solman, 2013; Solman et al., 2013;
Ambrizzi et al., 2019).

However, previous simulations with both GCMs and RCMs
generally show large biases in precipitation over the Andes (see
e.g., Rojas, 2006; Solman, 2013; Ambrizzi et al., 2019; Llopart
et al. 2020; Almazroui et al., 2021; Arias et al., 2021; Ortega et al.
2021; Bozkurt et al., 2019; Martinez et al., 2019; Falco et al., 2020;
Arias et al., 2021; Junquas et al., 2022).These biases relate, primarily,
to the model resolution and the resulting coarse representation
of mountain ranges, which lead to a poor representation of
the response of the atmospheric circulation and stability to the
topography.This is in agreement with various studies overmountain
ranges and complex terrains in other regions that highlight the
challenges faced by coarse resolution GCMs (e.g., Su et al., 2013;
Torma et al., 2015; Roussel et al., 2020).

For the Andes, the differences in complex topographic features
(e.g., summits and valleys) are evident even between finer grids
(in the order of tens km) and grid spacings of a few km
(in the range 1–4 km; Figures 1A–D). The differences in the
resolution of the simulated topography can have large impacts
on the simulation of airflow over and in the vicinity of the
Andes, with important consequences for the simulated distribution,
cycles and variability of precipitation, temperature, cloudiness,
strong wind events, among other relevant hydrometeorological
systems and hydroclimate features. For example, in simulations
with coarser grid spacing some sections of the Andes would be
substantially lower than in reality, simulating stronger winds at
some altitudes compared to the real system, in which higher
peaks act as a barrier to the flow, and misrepresenting the
stronger winds and circulations within the real inter-Andean valleys
(see e.g., Posada-Marín et al., 2019). As a consequence of the
poorly resolved terrain, the spatial distribution of precipitation
is directly affected, with higher resolution models representing
with more detail and accuracy the slope gradients of precipitation,
including for example, more localized “hotspots” of precipitation
in the Andes-Amazon transition region (e.g., Ortega et al., 2021;
Junquas et al., 2022, Gutierrez et al., 2024; Martinez et al., 2024a;
Figures 1E, F).

Studies that use grid spacing in the kilometer scale (e.g., in the
range 1–4 km) not only better resolve more details of mesoscale
and local circulations induced by the complex terrain, but can also
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FIGURE 1
(A) Latitude and (B) longitude cross-sections effective topography (as in Orlanski et al. 1991): maximum height at each latitude, longitude for different
standard resolutions, 3 km (black), 250 km (standard CMIP5 resolution, pale pink), 150 km (standard CMIP6 resolution, pale red), 50 km (CMIP6 Highres,
green), 25 km (new low res. CORDEX, 25 km, blue) and peaks ‘x’, whereas highest peaks on 5° bands are labeled (data from https://en.wikipedia.
org/wiki/List_of_mountains_in_the_Andes). South American topography at (C) 200 km horizontal resolution and (D) 4 km horizontal resolution.
Climatological precipitation mean (1995–2014; mm/day) from (E) 34 CMIP6 models at 1°x1° of horizontal resolution and (F) 18 CORDEX South America
models at 0.5°x0.5° (https://interactive-atlas.ipcc.ch/).

partially resolve deep cumulus convection (Prein et al., 2015, Lucas-
Picher et al., 2021). This type of kilometer-scale simulations are
also known as Convection-Permitting (CP) simulations, when no
deep-cumulus convection parameterization is employed. Due to
computational constraints, such modeling efforts over the Andes
typically focus on short periods, ranging from days to months,
and relatively small domains (Viale et al., 2013; Garreaud et al.,
2016; Comin et al., 2018; Heredia et al., 2018; Eghdami and
Barros, 2019; Sierra et al., 2021b; Rosales et al., 2022). However,
these modeling efforts have contributed valuable information
regarding our understanding of precipitation regimes over the
Andes, their forecasting potential and their relationship with local
circulation (e.g., Yáñez-Morroni et al., 2018; Schumacher et al.,
2020; Somos-Valenzuela and Manquehual-Cheuque, 2020;
Junquas et al., 2022; Rosales et al., 2022; Martinez et al., 2024b).
The proper characterization of circulation patterns shaped by
the Andes are important not only due to their impact on the
distribution of precipitation, but also in their connection with
ecosystems (Sierra et al., 2021b), extreme events such as windstorms

(Poveda et al., 2020), and natural resources for renewable energy
production (e.g., Muñoz et al., 2018; Urrego-Ortiz et al., 2019).

The main goal of this two-part paper is to provide a review
of recent weather and climate modeling efforts in the Andes
region. There are several reasons for presenting this review about
the Andes. Firstly, significant research with models at higher
resolution than typical GCMs (∼200 km) and RCMs (∼25 km)
has taken place during the last decade or so, with novel findings
and lessons. Secondly, most of the initial modeling studies with
GCMs and RCMs, and their corresponding literature reviews (e.g.,
Solman, 2013; Ambrizzi et al., 2019), have been mostly devoted
to the Amazon and La Plata basins. This pattern is probably
associated with both, a lack of the high resolution needed for
representing mountain atmospheric processes typical of the Andes
and with a small community of researchers devoted specifically
to modeling studies about the Andes. Thirdly, current and near-
future efforts on dynamical atmospheric/climate modeling make
use of kilometer-scale simulations, both for weather prediction
and climate change studies (e.g., Halladay et al., 2022; 2023; SAAG,
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TABLE 1 Examples of grid spacings used in the studies cited in this review. The categories in this table are not formal nor comprehensive, but they are
intended to provide an overview of the typical grid spacings and simulations reviewed in the following sections.

Grid spacing (km) Typical periods Type of model Applications Type of domain

100 and larger Multi-decadal GCM Climate, Climate Projections Global

25–50 Multi-decadal LAM/RCM Climate, Climate Projections Continental

10–25 Seasonal, Multi-decadal LAM/RCM Climate Sub-continental/regional

1–10 Days, Seasonal, Sub-decadal LAM
“Convective Permitting” (CP)
Grey Zone (NoCP)

Case Studies
Process Studies
Weather Forecasting

Country/kilometer-scale

0.3–1.0 Days LAM
CP

Case Studies
Process Studies

City/local

2022; Dominguez et al., 2024). These new efforts could greatly
benefit from the lessons learned from previous modeling studies
about the Andes, including some of the results summarized in
this review. This review serves as a complement to the in-depth
review papers about the hydroclimate of the Andes from the
ANDEX program, a regional hydroclimate initiative for the Andes
under the GEWEX/WCRP program (Espinoza et al., 2020; Pabón-
Caicedo et al., 2020; Poveda et al., 2020; Arias et al., 2021).

We review modeling studies using a wide variety of grid
spacings, from hundreds down to a few kilometers (see Table 1 for a
summary of typical ranges). It has long been known that a “simple”
increase in spatio-temporal detail (i.e., reducing grid spacings and
time increments) is not enough to improve the simulation of some
patterns of the hydroclimate variables, with traditional measures
of skill often being equal or even better with coarser resolutions
compared to kilometer scale resolutions (e.g., Mass et al., 2002). In
this sense, dynamical modeling also requires a devoted analysis of
atmospheric systems and processes over the region of interest to
better understand the simulated phenomena specific to the region,
and the potential benefits, progress and discoveries derived from the
promising kilometer-scale simulations (Palmer and Stevens, 2019;
Emanuel, 2020; Shaw et al., 2023).Herewe review a variety of studies
devoted to the understanding of physical mechanisms underlying
patterns and changes in atmospheric variables over the Andes.

This paper (Part I) is organized as follows: Section 2 describes
results about different mountain-related wind systems along the
Andes; Section 3 includes studies about the effects of the Andes
orography on the distribution and cycles of precipitation; and
Section 4 includes comments related with model evaluation in the
case of the Andes, with a focus on numerical weather prediction
applications. Part II (Junquas et al., 2024) includes: i) a summary
of the research on climate change, including potential changes in
temperature and precipitation over the Andes; ii) a review about
different atmospheric model configurations and their potential
influence in high-resolution modeling results (including model
performance) in theAndes; and iii) a discussion about the challenges
and perspectives of atmospheric and climatemodeling of the Andes.
While this two-part review is by no means comprehensive, its aim is
to provide an overview of the current state of science related with
weather and climate modeling for the Andean region, with interest

on both, the general model behavior over the Andes and on the
simulation of specific mountain meteorology processes.

2 Winds around and within the Andes

At the planetary and regional scale, the Andes can modify
wind patterns, for example, by modifying wave trains and the
location of major structures like the South Pacific Anticyclone.
At the meso-scale, the complex and elevated terrain of the Andes
can mechanically alter the airflow (e.g., by blocking) and can also
induce thermal effects, such as elevated heat sources during the day
which foster diabatic heating. Some of the mountain winds related
with topographic structures include wind patterns and disturbances
like mountain-valley winds, thermally forced circulations, drainage
flows, downslope winds (e.g., zonda winds), gravity waves, barrier
winds, low-level jets, among others. In addition, differences in
land cover, such as snow cover and glaciers over parts of the
Andes, affect the surface albedo, with feedback effects on the
near surface turbulence and the surface energy balance. This
in turn can modify and induce local circulation patterns with
impacts on the temperature and precipitation distribution over the
complex terrain.

Figure 2 illustrates some examples of atmospheric processes and
systems that are relevant for the hydroclimate of mountain regions,
including orographic precipitation (Figure 2A; Section 3), some of
the wind systems reviewed in this section (e.g., Figures 2B–E),
and elevation dependent warming (Figure 2F; Section 2.2 in Part
II). In the case of the Andes there is a relatively recent body of
literature of modeling studies about particular mountain related
processes and systems (Figure 3). Some of these studies are reviewed
in the following sections. In particular, the role of the Andes can
be inferred in modeling studies via simulations that compare the
atmospheric response to different representations of the mountain
chain, typically varying its height (Kalnay et al., 1986; Broccoli and
Manabe, 1992; Walsh, 1994; Lenters and Cook, 1995; Garreaud
and Fuenzalida, 2007; Garreaud et al., 2010; Insel et al., 2010;
Saurral et al., 2015; Junquas et al., 2016; Rasmussen and Houze Jr,
2016; Marín et al., 2021; Rocque and Rasmussen, 2022; Gómez-
Rios et al., 2023).
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FIGURE 2
Some examples of systems/processes associated with the hydroclimate of mountain regions. Forced ascent by orographic barriers can enhance or
help with the initiation of precipitation, (A). Around the Andes different low-level and barrier jets can form, depending on the season, synoptic
conditions, etc., (B). Differential heating can induce circulations with a marked diurnal cycle, including slope (C) and valley (D) winds. Mechanical
forcing can induce downslope winds on the lee-side of mountains (including Zonda and Puelche winds), and/or gravity waves which can propagate
downwind and/or upwards, (E). Elevation dependent warming (F) refers to differences in the trend (e.g., over several decades) in temperature for
different altitudes. Along the Andes all of these processes take place (see Figure 3), several of them occurring within the same region, which
contributes with the detail and complexity of the distribution and variations of atmospheric variables over the region. See text for details about
phenomena in panels (A–E). Studies about elevation dependent warming are reviewed in Part II.

2.1 Role of the Andes on continental scale
mechanical forcing

To investigate the role of the Andes, some numerical studies
compare simulations with modified versions of the Andes (mostly
by height). Other studies analyze the atmospheric structures
over and around the Andes, inferring the role of the Andes by
comparing with the flow farther from the mountain range. These
approaches have applications for understanding some phenomena
mostly between the planetary scale and the mesoscale, from Rossby
waves to low-level jets. In parallel with the historical development
and availability of computational resources, the first numerical
studies about the Andes (e.g., during the 1990s) were carried
out with low-resolution models, but they were instrumental for

understanding the most fundamental role of the Andes. More
recent studies (e.g., from 2010 up to the present) include higher
resolution simulations for longer periods of time, which has
facilitated a more detailed characterization of the atmospheric
variability associated with the role of Andes, at several spatial and
temporal scales.

One of the expected effects of large topographic barriers is
producing planetary scale waves, which in turn could explain
regional scale patterns of dryness (Broccoli and Manabe, 1992).
Early modeling studies did not find major effects related to the
Andes in terms of production of stationary Rossby waves or other
planetary scale patterns in 200 hPa or 500 hPa winds (Kalnay et al.,
1986; Walsh, 1994). However, more recent studies, with higher
resolution modeling tools and longer simulations, found a variety
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FIGURE 3
Schematic representation of the main local morphological-physical features identified in modeling studies as relevant when simulating the climate
over the Andes mountain range. Encircled symbols indicate the presence of a climate process/feature as analyzed by the given reference (see
associated numbers by the symbol). The red asterisk next to the references on the right indicate studies including orographic precipitation processes.

of larger-scale effects related to the Andes (Takahashi and Battisti,
2007; Junquas et al., 2016; Xu et al., 2022). One of the effects is
related with the position of the South Pacific Anticyclone, which
in turn can modify the patterns and trajectories of wave trains
associated with Rossby waves, most notably across the southern
Pacific. In turn, these waves can affect the position and strength
of the midlatitude jetstream, which would be located more to
the north without the Andes. In addition, the Andes affect the
location of intense convection in the nearby tropics (including the
Inter Tropical Convergence Zone), which in turn has effects on
the distribution of divergence and convergence centers aloft over
the tropics. Furthermore, by modifying the westerly flow over the
eastern Pacific, the Andes have effects on the Walker circulation by
weakening the subsidence aloft (Junquas et al., 2016). In general, the
effects of the Andes on the mean state over the Pacific (Takahashi
and Battisti, 2007), produce effects on the dynamics of ENSO, with

the height of the Andes being related with the asymmetry between
El Niño and La Niña phases (Xu et al., 2022).

At the continental scale, the Andes shape important patterns
of the low-level winds, temperature and precipitation over South
America (e.g., Kalnay et al., 1986; Broccoli and Manabe, 1992;
Walsh, 1994; Lenters and Cook, 1995; Garreaud et al., 2010;
Insel et al., 2010). More recent studies confirm the local and
regional effects, finding that the Andes are critical for the existence
of the South American low-level Jet and the current patterns
of the meridional transport of moisture across the continent
(e.g., Saurral et al., 2015; Junquas et al., 2016; Rasmussen and
Houze Jr, 2016; Roque and Rasmussen, 2022). In general, these
studies suggest that without the Andes, the meridional low-level
winds would be weaker in the region of the Central Andes,
with a weaker transport of moisture from the Amazon towards
La Plata basin, reducing precipitation over southeastern South
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America. Precipitation over parts of the eastern and western flanks
of the Andes (including the Central Andes and some precipitation
hotspots) would be reduced if no orographic lifting was provided
by the Andes. Precipitation over tropical South America would
increase, given the absent mechanically forced transport of moisture
towards the south of the continent, while precipitation in some
subtropical regions would increase due to the unimpeded westerly
moisture transport from the Pacific in the absence of the blocking
to westerly flow provided by the Andes. Without the Andes, we
would see more precipitation over Patagonia (which would be no
longer located in the rain shadow of the Andes), less precipitation
over the Andes and their westside around 40°S (reduced or absent
orographic effects), and increased precipitation over parts of Peru
between 0° and 10°S (more moisture transport from the Amazon).
We would also see higher temperatures in the Andes region (from
lower elevation), and lower temperatures over southeastern South
America (from the lack of downslope winds from the Andes).

It is worth noting that some important structures of the regional
circulation over South America do not depend crucially on the
Andes. For example, modeling studies suggest that the Andes do not
play a dominant role on the development of Bolivian High (BH),
which is an upper-level anticyclonic circulation centered around
(15°S, 65°W), which is linked to the distribution and variability of
precipitation over parts tropical and subtropical South America (see
e.g., Espinoza et al., 2020). Instead, the BH ismostly a response to the
deep convection over the Amazon, with the Andes playing a role on
its intensity (Lenters and Cook, 1997; Sierra et al., 2021b). However,
the BH contributes to precipitation over the Altiplano in the
tropical-subtropical Andes due to the associated easterly flow that
brings in moisture from the Amazon. Similarly, the occurrence of
westerly low-level winds and low-level convergence over the eastern
Pacific (off the coast of tropical South America) is more linked
to the presence of the South American land mass and sea-surface
temperature patterns than to the existence of the Andes (Lenters
and Cook, 1995). However, in both cases (the BH and low-level
convergence off the west coast of tropical South America), the
complex terrain of the Andes adds to the smaller scale details (e.g.,
at the mesoscale) in the wind and precipitation fields.

2.2 Mechanically induced mountain winds:
low-level jets, low-level blocking, barrier
flow and downslope winds

2.2.1 Low-level jets (LLJs)
Several Low-level Jets (LLJs) can form in the vicinity of the

Andes, including the South American LLJ (SALLJ, e.g., Berbery
and Barros, 2002; Vera et. al., 2006), the Orinoco LLJ (OLLJ;
e.g., LaBar et al. 2005; Torrealba and Amado,r 2010) and the
Choco LLJ (CJ; e.g., Poveda and Mesa, 2000; Sierra et al., 2021a).
Observations about these low-level jets are available from a
few field campaigns, including data about the SALLJ from the
SALLJ Experiment (SALLJEX, Vera et al., 2006) and The Remote
sensing of Electrification, Lightning, And Mesoscale/microscale
Processes with Adaptative Ground Observations (RELAMPAGO,
Sasaki et al., 2022); about the OLLJ (Torrealba and Amador, 2010)
and about the CJ from the Choco-jet experiment (ChocoJEX,
Yepes et al., 2019, 2020) and the Organization of Tropical East

Pacific Convection field campaign (OTREC, Mejía et al., 2021).
However, many studies have employed reanalysis datasets to
describe and understand these LLJs at different scales, from
interannual to sub-daily (e.g., Berbery and Barros, 2002; Salio et al.,
2007; Silva et al., 2009; Monaghan et al., 2010; Rife et al., 2010;
Arraut et al. 2012; Jones, 2019; Montini et al., 2019; LaBar et al.,
2005; Torrealba and Amador, 2010; Builes-Jaramillo et al., 2022a;
Builes-Jaramillo et al., 2022b; Martínez et al., 2024b).

The SALLJ is a regional-scale feature east of the Andes that
transports moisture from the tropics towards the extratropics
(Berbery and Barros, 2002; Vera et al., 2006). Prior to detailed
atmospheric observations of the SALLJ, modeling studies suggested
the importance of the SALLJ for feeding moisture and providing
convergence patterns favorable for precipitation over La Plata basin
(Berbery and Collini, 2000). Numerical simulations have allowed
the description of the SALLJ around the Andean bend (Bolivian
Andes at ∼ 17–19°S), where the air flow can produce gravity waves
and wave breaking, in addition to intra-daily variations of the
low-level winds, temperature and humidity associated with the
diurnal cycle of the SALLJ (Mejía and Douglas, 2006; Nogués-
Paegle et al., 2006). The main characteristics of the SALLJ (e.g.,
geographical location, altitude, strength, extent, seasonal behavior)
have been identified in RCMs, in simulations with grid spacings
in the range 25–50 km (see e.g., Insel et al., 2010; Lange et al.,
2015; Junquas et al., 2016; Torres-Alavez et al., 2021), which has
allowed for the exploration of additional details of the SALLJ
via modeling studies. For example, several studies suggest that
the SALLJ is stronger in simulations with a higher elevation of
the Andes, mostly due to mechanical forcing and topographic
blocking. This affects the simulation of the southward transport
of moisture, which in turn provides moisture and latent energy
for convection and precipitation over the Andes and other regions
downwind (e.g., Insel et al., 2010; Saurral et al., 2015; Junquas et al.,
2016; Rasmussen and Houze Jr, 2016; Rocque and Rasmussen,
2022). Salio et al. (2007) used the operational fields of the NCEP
Global Data Assimilation System (GDAS, ∼1°) and showed
the importance of the SALLJ for providing moisture transport,
convergence, and unstable conditions for Mesoscale Convective
Systems over southeastern South America. Similar conclusions were
later obtained by Rasmussen and Houze Jr (2016); Rocque and
Rasmussen (2022) based on CP simulations (grid spacing 3 km).

On the other hand, problems in adequately simulating the
SALLJ could also be linked to biases in near-surface temperature
over southern South America. For example, Lange et al. (2015)
found a warm bias over northern Argentina during the austral
summer, which in part seemed to be linked to a weaker SALLJ.
Lange et al. (2015) suggested that this bias in the wind field
could be related with biases in simulating atmospheric processes
upwind, in the tropics (specially over the Amazon), based on
their comparison of simulations with different cloud schemes.
However, a robust diagnosis of these biases requires a more in
depth analysis (Lange et al. 2015). Looking forward, future climate
scenarios suggest changes in the behavior of these jets. From
the CORDEX-CORE simulations (grid spacing of 25 km), Torres-
Alavez et al. (2021) found that the SALLJ could have changes under
future Representative Concentration Pathway (RCP) scenarios. In
particular, the SALLJ could become stronger and exhibit a westward
expansion under the RCP8.5 scenario, due to stronger warming over
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continental areas (locatedmostly over tropical and subtropical South
America) and an intensification of the geopotential gradient. These
results seem to be more pronounced in RCMs than in GCMs for
the SALLJ, which is not always the case for other LLJs (Torres-
Alavez et al., 2021).

The OLLJ is a nocturnal jet that forms over the Orinoco basin
in northern South America, which transitions from a zonal to
a northeasterly flow due to the blocking effects of the tropical
Andes, and with a seasonal maximum during the austral summer
season. Based on WRF simulations (grid spacing of 9 km), Jiménez-
Sánchez et al. (2019) described the mesoscale structure of the OLLJ,
finding that this jet has several cores of wind maxima across
the Orinoco basin, some of them associated with topographic
effects by the eastern cordillera of the tropical Andes. In a follow-
up modeling study, Jiménez-Sánchez et al. (2020) conducted a
momentum balance analysis and identified the key factors that
accelerate the OLLJ, such as sea-breeze penetration, katabatic flows
from a coastal mountain range, expansion fans associated with
topography (including the Andes) and the diurnal variation of
turbulent diffusivity in the PBL. In addition, the simulated flow in
the vicinity of the Andes may depend on the planetary boundary
layer (PBL) scheme used. For example, Martinez et al. (2022) found
that the winds and cross-equatorial transport of moisture near
the eastern flank of the Andes associated with the OLLJ, can be
noticeable stronger (∼10% larger) with some PBL schemes within
theWRFmodel, enhancing the simulated precipitation (∼30%more
during the afternoon) over the Andes-Amazon transition region.
Furthermore, details associated with the atmospheric stability in
the OLLJ region can affect the simulation of low-level disturbances
contributing to mesoscale convergence and the formation of
precipitating systems downwind (e.g., Martinez et al. 2024a).

Another important structure in the vicinity of the tropical Andes
is the Choco low-level jet (CJ; see e.g., Poveda and Mesa 2000;
Sierra et al. 2021a). The CJ is related to a westerly flow over the
eastern Pacific off the coast of Colombia, which has a seasonal
maximum during September-November. The CJ impinges on the
western cordillera of the tropical Andes, and this interaction has
been linked to the occurrence of a precipitation hotspot over
the region (e.g., Poveda and Mesa 2000) and an appropriate
environment for the formation of mesoscale convective systems
(Mejía et al. 2021). Despite their coarse resolution relative to the
typical scale of LLJs, previous generations of global simulations (e.g.,
CMIP5) were able to reproduce important characteristics of the CJ,
including its location, intensity, seasonal cycle and relationship with
the ITCZ. The CJ seems to have a substantial relation with regional-
scale gradients in Sea Surface Temperature (SST) and Sea Level
Pressure (SLP), (Sierra et al., 2015; Sierra et al., 2018; Sierra et al.,
2021a), which might explain the skill of global models in simulating
different characteristics of the CJ. In addition, the sole presence of
the South American land mass may contribute to the origin of the
CJ, as this land mass favors the formation of westerly winds over the
eastern Pacific (associated with a continental-scale thermal low and
cyclonic flow), off the coast of SouthAmerica near the tropics. In this
setting, the Andes may contribute to the location of wind maxima
and channeling of part of this westerly flow through lower terrain
near the equator (Lenters and Cook, 1995). Interestingly, based
on atmospheric simulations with prescribed SSTs, Martinez et al.
(2019) found that during the early dry season, the model has a

lower correlation between CJ winds and SSTs than the one suggested
by observation-based datasets. This in turn might be related to the
spurious lack of correlation between SSTs in the eastern Pacific and
the simulated precipitation over the tropical Andes. Together, these
examples suggest that the CJ is important for precipitation over
the tropical Andes, and that models need to appropriately simulate
the coupling between SSTs and the CJ (as in Atmosphere-Ocean
GCMs (AOGCMs) of CMIP5) in order to correctly represent the
inter-annual variability of precipitation over the northern Andes.

2.2.2 Low-level blocking and barrier flow near
the sub-tropical Andes

The studies cited above regarding the SALLJ and the OLLJ refer
mostly to northerly flow east of the Andes, associated with along-
barrier transport of moisture and areas of low-level convergence.
In the case of the tropical Andes, interesting cross-barrier flow
situations can emerge from the westerly flow impinging on the
western tropical Andes, associated with the CJ (e.g., Yepes et al.,
2020). Other interesting low-level flows that have been investigated
via modeling are found in the vicinity of the Central Andes,
including equatorward flow over the eastern flank, poleward flow
over the western flank, and cross-barrier flow (both from the west
or the east).

Incursions of cold midlatitude air towards the tropics can
induce intense equatorward flow along the eastern flank of the
central Andes. These cold outbreaks can also trigger bands of
convection moving equatorward (Garreaud and Wallace, 1998). The
equatorward flow is forced by a synoptic-scale meridional pressure
gradient, which combined with the Coriolis acceleration and the
blocking of zonal winds by the Andes yields ageostrophic winds in
the form of a barrier or channeled flow (Seluchi et al., 2006; Smith,
2019). On the western side of the Central Andes, over the Pacific,
northerly barrier jets can develop, in situations associated with
advection of tropical/sub-tropical air masses towards the vicinity of
the Central Andes, and/or with enhanced westerly zonal flow from
the Pacific, in both cases favoring the occurrence of precipitation
over the chilean Andes (e.g., Scaff et al., 2017).

The role of the Andes for these cases has been investigated using
sensitivity experiments reducing the height of the mountain range.
Mesoscale simulations suggest that convergence can be enhanced in
the leading edge of a cold front when a northerly barrier jet forms
over the Pacific, due to the blocking effects of low-tropospheric
westerly flow by the Andes; the barrier jet can transport moist
air parcels to the chilean coast during the precipitation event
associated with the cold front (Barrett et al., 2009). Based on WRF
CP simulations, Viale et al. (2013) found that the high elevation
of the subtropical Andes not only enhances precipitation over the
complex terrain itself (direct orographic effect), but also enhances
precipitation upwind of it, on the Chilean lowlands, by mid-level
ascending upstream of the Andes over the low-level blocked flow
(Viale et al., 2013, see Figure 4). Furthermore, the height of the sub-
tropical Andes is critical for the northerly barrier flowon thewestern
side due to the mechanical blocking, and for the generation of
conditions with high updraft helicity, favorable for tornado-genesis
in the region (Marín et al., 2021).

Modeling studies have also been used to understand the
relationship between cross-barrier zonal flow and precipitation over
the central Andes. Based on MM5 simulations (grid spacing of
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FIGURE 4
Blocking and other orographic processes associated with a cold-frontal rainband in the subtropical Andes, from (A) 36-km WRF run at 00:00 UTC 7
June 2006, (B) Infrared satellite data, (C–F) 3-km WRF run. (A) Surface pressure (black contours, every 5 hPa), 925 hPa windbarbs and precipitable
water (shaded). (C–F) Wind barbs at 0.5 km and 1-h accumulated precipitation (shaded; mm). Full barb = 5 m s-1. Solid black lines are 500 m and

1,000 m terrain altitudes. Source: Viale et al. (2013).
©
American Meteorological Society. Used with permission.

24 km), Garreaud (1999) studied cases of both rainy and dry days
over the central Andes related with low-level easterly flow of moist
air reaching the eastern flank of the Andes. Interestingly, despite
low-level convergence on the windward-side, the entrainment of
dry air aloft inhibits convection over the Andean plateau during
the dry episodes. In addition, Garreaud (1999) found that westerly
flow brings air parcels with smaller values of equivalent potential
temperature, compared to both parcels from the easterly flow and
from aloft over the Andean plateau (15°S-20°S). This explains
why situations when the westerly flow is stronger are associated
with more stable conditions (less bouyant parcels). Rasmussen
and Houze Jr (2016) also found more stable conditions over the
eastern flank of the subtropical Andes (∼25°S-30°S) associated
with westerly cross-barrier flow in their numerical experiments
with the height of the Andes reduced in 50%. In their CP
simulations (grid spacing 3 km), Rasmussen and Houze Jr (2016)
found conditionswith both less convective available potential energy
(CAPE) and less convective inhibition. Despite the differences in the
experimental design, the reduced CAPE found by Rasmussen and
Houze Jr (2016) is consistent with the previous findings by Garreaud
(1999). In both studies orographic effects still contribute (under
dry conditions or reduced Andes height) with the formation
of cloudiness and convective initiation on the eastern flank
of the Andes.

However, westerly cross-barrier flow over the Andes can also
be associated with intense precipitation over the central Andes,
as shown in the work by Viale and Norte (2009). In this case,
simulations with the Eta-PRM system (grid spacing of 15 km)
showed a deeply blocked (by the Andes) westerly flow (from the
Pacific), with poleward barrier flow at low-levels, and strong cross-
barrier flow above crest-level which was associated with strong
transport of moisture, upslope motion near mountain tops and
orographic precipitation, despite the stable atmospheric conditions.
The studies of Garreaud (1999) and Viale & Norte (2009) show
how orographic precipitation over the Andes can behave differently,
depending on the conditions (e.g., humidity content) of the cross-
barrier flow.

2.2.3 Downslope winds and windstorms
Strong downslope winds/windstorms over parts of the eastern

slopes of the Andes in western-central Argentina are known as
zonda winds (Figure 5). Atmospheric modeling for zonda winds
has contributed to the understanding and forecast of these events
(Seluchi et al., 2003; Viale and Norte, 2009; Puliafito et al., 2015;
Norte, 2015; Antico et al., 2017). With a relatively coarse grid
spacing (e.g., 40–50 km), atmospheric models can simulate events
with the general characteristics of actual zonda wind events, i.e.,
the strong cross-barrier pressure gradients, and vertical motions
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FIGURE 5
WRF simulation (grid spacing 4 km) of an event with strong zonda winds and gravity waves during 11 July 2006 over the sub-tropical Andes. Left:
Vertical cross-section of potential temperature (contours, in K) and vertical velocity (shades, in m s-1) in section close to 33°S. Right: Near surface
winds. Negative values of vertical velocity (blue shades) indicate strong descending flow, with strong zonda winds over the eastern slopes of the Andes.

Gravity waves are evident to the east of the Andes. Source: Norte (2015).
©
Scientific Research. CC-BY License.

and associated downward tilting of potential temperature surfaces
on the lee side. However, a relatively large grid-spacing limits the
ability of models for simulating part of the variations in surface
variables associated with local characteristics of the topography
during zonda events (e.g., wind and/or temperature maxima over
small settlements).

The height of the Andes seems to be critical for simulating
the intensity and frequency of zonda events (Seluchi et al., 2003),
which points to a specific role of grid spacing in modeling
these events. In addition, at CP resolution, simulation of zonda
events are associated with gravity waves downstream and
hydraulic jumps over the eastern slopes of the Argentinean
Andes (Norte, 2015). In general, weather forecasts using
atmospheric models in the meso-gamma-scale not only can
provide good forecast guidance for zonda winds, but they
also are able to predict this type of events even 3 days ahead,
although the exact location, onset, intensity and duration
still are a modeling challenge (Seluchi et al., 2003; Viale and
Norte, 2009; Puliafito et al., 2015).

Further south, other downslope wind systems have been
studied, like the Puelche winds in Chile (dry downslope winds
on the western flank of the Andes, Montecinos et al., 2017) and
the foehn winds of southern Patagonia (Temme et al., 2020).
Montecinos et al. (2017) used data from the Climate Forecast
System Reanalysis (CFSR; whose atmospheric model has a
nominal equivalent grid size of 38 km, Saha et al., 2010). Their
results show that Puelche winds are associated with the passage
of cold anticyclonic systems over Patagonia and easterly flow
crossing the Andes from east to west. These events contribute
to a reduction in cloud cover over the western flank of the
Andes. Based on CP simulations with WRF (2 km grid spacing),
Carrasco-Escaff et al. (2024) show that topographically-induced
subsidence and easterly downslope winds from the Andes
triggered fire conditions for two extreme wildfire events over
southern Chile (34–39°S). For the foehn-like winds of Southern
Patagonia, Temme et al. (2020) found that the downslope flow
can induce local warming, a reduction in the cloud cover and an
increase in sensible heat flux, which combined can contribute to

glacier ablation. However, regions with gap winds do not necessarily
experience warming, since the foehn jet can transport moister and
cooler air.

2.3 Thermally-induced mountain winds

Complex terrain can induce circulations not only by direct
blocking or channeling, but also because of the differential radiative
heating/cooling associated with the gradients in surface altitude and
slope (e.g., elevated heating during the day over mountain tops),
shading of incoming solar radiation, etc. Some of these mesoscale
circulations include slope flows (e.g., local scale katabatic, drainage,
or anabatic flows), mountain-valley and mountain-plain flows, and
their potential interactions with regional- or synoptic-scale flows.
Modeling of these atmospheric systems usually requires a much
higher resolution, with grid spacings from a few kilometers, down
to hundreds of meters.

Katabatic flows can contribute to the existence of local rain
shadows (where the down-slopewinds are strongest) and convection
farther downwind, near to valleys or lowlands.This kind of katabatic
flow could also be associated with forest fires and enhanced
evaporation in the vicinity of the low passes, where winds are
stronger and precipitation is reduced. Specific patterns and effects
of katabatic flows over parts of the equatorial Andes have been
inferred from surface observations over a few sites (e.g., López
and Howell, 1967), and then found in kilometer scale simulations
(e.g., Warner et al. 2003). The similarities between the numerical
model simulations byWarner et al. (2003) and the physically guided
depiction of katabatic winds by López and Howell (1967) are
astonishing.

By utilizing idealized topography configurations, Trachte et al.
(2010a) simulated at very high resolution (grid size 250 m) the
katabatic flow in the Andes-Amazon transition region between
Ecuador and Peru. They found that drainage flows from concave-
lined terrain (i.e., terrain with a base following a concave curvature)
can in fact provide conditions for a jet-like wind profile and low-
level horizontal convergence over a region representative of the
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Amazon near the Andes foothills, despite the existence of a complex
distribution of valleys in the mountain region. Trachte et al. (2010b)
used high resolution simulations (grid size 1 km) to study an event
of nocturnal cloud formation over the same region. They found
that in fact, under realistic conditions, cloud formation is associated
with low-level convergence that takes place over this Andes-Amazon
transition region at night, caused by the katabatic flow induced
from thermal effects. Howevermoist convection over the region also
depends on the stability of the atmospheric profile, as revealed by the
very high resolution simulations (500 m grid size) by Trachte and
Bendix (2012).

Kilometer-scale simulations have been employed to study
valley-mountain circulations over the Peruvian Andes, and their
interactions with synoptic conditions and regional-scale flow
from the Amazon (Junquas et al., 2018; Junquas et al., 2022;
Rosales et al., 2022; see Figures 6, 7). The thermally-driven
circulation was identified as determinant for the precipitation
distribution and diurnal cycle, as well as the associated latent
heat release as a key factor for its amplification. In addition, the
inter-Andean valleys and canyons favor channeling flow, which
contributes with the transport of moisture and the distribution
of precipitation over particular spots in the region. The valley
and slope circulations within the Andes have also been studied
in the Colombian Andes (Posada-Marín et al., 2019; Gómez-
Rios et al., 2023; Martínez et al., 2024b). These studies confirm
that the representation of these diurnal thermal circulations by
the models (associated with the high resolution needed to represent
the intra-Andean valleys) is critical for the proper simulation of the
diurnal cycle and spatial distribution of precipitation over this part
of the Andes.

Complex terrain can also strongly shape the structure
and dynamics of the Convective Boundary Layer (CBL).
For example, Bischoff-Gauß et al., (2008) found that the daytime
deepening of the CBL of the Elqui valley (northern Chile) is
substantially constrained by up-valley and upslope wind systems. In
this case the advection terms induced by the complex terrain have
negative contributions to the tendencies in temperature, which are
of the same order as the positive contribution from the convergence
of the turbulent sensible heat flux.

2.4 Gravity waves

At the global scale, tall and/or long mountain chains can
induce a substantial drag on the large-scale flow, and affect specific
atmospheric patterns like Rossby waves (Sandu et al., 2019). At
the mesoscale, gravity waves can interact with and/or contribute
to thunderstorms, and mountain waves (MWs) are associated
with severe downslope winds (see previous sections, Figure 5) and
clear air turbulence (CAT). The explicit simulation of mesoscale
gravity waves requires grid spacings in the kilometer and sub-
kilometer scale.

The Andes can induce the formation of gravity waves of
different scales. For example, the subtropical and extratropical
Andes can be the main source of gravity waves (compared to
convection), which can then propagate up to the mesosphere
(Hierro et al., 2018; Lund et al., 2020; Fritts et al., 2021). The
associated momentum fluxes have very local characteristics, related

to the fine structure of the Andes, which suggests that part of
the corresponding effects would not be adequately represented
in previous simulations with global models. A grid spacing of
∼2 km would be necessary to represent part of the complex and
detailed dynamics achieved at 0.5 km, including the generation of
secondary gravity waves, and some of the extended responses in
the mesosphere. However a grid spacing of 4 km still allows a
representation of important wave-mean flow interactions, despite
exhibiting suppressed instabilities (Fritts et al., 2022).

In the tropical Colombian Andes, Mapes et al. (2003) suggested
that nocturnal convective activity and precipitation off the Pacific
coast of Colombia could be activated by gravity waves, which in
turn would be induced by the diurnal changes in the heat source
over the Andes. However, this type of gravity waves are not be the
only source of convective activity, and their simulation is challenging
due to biases in upper-level winds (Yepes et al., 2020). Mapes et al.
(2003) suggested that similar gravity waves, although somewhat
weaker, emanate from the tropical Andes towards the Amazon
to the east, although their structure and effects are complicated,
in part by the presence of westward propagating perturbations,
similar to Amazonian squall lines. Furthermore, gravity waves
induced by geostrophic adjustment and/or convection over the
Amazon can move westward, contributing with the transport of
moisture and momentum towards regions inside the Andes (Flores-
Rojas et al., 2019; Martinez et al., 2024a).

2.5 Pathways and transport of moisture
and aerosols

Utilizing reanalysis fields as inputs, water vapor tracking models
have been designed to diagnose the transport and exchange of water
vapor between different surface sources (e.g., Gimeno et al., 2012).
This kind of tools have been used extensively in studies about South
America, including first order estimates of the sources of water vapor
along the Andes (e.g., Nieto et al. 2008; Van der Ent et al., 2010;
Sakamoto et al., 2011; Martinez and Dominguez, 2014; Zemp et al.,
2014; Arias et al., 2015; Hoyos et al., 2018; Morales et al., 2021;
Escobar et al., 2022). In this sense, much of what we understand
about the patterns of water vapor transport across South America
and in the vicinity of the Andes is based on the modeling
associated with reanalyses. However, the atmospheric reanalyses
with the highest resolution nowadays (e.g., ERA5, ∼0.25°) are
still relatively coarse for providing mesoscale details of the wind
field in the vicinity of the Andes. Atmospheric simulations with
higher resolution can provide a more detailed picture of the effects
of the complex topography of the Andes on the transport of
moisture over the region (e.g., Viale andNorte, 2009; Trachte, 2018).
Both types of approaches (i.e., diagnostics based on reanalyses,
and simulations at higher resolution) suggest that most of the
atmospheric moisture reaching the tropical Andes comes from
eastern sources (including parts of the Amazon, the Atlantic, among
others), while the Pacific ocean is a more important source for
the central (∼20–40°S) and southern Andes. In addition, numerical
simulations at higher resolution highlight the important role of
mesoscale structures like sea-breezes, and slope/anabatic winds in
the transport of moist air (Viale and Norte, 2009; Trachte, 2018;
Martinez et al., 2022; Martinez et al., 2024a).
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FIGURE 6
Schematic diagrams of the main local and regional atmospheric circulations identified in Junquas et al. (2018) associated with the diurnal cycle of
precipitation in the region of Cuzco and the Apurimac valleys (Peru) from 2000–2014 DJF mean of 9-km WRF simulations for (A, C) local time daytime
conditions and (B, D) local time nighttime conditions. To the west of the peak of the Vilcabamba Cordillera more local processes take place, including
up-hill winds and precipitation at the summits during the day and katabatic winds, convergence and precipitation over the Apurimac valley during the
night (see Figure 2). In contrast, the eastern slopes of the Vilcabamba Cordillera are also affected by regional winds from the

Amazon. Source: Junquas et al. (2018).
©
Climate Dynamics. Reprinted by permission from Springer Nature.

Numerical tracers or parcel tracking models have been
employed for studying the transport aerosols, trace gasses, and
other constituents, affecting atmospheric composition and air
quality downwind from the sources at different spatial and
temporal scales. In particular, kilometer-scale modeling for
various regions within the Andes has allowed the identification
of recurrent pathways and important sources/sinks for different
constituents, including natural constituents like water vapor and
biomass particles, and anthropogenic constituents from traffic
emissions (Aliaga et al., 2018; González et al., 2018; Henao et al.,
2020; Lapere et al., 2021; Ballesteros-González et al., 2022).
Natural constituents can travel long distances, for example,
starting from the Amazon and reaching high elevations in the

Bolivian Andes (Aliaga et al., 2018), or traveling from mega-
fires in central Chile and reaching urban areas to the west
(Lapere et al., 2021).

On the other hand, the concentration and dispersion of
constituents associated with urban areas are highly dependent
on specific anthropogenic sources (González et al., 2018),
as well as on the valley and slope flows associated with
Andean cities (Henao et al., 2020). In the case of air quality,
not only very high resolution (ideally sub-kilometer) would be
necessary for representing the details of the flow over the Andes
affecting urban areas, but also there is a need for improved coupling
with microphysics and chemistry schemes. In addition, in order
to achieve better statistics, simulations of long periods of time
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FIGURE 7
Schematic diagrams of the main afternoon atmospheric circulations and the associated local maximum precipitation patterns at (A) 13hLT, (B) 16hLT
and (C) 19hLT in the river Santa basin, including the Cordillera Blanca and Cordillera Negra regions, according to DJFM 2012–2013 2 km-resolution
WRF simulations. The resulting diurnal cycle of precipitation is associated with an interplay between (i) two regional flows from the Pacific and from the
Amazon, and (ii) local slope and valley winds within the Santa river valley, situated between the Cordillera Blanca and the Cordillera Negra. The thin and
bold black contours in (A–C) are topography limits at 500 m. a.s.l. and 3,500 m. a.s.l., respectively. Arrow and colors in (D–F) are the
meridional-vertical moisture flux (qv; qw; m/s) and specific humidity (g/kg) respectively, in a vertical cross-section perpendicular to the Santa valley.

Geographical details of the cross-section are indicated in the inset panel (A, D). Source: Rosales et al. (2022).
©
MDPI. CC license. (G) Peak hour of

precipitation from 3-km WRF simulations (color) and in situ stations (white numbers) for the hydrological year 2012–2013. Source: Mourre et al.

(2016).
©
Copernicus Publications. CC license. As a result from the regional scale flow and mountain circulations, the maximum precipitation occurs

mostly during the late afternoon and early night (G).

(e.g., several years) would also be needed, which implies a high
computational cost.

It is clear that progress in the study of wind systems like
those reviewed in this section has been possible because of the use
of relatively high resolution simulations. However it is also clear
that the identification and analysis of specific phenomena, over
specific regions (e.g., zonda winds in Argentina) is instrumental for
progress. In other words, it is the focus on different regions along
themountain range by different researchers which provides in depth
descriptions and understanding of atmospheric phenemona in the
Andes. Furthermore, the details of the atmospheric flow over and
around the Andes are intrinsically connected with the distribution
of precipitation, e.g., via orographic enhancement of precipitating
systems; we review some results about orographic precipitation in
the following section.

3 Orographic precipitation

3.1 Tropical and subtropical orographic
precipitation

3.1.1 Spatial variability and altitudinal gradients
At regional scale, the tropical Andes cordillera is the location

of a strong zonal climatic gradient from the Pacific coast on the

west toward the tropical rainforests to the east. In the southern
tropicalAndes in particular, both sides of theAndes present opposite
rainfall regimes with dry conditions in the Western slopes (arid
to semi-arid regime) and wet tropical conditions on the eastern
slopes. It is a big challenge for atmospheric models, from low-
resolution GCMs to high-resolution RCMs to correctly reproduce
these climatic gradients, especially in the tropics where convective
precipitation and meso-to local-scale circulations within the Andes
modulate climate there. In addition, at local scale a large diversity of
altitudinal gradients of precipitation are found in valleys, slopes and
summits, depending on various factors (e.g., Arias et al., 2021).

In the tropical Andes, regional-scale RCMs simulations (more
than 10 km of grid spacing) generally show overestimation of
precipitation at high altitudes (e.g., Urrutia and Vuille, 2009;
Junquas et al., 2016; 2018; Ochoa et al., 2016; Trachte et al.,
2018; Chimborazo and Vuille, 2021; Hodnebrog et al., 2021).
By performing climatological (30-years) dynamical downscaling
simulations in tropical Andes with grid spacing of 50 km, Urrutia
and Vuille (2009) found mainly positive precipitation biases at
high altitude, particularly pronounced during December-January-
February (DJF) and over the eastern slopes. They attributed much of
this bias to the differences in the underlying topography between the
model and the validating observation products. Similar biases were
found with 10-km resolution simulations in Ecuador (Chimborazo
and Vuille 2021) and Peru (Hodnebrog et al., 2021). In the Andes
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of Colombia, from a dynamical downscaling simulation using
the WRF model at 25 km, Martinez et al. (2019) found a mainly
positive precipitation bias when compared to satellite products,
explained by an excess of atmospheric moisture convergence.
Otherwise, negative biases were found in the lower parts of the
Andes-Amazon slopes (e.g., Urrutia and Vuille, 2009; Junquas et al.,
2016; Chimborazo and Vuille, 2021) and of the Ecuadorian Pacific
slope (Ochoa et al., 2014; Chimborazo and Vuille, 2021).

Kilometer-scale RCMs simulations (less than 10 km of grid
spacing) are able to reproduce more details in terms of spatial
variability of precipitation, but at the same time they exhibit
more diversity in terms of spatial biases. In the Mantaro basin
(Peru), by testing different daily forecasting configurations of
the WRF model with grid spacing of 3 km, both positive and
negative precipitation biases were found, depending mainly on the
choice of the microphysics and cumulus schemes (see also Part II,
Section 3.2), when compared to in situ stations (Moya-Álvarez et al.,
2018a; Moya-Álvarez et al., 2018b, Martínez-Castro et al., 2019).
For an inter-Andean valley of Colombia (Cauca river valley),
kilometer scale simulations also produced smaller precipitation
biases, compared to previous reanalysis data (Posada-Marín et al.,
2019). For this region, Posada-Marín et al. (2019) found that with
a grid spacing of 3.3 km, local precipitation biases still persisted
in the simulations when compared to satellite and ground stations,
but because of a better representation of the local orography
and associated valley-wind processes, smaller biases than in ERA-
Interim reanalyses was found, particularly on the western cordillera
next to the valley.

In Bolivia, Sierra et al. (2021b) explored two opposite altitudinal
gradients of precipitation in two neighboring valleys within the
Andes-Amazon transition region, based on 1 km resolution for
multi-DFJ simulations. The altitudinal gradient was simulated
relatively well in both valleys when compared to in situ stations,
including a decrease of precipitation between the bottom (1,000 m.
a.s.l to 2000 m. a.s.l.) and the highest altitudes (∼4,900 m. a.s.l.) in
along-valley direction of the Zongo valley, as well as an increase of
precipitation in the Huarinilla valley from the bottom (∼1800 m.
a.s.l.) to the summit (∼3,000 m. a.s.l.). Even though, in both valleys
negative biases still persisted in themodels, particularly in theZongo
valley at mid-slope and in the lower parts. In the region of the
Antizana glacier in Ecuador, two localized maxima of precipitation
were simulated: one over the mid-slope of the valleys surrounding
the glacier and other over the summit (Junquas et al., 2022). The
maximum on the summit could be partly validated by glacier
surface mass balance calibration results (Basantes-Serrano et al.,
2016). However, the maximum on the mid-slope could not be
validated because of a lack of in situ stations. On the western
slope of central Andes (Peru), rainfall decreases with increasing
elevation, according to observations. Simulations with the WRF
model suggested the underlying mechanisms are an interplay
between the large-scale circulation, thermally driven upslope winds
and sea breeze flow (Trachte et al., 2018).

The well-known “hotspots” of localized high precipitation in
the Andes-Amazon slope (e.g., Romatschke and Houze, 2010;
Espinoza et al., 2015) are generally well depicted by the high-
resolution simulations, although with some biases. Considering
a DJF climatology from WRF model simulations (grid spacing
<9 km), the “Quincemil” hotspot (Eastern Andes of Peru) was

correctly reproduced in terms of altitude ranges with a maximum
precipitation amount localized between 500 and 3,500 m. a.s.l.
(Junquas et al., 2018; Sierra et al., 2021b; Figure 6). However an
overestimation was still found in simulations when compared to
observations and satellite data.

Another common error found in the simulations, particularly
at lower resolutions (grid spacing larger than 15 km), consists of
depicting the hotspot region as a continuous band of maximum
precipitation along the Andes-Amazon region from Bolivia to
northern Peru, instead of independently localized centers of
precipitation maxima (Gutierrez et al., 2024). The same error was
identified in the Andes-Amazon transition region of Ecuador and
southern Colombia with the WRF model (Junquas et al., 2022). In
particular, the hotspot precipitation system in this regionwas shifted
westward by the model, toward higher altitudes when compared to
satellite data, a bias related to a misrepresentation of the westerly
moisture transport and convergence in the model (Figures 8A–D).
As a result, an overestimation of precipitation at high altitudes by the
model is observed, including the summit of the Antizana glacier.

In terms of precipitation spatial variability, the tropical Andes
hotspots are some of the regions most poorly represented in South
America by GCMs (Ortega et al., 2021). Oglesby et al. (2016) showed
that with grid spacings of 36 km and larger, the tropical Andes
topographyisnotelevatedenoughtocorrectlyblocktheeasterlywinds.
Therefore the wind blows from the Atlantic Ocean toward the Pacific
Oceanwithout correctly considering theAndes like thenatural barrier
it actually is. This problem could be addressed utilizing simulations
with a grid spacing of at least 10–12 km in dynamical downscaling
from GCM outputs (Oglesby et al., 2016; Hodnebrog et al., 2021; see
also Section 3.1 in Part II).

3.1.2 Diurnal cycle
At local scale, one of the main interests in using high-resolution

modeling is to be able to describe the valley and slope mountain
winds that could directly impact the diurnal cycle of precipitation,
especiallywhen the synoptic forcing isweak as in the tropics (also see
Section 2.3). In various parts of the tropical Andes, previous studies
have associated a diurnal cycle of precipitation with thermally-
driven mountain winds (e.g., Garreaud, 1999; Poveda et al., 2005;
Egger et al., 2005; Zängl and Egger, 2005; Reuder and Egger, 2006;
Giovannettone and Barros, 2009; Trachte et al., 2010a; Trachte et al.,
2010b; Trachte et al., 2018; Junquas et al., 2018; Junquas et al., 2022;
Rosales et al., 2022; Martínez et al., 2024b). These mountain winds
typically consist of upslope winds contributing to a maximum of
precipitation on mid-slopes or summits during the day. Downslope
winds can contribute to amaximumof precipitation over lower parts
of valleys and slopes during the night.

Some studies have performed experiments with a numerically
modified valley orography in order to identifying the effect
of the channeling or blocking processes over the valley-wind
circulation and their impacts over the local diurnal cycle of
precipitation (e.g., Junquas et al., 2018; Gómez-Rios et al., 2023;
Figure 6). In the Pacific coast of the southern tropical Andes,
high-resolution experiments showed that in addition to regional
circulations and SST variability, the local diurnal cycle of the
sea-breeze process contributed to the daytime upslope moisture
flow and associated precipitation in the western slope of the
peruvian Andes (Trachte et al., 2018; Rosales et al., 2022). In
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FIGURE 8
Local Daytime and nighttime means of precipitation (colors; mm/day) from (A, B) the precipitation radar of the Tropical Rainfall Measuring Mission
(TRMM-2A25) and from 3-km (C, D) and 1-km (E–H)WRF simulations (2005 years mean) in the region of the Antisana glacier (Ecuador; indicated with a
red cross). Associated low-level vertically-integrated (C, D) and surface (E–H) moisture fluxes are displayed in arrows (reference vector in g kg −1 m s−1
indicated in the lower right corner of each panel). Black contours are topography level. (I, J) South-North transect of daytime (red and orange lines)
and nighttime (blue lines) means of precipitation (mm/day) for two 1-km experiments, from the in situ station P40 (0°45S; 78°21’W) to the station C16
(0°17S; 78°07’W). The topography along the cross-section is displayed by a dashed black line (m). The 3-km and 1-km CP (No CP) experiments indicate

experiments with the Cumulus scheme deactivated (activated). Source: Junquas et al. (2022).
©
Climate Dynamics. Reprinted by permission from

Springer Nature.

addition, a channeling of this flow in the Santa valley (Cordillera
Blanca, Peru) contributed to explaining the diurnal cycle of
precipitation in the valley, with mountain-to-valley and South-
North shifts of the precipitation events during mid to late afternoon
(Rosales et al., 2022; Figure 7).

In some regions of the tropical Andes, the diurnal cycle of
precipitation is strongly modulated by the seasonality, as shown
for example, in the valley of the Magdalena river in Colombia
(Poveda et al., 2005) and in Ecuador (Laraque et al. 2007). Generally
the RCMs show good representation of the seasonal precipitation
variability at daily or monthly scale (e.g., Ochoa et al., Ochoa et al.,
2014; Ochoa et al., 2016; González-Rojí et al., 2022). However, some
difficulties persist associated with the complex representation of
the multi-scale processes involved in the diurnal scale, e.g., the
interaction of local mountain circulations with the regional scale
trade winds, (e.g., Poveda et al., 2020; Junquas et al., 2022). Due to
the high computing cost of performing multi-year simulations at
high spatio-temporal resolutions and a lack of observational data
available at such local scales, few studies exist for now about the
modulation of the precipitation diurnal cycle by seasonal processes
and more understanding is needed. Modeling studies are needed to
explore such spatio-temporal dynamics.

3.1.3 Extreme tropical precipitation events
Regional model forecast (e.g., Hoyos et al., 2019; Flores-

Rojas et al., 2021;Martínez et al., 2024b) and sensitivity experiments
(e.g., Zamuriano-Carbajal, 2019; Martinez et al., 2024a) have been
performed for different case studies of extreme precipitation events
in the tropical Andes. In particular, the WRF model is frequently
used as an operational tool to produce short-term forecasts in
national weather services in the Andean countries. Although the
model generally underestimated the total rainfall amount during the
extreme events, it is able to correctly capture the complexity of the
associated processes, including the patterns of precipitation over the
complex terrain (e.g., Hoyos et al., 2019; Flores-Rojas et al., 2021).
During the 2015 Salgar flash flood in the Colombian Andes, high-
resolution (2 km) simulations in forecast mode were performed
to understand a local orographic intensification of a series of
intense storms associated with regional easterly winds (Hoyos et al.,
2019). The results showed that moist air was advected upward
along the slope, generating a mechanical triggering of precipitation
in the upper part of the basin (∼3,600 m. a.s.l.), similar to the
observations. The precipitation was correctly forecasted during the
three consecutive days of the event during nighttime, but with
a persistent underestimation of the total rainfall amounts. These
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results show that an operational model used at high-resolution is a
powerful tool to provide useful information for risk management
and impact studies.

In the region of La Paz valley connecting the Bolivian Amazon
and the southern Altiplano, the WRF model was used (grid spacing
of 2 km) to investigate the hailstorm and flash flood event of
February 2002 through diverse sensitivity experiments modifying
the land surface characteristics including the Titicaca lake feature
(Zamuriano-Carbajal, 2019). The model was able to reproduce
the main atmospheric processes associated with the event. During
the early afternoon the Titicaca lake breeze generated cold pools
over the plateau that propagated toward the upper part of the
La Paz valley, and converged with the upslope valley breeze
triggering a strong convective cell near La Paz city that ultimately
produced the flash flood event. In the Mantaro basin (Peru), the
WRF model (grid size 0.5 km) coupled with the ARPS model
(Advance Regional Prediction System; Xue et al. (2000) was able
to reproduce two extreme precipitation events at two different
seasons (austral autumn and winter), occurring under distinctive
synoptic conditions (easterlies vs. westerlies at mid and upper
levels of the atmosphere; Flores-Rojas et al., 2021).The ARPS model
was also used with 1 km grid spacing in the Andes-Amazon
transition region of northern Peru/Southern Ecuador to identify
the local atmospheric processes associated with a nocturnal extreme
convective cell during October 2019 (Trachte et al., 2010b; see also
Part II - Section 3.1).

3.2 Extra-tropical orographic precipitation

Frontal precipitation systems embedded in the southern
westerlies, including atmospheric rivers reach the subtropical
sector of the Andes mostly in austral winter, while over the
extratropical sector of the Andes they occur all year round (e.g.,
Garreaud et al., 2013; Viale and Nuñez, 2011; Viale and Garreaud,
2015; Viale et al., 2019). Given the absence of a comprehensive
network of local and remote sensing observations recording
storms moving over the Andes in Argentina and Chile, research
on orographic precipitation have relied on specific short-term
observational campaigns and numerical modeling. Long-term
climate simulations in Patagonia reproduced well the marked
contrast between the hyper humid conditions prevailing in western
Patagonia and the dry/cold climate characterizing the steppe on
the east side of the Andes (Garreaud et al., 2013; Lenaerts et al.,
2014).Within this region, specific research with RCMs have focused
on the northern and southern ice fields (Lenaerts et al., 2014;
Schaefer et al., 2013; Villarroel et al., 2013; Carrasco-Escaff et al.,
2023), showing a prominent orographic precipitation enhancement.
The overall wet conditions in western Patagonia, further boosted by
the topography uplift, lead to modeled mean annual accumulations
of up to 10 m (or even 30 m in some regions) on the windward side
of these huge ice bodies, in contrast to the dry (<500 mm) conditions
on its lee-side foot. Some estimates from in situ records are available
for the southern icefield, which allows comparison with the studies
with RCMs mentioned above. For example, estimations through ice
cores in the Pio XII glacier indicate that the annual accumulation
of precipitation ranges from 3 to 7 m, with an average of 6 m over a
seven-year period (2000–2006; Schwikowski et al., 2013). Although

the precipitation regime in western Patagonia likely makes it the
wettest place outside the tropics, ice core proxies indicate that
high-resolution simulations may be overestimating the orographic
precipitation enhancement over the austral Andes.

Farther north in central Chile, based on local observations and a
very high-resolution (1 km) simulations with WRF, Garreaud et al.
(2016) described the contribution of orographic precipitation over
the coastal range of Nahuelbuta around 37ºS for the winter of 2011.
Although WRF tends to overestimate precipitation by a factor of
1.5 in this region, it shows a good agreement with observational
data regarding the orographic rainfall enhancement, with a ratio
of mountain top to foothill values of about 2. Other modeling
case studies have shed light on orographic precipitation processes
upstream of the subtropical Andes, where the high elevation of the
subtropical Andes not only enhances precipitation directly over the
upslope terrain, but also enhances precipitation upstream of it, on
the Chilean lowlands (Barrett et al., 2009; Viale et al., 2013). The
resulting overestimation of precipitation from models [e.g., as in
Garreaud et al. (2016)] could be smaller than initially estimated,
when accounting for wind-induced rainfall undercatch (up to 10%)
at windward slope stations. Studies like those by Barrett et al. (2009),
Viale et al. (2013) and Garreaud et al. (2016), found that the models
were able to reproduce brief periods (1–3 h) of high precipitation
rates over the mountains as well as over the upstream lowlands.

Using high-resolution (10 km) simulations with WRF, Barrett
el al. (2009) showed that precipitation was enhanced upstream of
the Andes as a result of increased low-level convergence just ahead
of a moving equatorward cold front due to the low-level blocking
and barrier jet formation. Viale et al. (2013) suggested that the
increased low-level convergence operated in tandem with a seeder-
feeder mechanism, activated by mid-level flow ascending upstream
of the Andes over low-level blocked flow (Figure 4), enhancing
hydrometeor growth processes just ahead of a cold front moving
equatorward. Bozkurt et al. (2019) describe results from ensembles
of long-term simulations (longer than 30 years) performed with
RegCM4 in a domain covering continental Chile with a grid spacing
of nearly 10 km (see Part II). Forced at the domain boundaries
by both reanalysis (ERA-Interim) and GCM (MPI-ESM-MR) data,
these simulations also allow assessing the dynamic downscaling
performance over the complex landscape of the southern Andes.
The model output reasonably represents the orographic uplift and
precipitation enhancement on thewindward side of the extratropical
Andes. However, with coarser resolution (reanalysis and GCM), a
strong underestimation was found.

Torrez-Rodriguez et al. (2023) showed that the CORDEX-
CORE and Eta model simulations (grid spacing ∼20–25 km)
reproduce reasonably well the main spatio-temporal characteristics
of precipitation over North-Central Chile, such as latitudinal
gradients, airflow uplift by orographic barriers, phase of the
seasonal cycle, and realistic inter-annual variability. However,
they systematically overestimate the total precipitation, especially
between 25ºS and 35ºS with the most prominent bias over higher
elevations (more than 200%–300%), the latter being associated
with a strong overestimation of mean orographic enhancement
of precipitation when compared with observation-based studies
(Viale and Garreaud, 2015). In general, numerical simulations have
been instrumental to understand and/or diagnose the effects of
extratropical dynamics on major precipitation events in the vicinity
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of the central and southern Andes, including the dynamics of cut-
off lows, atmospheric rivers and the distribution of precipitation
over the complex terrain during severe precipitation events
and flooding (see e.g., Garreaud and Fuenzalida, 2007, Bozkurt
et al. 2016; Garreaud et al. 2024).

High-resolution modeling studies provide crucial insights
into the orographic precipitation and rain shadow effects from
midlatitudes precipitation systems moving over the Subtropical
Andes (30ºS-40°S), mostly in winter, and over the extratropical
Andes (∼40ºS-55ºS) all year round. Such high-resolution
simulations capture the sharp precipitation gradients caused by
moist westerlies rising over the Andes, resulting in significant
rainfall on the western slopes and drier conditions on the eastern
side (Viale and Norte 2009; Viale et al., 2013; Lenaerts et al.,
2014; Damseaux et al., 2020; Sauter, 2020). These high-resolution
simulations solve fine-scale orographic precipitation processes,
such as localized precipitation maxima and minima, by accurately
depicting terrain features and elevation changes, which is essential
for weather forecast and assessing glacier and surface mass balance
implications in Patagonia (Schaefer et al., 2013; Bravo et al., 2019).

The use of simulations with higher resolution has allowed a
more detailed investigation of orographic precipitation over the
Andes (e.g., the mesoscale dynamics associated with its initiation),
as shown by the reviewed studies, especially from around the
last 10 years. However, a more comprehensive characterization
and understanding of orographic precipitation over the Andes is
still under development because of several reasons, including the
diversity of characteristics (e.g., differences in phase of the mean
diurnal cycle) along the region, the need for longer simulations for
a better characterization of its climate, the need for a larger pool of
simulated severe precipitation events for a more robust assessment
of extremes, and a more detailed assessment of biases and model
deficiencies for the region.This last issue is reviewed in the following
section, and in Section 3 of Part II.

4 Model evaluation

Model validation with local (in situ) observations, especially
for long periods, is essential for assessing atmospheric processes
and patterns in the Andes, especially at small (e.g., kilometer-
scale) spatial scales. In this sense, a dense network of surface
observations (e.g., for temperature and precipitation), along with
multi-level atmospheric information (e.g., from radiosondes, radars,
etc.) is highly needed for the region. For example, in a review
of the climatological and hydrological observations for the Andes,
Condom et al. (2020) make emphasis on the lack of observation
sites in high-elevation areas along the Andes (less than 4,100
stations above 2001 m), and on the very few regular radiosonde
launching sites (∼16 along the whole mountain range), despite
their importance for atmospheric monitoring and for the validation
of atmospheric models. Other data sources, like satellite-based
or reanalyses data, are commonly used, but these sources exhibit
biases associated with instrument calibration and data processing
(Cavazos et al., 2024). Furthermore, both observations and model
output at increasingly higher temporal resolution (hourly, or even
sub-hourly) would be needed for a better characterization of
the diurnal cycle of different hydroclimate variables and extreme

precipitation events. The PISCOp_h high-resolution (0.1°) hourly
gridded precipitation dataset for Peru (Huerta et al., 2022) is
one example of the type of datasets that can greatly help with
model validation over the Andes. Field campaigns like SALLJEX
(Vera et al., 2006), ChocoJEX (Yepes et al., 2019, 2020), OTREC
(Mejía et al., 2021) and RELAMPAGO (Sasaki et al., 2022) also
provide data (see Section 2.3.1) that is instrumental for model
validation.

Utilizing a variety of data sources, a number of studies
have reported on the type of biases of atmospheric models for
representing or predicting variables like temperature, humidity
and winds near the surface, precipitation, downward shortwave
radiation, among others. Results about the biases in ensembles
of long term (climate) simulations and sensitivity studies are
reviewed throughout Part II, in the context of applications to
climate projections (Section 2, Part II) and model configuration
(Section 3, Part II). Here we briefly review some results about
model performance and biases in applications regarding Numerical
Weather Prediction (NWP).

There is a noticeable lack of peer-reviewed studies focusing on
model performance for NWP applications in the Andean regions,
although LAMs are routinely used by their national meteorological
services (NMSs). Most examples of NWP studies for the Andes
are based on CP simulations, and they focus on the short range
(1–3 days). For example, for the Chajnantor plateau (∼5,100 m.
a.s.l, ∼23°S) of northern Chile, Pozo et al. (2016) report about the
performance of CP simulations with WRF (1 km grid-spacing) for
the forecast of temperature, water vapor mixing ratio and winds
near the surface, along with total column water vapor, for lead
times between 1 and 3 days. For this very dry region, Pozo et al.
(2016) find that their simulations underestimate the near surface
temperature but overestimate the water vapor mixing ratio and the
10 m wind magnitude (especially the meridional component). For
the central Andes of Peru (∼12°S), and comparing members from
a multiphysics ensemble, Moya-Álvarez et al., 2018a find that most
configurations overestimate precipitation for the region for 1–10
days lead time, with a slightly larger bias when in CP mode (3 km
grid spacing). Martínez et al. (2024b) also found overestimation of
24-h precipitation (i.e. 1 day lead time) in CP simulations with
WRF (grid spacing 4 km), both in seasonal averages and for two
heavy precipitation events over the northern Andes. In contrast,
compared with satellite estimates, the model underestimates the
nocturnal precipitation over the lowlands around theAndes formost
of the days.

On the other hand, in 36-h forecasts of precipitation from
a multiphysics ensemble using parameterized deep cumulus
convection, Moya-Álvarez et al. (2020) found that most ensemble
members underestimate precipitation by about 7% over central
Peru, which seems to be related with a boundary layer that
is more stable than in observations. On a longer time scale,
Arévalo et al. (2024) investigated the performance of forecasts
in the subseasonal-to-seasonal range for central Chile (Andes
around 33°S), utilizing a multi-physics ensemble (smallest grid
spacing of 1 km), including ensemble members with an active deep
cumulus scheme. Interestingly, despite the differences in experiment
design, Arévalo et al. (2024) also find that the model mostly
underestimates precipitation over the lowlands, but overestimates
it elsewhere, similar to the findings by Moya-Álvarez et al. (2018b);
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Martínez et al., (2024b). In addition, Arévalo et al. (2024) find
that in general the forecasts overestimate near surface winds and
temperature.

The studies reviewed in the last paragraph are mostly devoted to
the description of the experimental design and to the calculation of
metrics for forecast errors, whereas a robust analysis and diagnosis
devoted to the understanding of those errors is in general beyond
the scope of this type of studies. However, the evaluation of model
outputs might benefit from comprehensive studies that look at
multiple variables, and performance metrics based on physical
processes, in order to better assess the overall skills of the models
(see e.g., Covey et al., 2016; García-Díe et al. 2015; Katragkou et al.
2015; Stegehuis et al. 2015; Eyring et al., 2019). Evaluations based
on processes might help to better select models for ensembles,
for identifying the added value of models, and for using them
as an additional block in a chain that provides data at a much
higher level of detail for local studies (e.g., Douville et al., 2022). In
addition, none of the examples reviewed above about NWP refer
to the use of data-assimilation techniques, or ensemble forecasting
based on variations in initial conditions. Furthermore, in the
case of validation of precipitation forecasts, the peer-reviewed
literature about the Andes does not include many studies about
categorical forecasts (i.e., based on contingency tables), or object
based evaluation (e.g., for the forecast of storms). It is likely that
this kind of model validation is performed within the NMSs of the
Andean countries, but not reported in the peer-reviewed literature.

5 Final remarks

The relatively recent studies reviewed here havemade important
contributions to our understanding of the hydroclimate of the
Andes, especially at the mesoscale. Numerical modeling for the
region has also provided important lessons about forecasting and
projections at different time scales. This review constitutes a step
forward bringing together and connecting previous studies about
the region, which has been possible both by the use of high
resolution atmospheric modeling, and via a major incorporation
of the general knowledge about mountain weather and climate
to understand specific phenomena of the Andes. However, since
the atmospheric science community is relatively small and the
observations are limited in the region, major challenges remain,
especially those related with model evaluation, which depend on
the availability of more observation-based datasets, and on more
sophisticated studies/techniques for model evaluation.

Since model biases will always exist, associated with
uncertainties in model components and/or initial and boundary
conditions, post-processing techniques, as for example, statistical
bias correction, have added value to reduce biases before using the
model outputs as atmospheric forcing for hydrological or other
impact models (e.g., Rogelis and Werner, 2018). However, bias
correction techniques are more efficient in regions with spatially
uniform biases (e.g., in the case of precipitation, Heredia et al.,
2018), which is not the case in the Andes, making them
difficult to apply. The gathering and consolidation of the sparse
observations available would be a necessary step for improving
bias correction (and model validation) projects over the region.
One successful example of data gathering and made available

in one place is the Andean Observatory (Observatorio Andino,
https://observatorioandino.com/), which provides information
about the Andean regions in Chile and Argentina. In addition,
the implementation of different techniques (e.g., leveraging on the
power of Machine Learning), is also a pending task. Thus, the
development and/or adaptation of bias correction techniques for
model output (e.g., precipitation, surface temperature) is another
big challenge for the Andes region.

Major applications of numerical modeling for the Andes
include the study of the regional and local effects from climate
change (e.g., elevation dependent warming) and from land-
use/land cover changes. The correct simulation of the associated
processes requires both high resolution (as discussed in previous
sections, see also Section 3.1 in Part II) and improved model
components, e.g., for surface fluxes, boundary layer dynamics over
complex terrain, land-cover characteristics, surface hydrology, etc.
(see Section 3, on Part II of this review). With these increasingly
demanding applications, other major challenges emerge, such as the
constant need for increased high performance computing (both for
simulation and analysis), comprehensive high-resolution regional
atmospheric and earth system simulations, as well as coordinated
inter- and intra-disciplinary numerical experiments. In addition, in
the case of the Andes, other challenges have to be overcome in order
to fully exploit the potential benefits of atmospheric and climate
modeling, including the need for funding, educational resources,
and policies for the creation and addition of more academic and
operational positions in the region for environmental monitoring
and modeling. The topics and challenges listed in this paragraph are
the subject of Part II of this review.
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