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Enhancing slope stability
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PCA-SSA-SVM modeling: a case
study of LongLian expressway
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1Guangxi Geology and Mineral Construction Group Co., Ltd., Guangxi, China, 2Guangxi Shengfeng
Construction Group Co. Ltd., Guangxi, China

China is one of the regions most frequently affected by landslides, which
have significant socio-economic impacts. Traditional slope stability analysis
methods, such as the limit equilibrium method, limit analysis method, and
finite element method, often face limitations due to computational complexity
and the need for extensive soil property data. This study proposes a novel
approach that combines Principal Component Analysis (PCA), Sparrow Search
Algorithm (SSA), and Support Vector Machine (SVM) to improve the accuracy
of slope stability prediction. PCA effectively reduces data dimensionality while
retaining critical information. SSA optimizes SVM parameters, addressing the
limitations of traditional optimization methods. The integrated PCA-SSA-SVM
model was applied to a dataset of 257 slope stability samples and validated
using five-fold cross-validation to ensure the model’s generalization capability.
The results show that the model exhibits superior performance in prediction
accuracy, precision, recall, and F1-score, with the test set achieving an accuracy
of 84.6%, a recall of 84.7%, a precision of 83.1%, and an F1-score of 84.6%. The
model’s robustness was further validated using slope data from the LongLian
Expressway, demonstrating high consistency with the actual stability status.
These findings indicate that the PCA-SSA-SVM-based slope stability prediction
model has significant potential for practical engineering applications, providing
a reliable and efficient tool for slope stability forecasting. Classify the training
samples through cross-validation, using the accuracy of cross-validation as the
fitness of the sparrow individual. Retain the optimal fitness value and position
information.
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1 Introduction

China is notably one of the regions in Asia, if not the world, that frequently
witnesses landslide disasters. According to credible sources (Li et al., 2022;
Moayedi et al., 2019; Wei et al., 2021; Xie et al., 2021), between 2011 and 2020,
the country experienced over 100,000 geological disasters, of which a staggering
70,000 were landslides, leading to more than 5,000 casualties. The economic impact
was profound, resulting in direct losses amounting to 45 billion yuan (Hu et al.,
2021). Considering the annual number of geological disasters, it’s alarming to
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note that landslides consistently constitute over half of these
incidents. These landslides, predominantly resulting from slope
instability, unleash a multitude of repercussions. They not only
cause severe property damage but also result in casualties, traffic
disruptions, destruction of homes, hindrances in daily life, and
considerable production losses.

To illustrate the scale and implications of such events, let’s
consider a significant landslide incident from 2019 in Shuicheng
County, Liupanshui City, Guizhou Province. This colossal landslide
was triggered primarily due to rainfall infiltration causing slope
instability. The aftermath was devastating: the surrounding houses
crumbled, resulting in numerous casualties. The direct economic
ramifications of this single event reached CNY 190 million,
with the volume of displaced land estimated to be around
1.8 million m³.

Therefore, accurate analysis and evaluation of slope stability
hold significant practical importance. Through effective analysis,
treatment, and protection of slopes, casualties and economic losses
can be prevented or reduced. Currently, the primary methods
used both domestically and internationally include the limit
equilibrium method, the limit analysis method, and the finite
element method. The limit equilibrium method is one of the
first applied to slope stability analysis due to its clear concept
and straightforward calculations. Duncan (1996) further analyzed
and discussed the influence of different simplified methods and
assumptions on the limit equilibrium analysis results of slopes.
However, due to its various assumptions, this method has evolved
into several different classification methods, typically divided into
strict and non-strict segmentation methods. The basic idea of the
limit analysis method to solve the slope stability coefficient is
to first divide the assumed slip surface into oblique strips, then
establish a coordinated velocity field based on the deformation
coordination basis, and finally calculate according to the principle
that internal energy dissipation equals the external force. Sloan
(1989) improved and optimized the lower bound principle finite
element method combined with a mathematical programming
method to find the lower bound solution of the slope stability
safety factor. Although the limit analysis method is widely
used in geotechnical engineering, it is challenging to analyze
complex shapes and heterogeneous geotechnical engineering cases.
Moreover, due to the subjective assumptions made by the limit
analysis method, its further application has been significantly
limited. As one of the most widely used numerical analysis
methods, the finite element method has developed into two main
research directions: the finite element strength reduction method
and the finite element limit equilibrium method. Zienkiewicz et al.
(1975) proposed an alternative analytical approach that eliminates
the necessity of presupposing the configuration of the sliding
surface. Central to this methodology is the systematic reduction
of strength parameters, namely cohesion (c) and internal friction
angle (φ). The decrement value of these parameters at the
critical juncture is designated as the stability coefficient for the
geomaterial mass.

Stability coefficient is one of the important indexes to evaluate
whether the slope is unstable. The stability coefficient values
obtained by using different slope stability analysis methods
under different working conditions need to be systematically
verified (Wang et al., 2022; Zhang W. et al., 2022). For different

types and different conditions of slopes, it is necessary to
judge the practicability of these methods. However, it is often
computationally intensive, requires specialized software and
highperformance computer hardware, and requires detailed soil
property data (Zhang et al., 2023). Recently, machine learning
has found efficacious applications across various civil engineering
challenges, notably in slope stability evaluation. The stability of
mine slopes is influenced by a myriad of factors that exhibit
substantial intercorrelation, necessitating heightened precision in
predictive modeling (Xu et al., 2013; Suman et al., 2016; Luan et al.,
2023; Lu and Rosenbaum, 2003).Combined with the artificial
intelligence algorithm that has emerged in recent years, experts
and scholars at home and abroad have proposed many practical
models for slope stability prediction research, and have achieved
good results. By training a large amount of data, machine learning
models can capture the complex relationship between soil and slope
characteristics without the need for a clear physical or empirical
model. For example, Gu et al. (2009) employed the PCA-GEP
algorithm for slope stability prediction and analysis, obtaining
favorable outcomes. Chen et al. (2014) utilized PCA in tandem
with the BP neural network to anticipate varying types of slope
stability, resulting in satisfactory model outcomes. Meanwhile,
Bu et al. (2009) introduced a realcoded DE-BP neural network
predictive model leveraging the differential evolution algorithm
(DE), achieving noteworthy predictive precision. BP neural network
models, despite their widespread application in pattern recognition
and predictive modeling, exhibit some clear limitations. The
primary issue is their propensity to get trapped in local minima,
potentially leading to suboptimal model performance. Additionally,
BP networks often struggle with overfitting, particularly when
dealing with small datasets or a large number of features. They also
require significant training time and resources, especially when the
network architecture is deep. In the face of these limitations, Support
Vector Machine (SVM) models demonstrate their strengths. SVMs
enhance classification efficiency by maximizing the margin of the
decision boundary, making them more effective in dealing with
nonlinear problems and demonstrating superior generalization
capabilities when predicting unknown data. The kernel trick in
SVMs enables them to efficiently handle highdimensional data, and
they are generally less prone to overfitting, which is particularly
valuable for complex pattern recognition challenges. Zhang et al.
(Bu et al., 2009), aiming for rapid evaluation of the stability of
redbed highway slopes, established a model centered around the
SVM algorithm for quick assessment of such slopes, applying it to 16
slopes along the Renmu-Xin Expressway. However, the performance
of the SVM model can significantly diminish without proper data
preprocessing. Jin et al. (Zhang S. et al., 2022), on the other hand,
employed the Sparrow Search Algorithm (SSA) to optimize the
Support Vector Machine (SVM), creating an SSA-SVM model for
intelligent prediction of slope instability, demonstrating notable
advantages in forecasting such events. Ding et al. (Jin et al., 2022)
proposed a slope stability prediction model based on Principal
Component Analysis (PCA) and Support Vector Machine (SVM),
where PCA was used to extract principal components as inputs
for SVM training. The results indicated that this method could
reduce the dimensionality of input variables and enhance the
precision of slope stability prediction in engineering. However,
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previous studies, while effective, often faced challenges with high-
dimensional datasets and computational demands. Conventional
models struggled with multicollinearity among input variables,
leading to less accurate predictions and increased computational
complexity. Our study introduces an innovative approach that
leverages the strengths of three robust techniques: Principal
Component Analysis (PCA), the Sparrow Search Algorithm (SSA),
and Support Vector Machines (SVM). PCA effectively reduces the
number of features in a dataset while retaining crucial information,
simplifying subsequentmodel training and computational demands.
SSA, an emerging optimization technique known for its strong
global search capabilities and fast convergence, optimizes the
parameters of the SVM, addressing limitations of traditional
optimization methods used in previous studies. SVM excels in
classification and regression tasks, providing superior generalization
capabilities compared to other machine learning models. By
combining these three approaches, the PCA-SSA-SVM model
can effectively process high-dimensional data, improve prediction
accuracy through optimal parameter selection, and achieve high-
precision predictions. This integrated method is particularly suited
for complex data processing tasks that require feature dimensionality
reduction, model parameter optimization, and high-precision
predictions. Our study introduces a novel hybrid model for slope
stability prediction, addressing limitations of previous models.
By reducing dimensionality and optimizing model parameters
simultaneously, our approach enhances predictive performance
and computational efficiency. The application of this model to
real-world engineering data, such as the LongLian Expressway
slopes, demonstrates its practical utility and effectiveness, achieving
a high degree of accuracy and reliability in predictions. In this
research, parameters such as rock weight (γ), cohesion (C), internal
friction angle (φ), slope height (H), slope angle (β), and pore water
pressure (γu) are designated as input variables, with the slope safety
factor serving as the output variable. PCA is used to reduce the
dimensionality of these input variables, selecting fewer and linearly
independent factors for data prediction. The SSA-SVM model
then trains these new input variables. This methodology presents
an innovative avenue for slope stability forecasting, addressing
limitations of previous studies and providing a robust, accurate
predictive model.

2 Method

2.1 Principal component analysis

Principal Component Analysis (PCA) is a statistical method
used to simplify the dimension of the data set while retaining as
much variability as possible in the original data. It is widely used
in data compression, feature extraction and data visualization.

Step.1 Centralize the data (reduce the mean value of each
dimension to 0), as shown in Equation 1.

zij =
xij − xj
σxj

(1)

where xj is the arithmetic mean of xij , σxj is the standard deviation
of xij, i = 1,2,…,m, ⋅j = 1,2,…,n.

Step.2 Calculate the covariance matrix of the data
as shown in Equation 2.

cov(zi,zj) =

n

∑
k=1
(zik − zj)(zjk − zj)

n− 1
(2)

Step.3 Calculate the eigenvalues and eigenvectors of the
covariance matrix, as shown in Equation 3.

∥ λE−R∥= 0 (3)

Step.4 Eigenvalues are arranged in descending order, and the
eigenvectors associatedwith the first k largest eigenvalues are chosen
to form a projection matrix. When the cumulative contribution of
the current q principal components exceeds 85%, it indicates that
they capture a predominant portion of the overall information.

Step.5 This projection matrix is used to transform the original
data into a new kdimensional space. After principal component
analysis, the initial variables x1, x2, .., xn are transformed into
the relationship of n comprehensive index factors y1, y2, .., yn,
as shown in Equation 4.

{{{{{{{
{{{{{{{
{

y1 = c11x1 + c12x2 +⋯c1nxn
y2 = c21x1 + c22x2 +⋯c2nxn
⋮

yn = cc1x1 + cc2x2 +⋯ccnxn

(4)

in the formula, cij and yi are not related to each other, and cij satisfies
c2i1 + c

2
i2 +⋯+ c

2
in = 1. Therefore, the number of initial variables is

reduced to achieve the purpose of dimensionality reduction.

2.2 Sparrow search algorithm model

Sparrow Search Algorithm (SSA) is a novel swarm intelligence
optimization algorithm proposed in 2020, inspired by the
foraging and antipredator behavior of sparrows (Ding et al., 2011;
Zhang S. et al., 2022; Jin et al., 2022). SSA is not constrained by
the differentiability, derivability, and continuity of the objective
function. It boasts strong global search capability, excellent stability,
and fast convergence. As a novel and well-organized metaheuristic
algorithm, SSA can be employed to solve optimization problems
across various fields.

Assuming there areN sparrows in aD-dimensional search space,
and the position of the ith sparrow in the D-dimensional search
space is denoted as Xi = [xi1, xi2, xid, .., xiD]. The position of the
population X is composed of N sparrows, detailed, as shown in
Equation 5.

X =

[[[[[[[[[[[[[

[

X1

X2

⋮

Xi

⋮

XN

]]]]]]]]]]]]]

]

=

[[[[[[[

[

x11 x12 ⋯ x1D
x21 x22 ⋯ x2D
⋮ ⋮ ⋮ ⋮

xN1 xN2 ⋯ xND

]]]]]]]

]

(5)
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in the equation, xid represents the position of the ith sparrow in
dimension D. Here, the accuracy of slope stability is employed
as the fitness function, continuously updating the optimum value
to achieve the best recognition rate. The fitness values FX for all
sparrows can be represented as shown in Equation 6.

FX =

[[[[[[[

[

f1
f2
⋮

fi

]]]]]]]

]

(6)

In SSA, the fitness value FX represents energy reserves, and f
denotes the fitness function. During the search process, producers
with higher energy reserves obtain food first. Generally, 10%–20%
of the population are producers responsible for finding food, and
their foraging search range is larger than that of the predators. At
the same time, producers should update through Equation 3.

Xid,t+1 =
{
{
{

Xid,t × exp (
−i
αT
),R2 < ST

Xid,t +Q× L R2 ⩾ ST
(7)

In the formula, t is the current iteration number; Xid,t+1 is the
position of the ith sparrow in dimension d during thet +1) iteration;
T is the maximum number of iterations; α is a uniformly distributed
random number,α∈(0,1]; Q is a random number following the
normal distribution; L is a 1 × d matrix where all elements are 1;
R2 is the alert value, R2∈[0,1]; ST is the safety value, ST∈[0.5,1].

WhenR2<ST, there are no predators around the foraging area,
and producers can perform extensive search operations. When R2
≥ ST, the scout sparrows in the swarm have identified a predator
and immediately alert the other sparrows. The sparrows in the
swarm then begin antipredatory behaviors, adjusting their search

strategy and quickly moving to a safe area. During the foraging
process, apart from the producers, all sparrows act as seekers
looking for the best foraging area. The seekers update their position
according to Equation 7.

When i > n/2, the ith seeker gets no food and is in a state of
starvation, with low adaptability. Such a sparrow is likely to fly to
another place to forage and gain higher energy. When i ≤ n/2, the
ith seeker finds a random position near the current best position xb
to forage, as shown in Equation 8.

Xid′t′+1 =
{{
{{
{

Q× exp (
xwd,t − xid,t

αT
), i > n

2
xbd,t+1 + |xid,t−xbd,t+1|A+L, i ⩽

n
2

(8)

In the equation, xwd,t is the worst position of the sparrow in the dth

dimension during the tth iteration; x(bd, t + 1) is the best position
in the dth dimension during the (t + 1) iteration; A is a 1 × d matrix,
each of its elements is randomly assigned to 1 or −1, ensuring
A+ =AT.

When danger is detected, the sparrows at the edge of the
population will quickly move to a safe area to obtain a better
position, while the sparrows in the middle of the population will
move randomly to approach other sparrows. The mathematical
expression for the movement is, as shown in Equation 9.

Xddt+1 =
{{{
{{{
{

xbdt + β(xid,t − xbdt), ft ≠ fb

xid,t +K(
xddt − xwdt
| fi − fw| + ε

), ft = fb
(9)

in the formula, xbdt is the best global position of the alert sparrows
during the tth iteration; β is a step length control parameter, a
random number from the normal distribution with a mean of 0
and a variance of 1; K is a random number indicating the direction
of sparrow’s movement, also a step length control parameter, and

FIGURE 1
SSA-SVM process.
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K∈[−1,1]; ϵ is a small constant to avoid division by zero; fi is the
fitness value of the ith sparrow; fb is the best fitness value of the
current sparrow swarm; fw is the worst fitness value of the current
sparrow swarm.

When fi = f b, the sparrow is at the edge of the population, easily
targeted by predators; when fi ≠ f b, the sparrow is in the middle
of the population. Once the sparrow is aware of the threat from a
predator, it will move closer to other sparrows and adjust its search
strategy to avoid being attacked.

2.3 SSA-SVM model

The protagonist of the algorithm is the sparrow, each
individual sparrow having only one attribute, which is its position,
representing the location of the food it has found. Each sparrow
may undergo three states of change: 1) acting as a discoverer,
leading the population to forage; 2) being a follower, chasing
the discoverer to find food; 3) having a vigilance mechanism,
abandoning foraging upon detecting danger. The optimization
parameters in the sparrow algorithm are the penalty parameter
c and kernel function parameter g in SVM (Support Vector
Machine). The fitness function is the SVM’s prediction accuracy on
the test set.

The selection of SVM penalty factor C and kernel function
parameter g greatly influences the classification results. At the
same time, the SSA algorithm has strong global search capability
and is suitable for optimizing SVM’s penalty factor C and kernel
function parameter g to obtain a better parameter combination. By
using a certain number of sparrows for global optimization, the

optimal parameter combination can be obtained. Then, the optimal
C and g obtained by the SSA optimization algorithm are used to
establish the SVM identification model and obtain the diagnostic
results. The process of optimizing SVM using the SSA algorithm
is shown in Figure 1, with specific steps as follows:

First, determine the input and output of the fault diagnosis
model. Extract fault features as the input of the diagnosticmodel and
determine the target output values. Establish training and testing
sample sets. Specifically, the data was divided into training and
testing sets with a ratio of 9:1.

Initialize the related parameters of the sparrow search algorithm,
including population size, maximum number of iterations, C, and g.
Update the position according to Equations 7–9

Calculate the fitness value of the sparrow individual’s new
position, compare the updated fitness valuewith the original optimal
value, and update the global optimal information.

Determine whether the number of iterations meets the
termination condition. If not, repeat step (3); otherwise, stop, output
the optimal parameters, input the test set samples into the optimal
SVMmodel, and output the diagnostic results.

3 Slope stability prediction model
based on PCA-SSA-SVM

3.1 Method principle

For the assessment of slope stability, identifying the most
prominent influencing factors is imperative. In this research, slopes
with a Factor of Safety (FOS) exceeding 1.3 were classified as stable.

FIGURE 2
Slope characteristic parameters distribution violin figure.
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Thestability of slopes is categorized into two groups: stable (coded as
1) and unstable (coded as 0). Historically, slope stability prediction
efforts have utilized project data for both training and prediction
datasets. However, this often results in a limited amount of training
data, leading to suboptimal accuracy in the developed models.

To address this limitation, the present study aggregates
numerous referenced engineering cases (Emina et al., 2008;
Kardani et al., 2021; Zhang R. et al., 2023; Zhang Y. et al.,
2023), amassing a total of 257 experimental datasets to
evaluate the model’s efficacy. The comprehensive dataset is
presented in Supplementary Table 1. The slope characteristic
parameters vary across different slopes. Visual analysis can

illustrate the characteristic parameter information of the slope in
different states and qualitatively analyze the slope’s condition to
some extent.

In evaluating each characteristic parameter, the violin plot shows
the distribution of characteristic parameters under different slope
conditions, as shown in Figure 2. Among the different characteristic
parameters, the violin shapes of the stable and unstable state
data are similar, with few or no outliers, indicating that the
dataset is reasonably constructed. The data scatter distribution is
delineated in Figure 3.

To further analyze the data, this paper provides descriptive
statistics for six indicators, as shown in Table 1. Given that the total

FIGURE 3
Scatter plot of each index.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1429601
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Huang et al. 10.3389/feart.2024.1429601

sample size is less than 500, the Shapiro-Wilk (S-W) test is employed
to assess the normality of multiple analysis items. The data for the
analysis items γ and φ follow a normal distribution. Their median
and mean values are close, skewness and kurtosis are near zero, and
the significance P-values are 0.051 and 0.052, respectively, which are

higher than the commonly used 0.05 significance level, so the null
hypothesis of normality cannot be rejected (Sah et al., 1994).

However, the data for c, β, H, and γu do not follow a normal
distribution. Even though the kurtosis and skewness ofH are within
the common normal distribution range, the significance P-value

TABLE 1 Statistical description of samples.

Name Sample size Median Average value Standard deviation Skewness Kurtosis S-W test

γ 257 20.31 20.588 3.593 0.117 0.164 0.989 (0.051∗ )

c 257 30.81 46.172 48.228 2.289 7.967 0.791 (0.000∗∗∗ )

ϕ 257 26.81 26.732 10.565 −0.218 0.085 0.989 (0.052∗ )

β 257 33.33 51.059 281.957 15.993 256.174 0.052 (0.000∗∗∗ )

H 257 50 60.803 46.798 0.793 0.015 0.922 (0.000∗∗∗ )

γu 257 0.2 0.194 0.181 0.261 −1.395 0.852 (0.000∗∗∗ )

Note:∗∗∗ represents a significance level of 1%.∗∗ represents a significance level of 5%.∗ represents a significance level of 10%.

FIGURE 4
Correlation matrix heat map.
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remains at 0.000, clearly indicating a departure from normality.
Among the six analysis items, two meet the criteria for a normal
distribution, while four do not.

Variable correlation analysis is an important part of statistics,
which is mainly used to explore whether there is a relationship
between two or more variables. In order to prevent data redundancy
in the model, which affects the prediction accuracy of the
model, the correlation coefficient between the two variables in the
data set is calculated to determine whether there are redundant
characteristic variables and determine the correlation between
variables, see Figure 4. According to the correlation analysis table,
it can be observed that there is a positive correlation between γ and
c andH, among which the correlation withH is themost significant.
c mainly has a strong positive correlation with H, and also has
a certain degree of positive correlation with φ. φ shows positive
correlation with c and E. The relationship with all other variables
is relatively weak, but the positive correlation with ϕ is slightly more
obvious.H not only has a significant positive correlation with γ and
c, but also has a certain negative correlation with γu. In general,
the correlation between H and several other variables is the most
prominent, especially the positive correlation with γ, c and the
negative correlation with γu; the correlation with all variables is
relatively weak.

3.2 PCA analysis

In constructing the slope stability prediction model, six key
factors related to slope stability status are incorporated. Given
the multidimensionality of data derived from these factors, model
training becomes challenging. To address this, Principal Component
Analysis (PCA) is applied to transform this high-dimensional
dataset into a reduced-dimensional space while preserving the
original data’s information content as much as possible. This
approach helps isolate the most significant principal components,
thereby reducingmodel complexity and enhancing training efficacy.
The procedural steps for PCA analysis, as detailed in Section 2.2, are
outlined below:

Step 1. Suitability Assessment: Initially, both the Kaiser-Meyer-
Olkin (KMO) and Bartlett’s tests are performed to determine the
data’s suitability for PCA, as shown in Table 2. A KMO value
exceeding 0.8 is optimal, while values between 0.7 and 0.8 are
considered moderate. KMO values below 0.6 may be deemed
unsuitable. The KMO test results revealed a KMO value of 0.604.

TABLE 2 PCA feasibility test.

KMO test and bartlett test

KMO value 0.604

Bartlett sphericity test

Approximate chi-square 75.447

df 15

P 0.000∗∗∗

Note:∗∗∗ represents a significance level of 1%.∗∗ represents a significance level of
5%.∗ represents a significance level of 10%.

Additionally, Bartlett’s sphericity test results showed a significant
P-value of 0.000∗∗∗ , which is significant at the respective level.
This rejects the null hypothesis, indicating correlations among the
variables and affirming the appropriateness of proceedingwith PCA.

Step 2. Determining the Number of Principal Components: To
ascertain the required number of principal components, examine
the variance elucidation table and the scree plot. Table 3 lists
the variance contribution rate of each principal component to
the original variables, which helps in selecting the number of
principal components by considering the descending trajectory of
eigenvalues. During PCA, the cumulative variance elucidation rate
typically approaches 90%. Based on the information in the variance
elucidation table, five principal components are identified as input
parameters for the SSA-SVMmodel.

Step 3. Analysis of principal component load coefficient: Table 4
load coefficient combined to reveal the importance of hidden
variables behind each principal component.

Step 4. Spatial Representation of Principal Components: The
dimensions of numerous principal components are condensed to
two or three principal components, and their spatial orientation
is depicted using quadrant diagrams. Extracting two or three
principal components allows for a clearer visualization of their
spatial interrelations. However, since this study extracts five
principal components, their spatial distribution cannot be effectively
illustrated using the primary mapping technique.

Step 5. Constructing the Principal Component Equation 10:
Based on the component matrix, the component formula for each
principal component is formulated and its weight is determined,
as shown in Table 5.

{{{{{{{{{{
{{{{{{{{{{
{

y1 = 0.367× γ+ 0.435× c+ 0.259×ϕ− 0.015× β+ 0.456×H− 0.091× ru
y2 = 0.079× γ+ 0.029× c+ 0.305×ϕ+ 0.604× β− 0.119×H+ 0.629× ru
y3 = 0.522× γ+ 0.108× c− 0.575×ϕ− 0.363× β− 0.101×H+ 0.537× ru
y4 = 0.254× γ− 0.109× c− 0.614×ϕ+ 0.705× β+ 0.199×H+ 0.368× ru
y5 = −0.73× γ+ 0.770× c− 0.413×ϕ+ 0.088× β+ 0.129×H+ 0.196× ru
y = 0.306× y1 + 0.212× y2 + 0.178× y3 + 0.165× y4 + 0.37× y5

(10)

Step 6. Comprehensive score output: Finally, calculate and
output the comprehensive score based on PCA and the principal
component data are shown in Supplementary Table 2.

3.3 PCA-SSA-SVM model construction and
training

Utilizing the SSA-SVM approach, an slope stability prediction
model is developed. Python software is chosen for scripting
the SSA algorithm to enhance the SVM model. After applying
principal component analysis (PCA), the initial six evaluation
indicators for slope stability are substituted by five principal
components. The output variable denotes the safety condition
of the slope.

3.4 Model evaluation indicators

The accuracy (ACC), recall rate (TPR), precision rate (PPV)
and F1-score were used to evaluate the prediction effect of
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TABLE 3 Variance interpretation form.

Component Characteristic root Explanatory rate of variance (%) Cumulative variance interpretation rate (%)

1 1.645 27.418 27.418

2 1.142 19.03 46.449

3 0.957 15.949 62.398

4 0.889 14.818 77.216

5 0.736 12.264 89.48

6 0.631 10.52 100

TABLE 4 Factor load coefficient table.

Name Principal
component_1

Principal
component_2

Principal
component_3

Principal
component_4

Principal
component_5

Common
degree

γ 0.337 0.232 0.35 −0.338 0.246 0.961

c −0.253 0.144 −0.078 0.65 0.381 0.855

ϕ 0.045 −0.153 0.053 −0.251 0.411 0.996

β 0.305 0.287 0.108 0.528 0.483 0.994

H 0.751 0.002 0.022 −0.047 −0.03 0.631

γu −0.1 0.302 −0.542 −0.356 0.312 0.931

TABLE 5 Composition matrix table.

Name Principal
component_1

Principal
component_2

Principal
component_3

Principal
component_4

Principal
component_5

γ 0.367 0.079 0.522 0.254 −0.73

c 0.435 0.029 0.108 −0.109 0.77

ϕ 0.259 0.305 −0.575 −0.614 −0.413

β −0.015 0.604 −0.363 0.705 0.088

H 0.456 −0.119 −0.101 0.199 0.129

γu −0.091 0.629 0.537 −0.368 0.196

Consequently, an aggregate score for each principal component can be derived. The novel variable formulations for the five principal components are delineated as.

PCA-SSA-SVM. The calculation formula is, as shown in Equations
11–13 (Khajehzadeh et al., 2022):

ACC = TP+TN
TP+TN+ FP+ FN

(11)

TPR = TP
(TP+ FN)

(12)

PPV = TP
(TP+ FP)

(13)

TP: True positives, where actual positive samples are correctly
predicted as positive; TN: True negatives, where actual negative
samples are correctly predicted as negative; FN: False negatives,
where actual positive samples are incorrectly predicted as negative;
FP: False positives, where actual negative samples are incorrectly
predicted as positive.

The F1-score, also referred to as the F-measure, serves as a
comprehensive metric that evaluates the model’s precision (PPV)
and recall (TPR) as shown in Equation 14. It is computed as
the harmonic mean of precision and recall, with values spanning
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FIGURE 5
5-Fold cross-validation.

TABLE 6 Model prediction evaluation.

Name Accuracy
rate

Recall
rate

Precision
rate

F1

Training set 0.952 0.922 0.981 0.951

Test set 0.846 0.847 0.831 0.846

TABLE 7 Comparison of model predictions using 5-fold
cross-validation.

Name Accuracy
rate

Recall
rate

Precision
rate

F1

SVM 0.654 0.571 0.727 0.64

SSA-SVM 0.731 0.801 0.75 0.772

PSO-SVM 0.825 0.753 0.781 0.832

GA-SVM 0.826 0.71 0.802 0.786

PCA-SSA-
SVM

0.846 0.847 0.831 0.846

between 0 and 1. A score of 1 indicates impeccable accuracy, while a
score of 0 denotes the poorest accuracy.

F1−score = 2
PPV ⋅TPR
PPV+TPR

(14)

3.5 Cross-validation

To further enhance the model’s generalization ability and
prevent overfitting during the training process, this study employs 5-
fold cross-validation, as illustrated in Figure 5. Initially, the original
training dataset D is randomly divided into k equally sized subsets:
D1, D2, D3, D4, and D5. Let Dj and D-j = D/D_j denote the j-th

test set and the corresponding training set, respectively, for each
iteration.

3.6 Prediction results and analysis

During the data preprocessing phase, the initial dataset
was randomly permuted to create a modified dataset. To
enhance the model’s generalizability, 231 data entries were
designated as the training set, while the remaining entries were
reserved for testing. Utilizing the PCA-SSA-SVM approach, a
comprehensive prediction was executed on the 257 slope stability
data entries. Combining 5-fold cross-validation with model
parameter optimization, the results show that the SSA-SVM
model’s performance under different parameters indicates that
the optimal value for the penalty coefficient (C) in the SVM
model is 9.426, and the optimal value for the kernel parameter
(gamma) is 0.03.

The exhaustive outcomes are presented in Table 6. The
prediction outcomes from the test set are compared with
the actual results, with a subsequent analysis conducted in
conjunction with the predictions for each state, as depicted
in Figure 6.

Based on the data presented in Table 7, the PCA-SSA-SVM
model exhibits the highest accuracy, recall, precision, and F1 score
compared to the other models. Its accuracy rate is notably high at
84.6%, its recall rate is excellent at 84.7%, and its precision rate is
impressive at 83.1%. The SSA-SVM model, with an accuracy rate of
73.1%, a recall rate of 80.1%, and a precision rate of 75%, performs
better than the simple SVM model across all metrics, suggesting
that incorporating the SSA algorithm improves performance. The
PSO-SVM model shows a strong performance with an accuracy
rate of 82.5%, a recall rate of 75.3%, and a precision rate of 78.1%,
while the GA-SVM model has an accuracy rate of 82.6%, a recall
rate of 71%, and a precision rate of 80.2%. Both the PSO-SVM and
GA-SVM models exhibit better performance than the SVM model
but are slightly lower than the PCA-SSA-SVM model in accuracy
and F1 score.

Based on the provided metrics, combining PCA with the
SSA algorithm yields the best results among all the models. This
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FIGURE 6
Comparison of model prediction results. (A) SVM (B) SSA-SVM (C)
PCA-SSA-SVM.

integrated approach significantly enhances prediction accuracy
and effectiveness, showcasing its superiority in handling high-
dimensional data and optimizing model performance. The
PCA-SSA-SVM model’s robustness and high precision make

FIGURE 7
Receiver-operating characteristiccurve.

it an ideal choice for slope stability prediction in engineering
applications.

In order to comprehensively evaluate the performance
of the model, this study drew the ROC (receiver operating
characteristic) curve and calculated the AUC (area under the
curve) value, see Figure 7. The ROC curve is an effective tool
for visually demonstrating the relationship between the true
positive rate and the false positive rate of the model under
various thresholds. The AUC value is the area under the ROC
curve, which provides us with a single quantitative indicator of
model performance. The AUC value is usually between 0.5 (no
discrimination) and 1.0 (perfect discrimination). The model of this
study obtained an AUC value of 0.9758, which strongly indicates
that the PCA-SSA-SVM model performs well in the slope stability
prediction task.

4 Engineering verification

4.1 Engineering background

The Guangdong Province’s Longchuan to Huaiji Expressway in
China is a part of the original national highway network “7,918”plan,
specifically marked as the 17th cross route. A significant portion of
this route is the Longchuan to Lianping section of the Guangdong
Province Longchuan to Huaiji Expressway, commonly referred
to as the “LongLian Expressway”. This project is located in the
mountainous terrain of northern Guangdong, crossing through
Heyuan and Shaoguan cities, encompassing four counties and
thirteen towns.

The starting point of the LongLian Expressway is at K206 + 222
in the Old Long Town of Longchuan County, where it connects
with the already operational Meihe Expressway. The endpoint is
at K334 + 200 in the Tangxia Village, Longxian Town, Wengyuan
County, Shaoguan City. The total length of the route is 127.978 km,
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TABLE 8 Slope data of LongLian Expressway.

No. γ (KN/m3) c (kPa) ϕ (°) (°) H (m) γu Stability status

1 17.93 78.20 18.49 33.42 120.79 0.0 1

2 18.02 40.92 21.18 21.86 34.56 0.1 0

3 25.76 64.11 21.40 15.76 30.38 0.5 0

4 21.03 21.23 17.72 5.79 57.31 0.0 1

5 25.74 31.42 17.23 30.03 80.53 0.4 1

6 18.80 14.40 25.02 19.98 30.06 0.0 0

7 18.77 30.01 9.99 25.02 50.00 0.1 1

8 19.97 19.96 36.00 45.50 50.00 0.5 1

9 26.70 50.00 26.60 50.00 34.04 0.2 1

10 26.80 90.00 28.80 59.00 42.37 0.3 1

FIGURE 8
Project location map and slope site.

with a designed speed of 100 km/h, adhering to the technical
standards of a two-way four-lane expressway, as shown in Figure 8.

4.2 Slope profile

4.2.1 Stratigraphic lithology
The surface layer consists of silty clay and sandy clay soil, with

plastic to hard plastic consistency. The underlying strata comprise
entirely to strongly weathered andesite porphyry and moderately
weathered diorite. The fully weathered andesite porphyry is yellow-
brown in color, showing complete weathering with substantial
disruption of the original rock structure. The core of the rock
manifests as hard soil columns, with a soft rock quality that
tends to soften and disintegrate when in contact with water,

locally interspersed with isolated stones. The strongly weathered
andesite porphyry appears yellow, yellow-gray, or yellow-brown,
with a major portion of the original rock structure destroyed,
exhibiting a medium-grain structure and blocky construction. The
mineral composition includes quartz, feldspar, and mica, with
the rock core primarily displaying fragmentary and blocky forms,
block diameters ranging from 2 to 6 cm, and a minor amount
appearing as debris. Joints and fissures are well-developedwith some
fissure surfaces being impregnated with iron-manganese material,
displaying uneven weathering, soft rock quality, and fragmented
rock mass. The moderately weathered diorite is gray with a medium
to coarse-grain structure and blocky construction. Its mineral
composition also includes quartz, feldspar, and mica, with well-
developed joints and fissures. The rock core manifests as columnar
or short columnar structures, with joint lengths ranging from 10 to
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FIGURE 9
Engineering verification prediction results.

70 cm, producing a brittle sound when struck, indicating hard rock
quality and a relatively intact rock mass.

4.2.2 Hydrogeological overview
Surf ace Water: The surface does not exhibit perennial water

flow; transient surface runoff only occurs post-rainfall during the
rainy season.

Groundwater: The groundwater is composed of upper soil layer
pore water and deep bedrock fissure water, with a relatively small
water content. The primary source of replenishment relies on the
infiltration of atmospheric precipitation, with the discharge base
level being the streams at the bottom of the slopes. During the
period of this survey, no groundwater levels were detected within
the drilled depths.

4.3 Slope data

There are 10 large and small slopes in LongLian Expressway,
including 7 unstable slope samples and 3 stable slope samples, as
shown in the Table 8.

4.4 Verification based on PCA-SSA-SVM
model

Utilizing the well-trained PCA-SSA-SVM model for slope
stability prediction, the results are illustrated in Figure 9. From
the provided data, it can be observed that the PCA- SSA-
SVM model predictions align with the actual stability status data
of the LongLian Expressway slopes at most points. Specifically,
among the ten data points, the PCA- SSA-SVM model predictions
match the actual stability status at nine points. Only at one
data point does the model prediction deviate from the actual
stability status.

5 Discussion

While the PCA-SSA-SVM model demonstrated high
accuracy and robustness, several limitations must be addressed
to enhance its applicability and performance in real-world
scenarios.

1. Model Limitations: Although the PCA-SSA-SVM model
showed excellent performance on the test set, the study
does not deeply explore potential limitations in practical
applications. The presence of nonlinear relationships between
features or potential outliers in the slope dataset may
affect the model’s predictive performance. Furthermore, the
model’s adaptability to slope data under varying geological
conditions or climatic environments requires further
investigation.

2. Feature Selection and Optimization: While PCA effectively
reduces the dimensionality of the data, the specific rationale
for selecting the six features used in this study was not
elaborated. Future research should explore feature engineering
and optimization techniques to further enhance model
predictive performance. Introducing additional features
related to slope stability could enrich the model inputs and
improve accuracy.

3. Model Comparison and Validation: Although comparisons
with SVM and SSA-SVM models were presented, a
comparative analysis with other advanced machine learning
methods was not included. Future research could investigate
the performance of models such as Random Forest,
Gradient Boosting Trees, or Deep Learning techniques
on the same dataset. Such comparisons would help
establish the superiority of the PCA-SSA-SVM model
and provide a more comprehensive evaluation of its
performance.

6 Conclusion

Within this study, the PCAmethodology is employed to examine
and process the six evaluative indices affecting slope stability
across 257 data samples. From these, five principal components are
derived, serving as input variables for the SSA-SVM. Subsequently,
a PCA-SSA-SVM predictive model for slope stability is formulated.
The accuracy of the model is further evaluated by engineering
verification. A detailed analysis of the model’s predictive outcomes
and associated errors yielded the subsequent findings.

1. The PCAmethodology adeptly addresses the multicollinearity
challenge inherent among factors influencing slope stability,
streamlining the model’s input variables and enhancing
simulation efficiency.

2. The model’s precision, robustness, and adaptability were
gauged via metrics such as precision, recall, and the F1-
score. The test set outcomes were 84.6%, 84.7%, and 84.6%,
respectively. With an AUC value of 0.9758, the model’s
accuracy and adaptability are deemed commendable.

3. The accuracy of the PCA-SSA-SVMmodel was validated using
the slope data from the LongLian Expressway. Among the
10 provided samples, only the prediction for sample 1 was
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incorrect. The results indicate that the PCA-SSA-SVM based
slope stability prediction model can be effectively applied in
engineering practice to achieve slope stability forecasting.

4. The model’s classification performance has not taken
into account factors such as the slope’s geometric shape,
soil quality of the slope body, and external influencing
elements. Further research is required in the future, especially
when using machine learning algorithms to estimate
slope stability, to continue refining and enhancing feature
parameters.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

JH: Investigation, Methodology, Software, Writing–original
draft. DL: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Resources, Writing–original draft,
Writing–review and editing. WL: Writing–original draft. QY:
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

Authors JH, WL, and QY were employed by Guangxi Geology
andMineral ConstructionGroupCo., Ltd. AuthorDLwas employed
by Guangxi Shengfeng Construction Group Co. Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2024.
1429601/full#supplementary-material

References

Bu, N., Zhao, H., and Xie, J. (2009). Slope stability analysis with DE-BP neural
network. Subgr. Eng. (4), 2.

Chen, J., Zheng, R., and Chen, H. (2014). Slope stability analysis based on PCA and
BP neural network. China Saf. Sci. J. 10 (5), 6.

Ding, H., Zhu, J., and Luo, S. (2011). Research on slope stability prediction model
based on PCA-SVM. Subgr. Eng. (2), 3.

Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element
analysis of slopes. J. Geotechnical Eng. 123 (7), 577–596. doi:10.1061/(asce)0733-
9410(1996)122:7(577)

Emina, E., Torlakovic, Driman,D. K., Parfitt, J. R.,Wang, C., Benerjee, T., et al. (2008).
Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am. J. Surg.
Pathology 32, 21–29. doi:10.1097/pas.0b013e318157f002

Gu, Q., Cai, Z. H., Zhu, L., and Huang, B. (2009). Slope stability prediction
based on PCA-GEP algorithm. Rock Soil Mech. 30 (3), 757–761 + 768. doi:10.3969/
j.issn.1000-7598.2009.03.033

Hu, J., Cheng, P., and Liu, M. M. (2021). Numerical modeling of 3D slopes with
weak zones by random field and finite elements. Appl. Sci. 11, 9852. doi:10.3390/
app11219852

Jin, A., Zhang, J., Sun, H., and Wang, B. (2022). An intelligent prediction
and early warning model for slope instability based on SSA-SVM. J.
Huazhong Univ. Sci. Technol. Nat. Sci. Ed. 50 (11), 142–148. doi:10.13245/
j.hust.221118

Kardani, N., Zhou, A., Nazem, M., and Shen, S. L. (2021). Improved prediction
of slope stability using a hybrid stacking ensemble method based on finite
element analysis and field data. J. Rock Mech. Geotechnical Eng. 13 (1), 188–201.
doi:10.1016/j.jrmge.2020.05.011

Khajehzadeh,M., Taha, M. R., Keawsawasvong, S., Mirzaei, H., and Jebeli, M. (2022).
An effective artificial intelligence approach for slope stability evaluation. IEEEAccess 10,
5660–5671. doi:10.1109/access.2022.3141432

Li, N., Wang, Y., and Ma, W. (2022). A wind power prediction method
based on DE-BP neural network[J]. Front. energy res. 10, 844111. doi:10.3389/
fenrg.2022.844111

Lu, P., and Rosenbaum, M. (2003). Artificial neural networks and grey
systems for the prediction of slope stability. Nat. Hazards 30 (3), 383–398.
doi:10.1023/b:nhaz.0000007168.00673.27

Luan, B., Zhou, W., Jiskani, I. M., Lu, X., and Wang, Z. (2023). Slope stability
prediction method based on intelligent optimization andmachine learning algorithms.
Sustainability 15, 1169. doi:10.3390/su15021169

Moayedi, H., Bui, D. T., Kalantar, B., and Kok Foong, L. (2019). Machine-learning-
based classification approaches toward recognizing slope stability failure. Appl. Sci. 9
(21), 4638. doi:10.3390/app9214638

Sah, N., Sheorey, P., and Upadhyaya, L. (1994). Maximum likelihood estimation
of slope stability. Int. J. Rock Mech. Min. Sci. and Geomechanics Abstr. 31 (1), 47–53.
doi:10.1016/0148-9062(94)92314-0

Sloan, S. W. (1989). Upper bound limit analysis using finite elements and
linear programming. Int. J. Numer. Anal. Methods Geomechanics 13 (3), 263–282.
doi:10.1002/nag.1610130304

Suman, S., Khan, S. Z., Das, S. K., and Chand, S. K. (2016). Slope stability
analysis using artificial intelligence techniques. Nat. Hazards 84 (2), 727–748.
doi:10.1007/s11069-016-2454-2

Wang, G. J., Zhao, B., Wu, B., Zhang, C., and Liu, W. (2022). Intelligent prediction of
slope stability based on visual exploratory data analysis of 77 in situ cases. Int. J. Min.
Sci. Technol. doi:10.1016/j.ijmst.2022.07.002

Wei, W., Li, X., Liu, J., Zhou, Y., and Zhou, J. (2021). Performance evaluation
of hybrid WOA-SVR and HHO-svr models with various kernels to predict
factor of safety for circular failure slope. Appl. Sci. 11 (4), 1922. doi:10.3390/
app11041922

Xie, W., Nie, W., Saffari, P., Robledo, L. F., Descote, P. Y., and Jian, W.
(2021). Landslide hazard assessment based on Bayesian optimization–support vector
machine in Nanping City, China. Nat. Hazards 109 (1), 931–948. doi:10.1007/
s11069-021-04862-y

Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., et al. (2013). Application of an
incomplete landslide inventory, logistic regressionmodel and its validation for landslide
susceptibility mapping related to the may 12, 2008 wenchuan earthquake of China.Nat.
Hazards 68 (2), 883–900. doi:10.1007/s11069-013-0661-7

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2024.1429601
https://www.frontiersin.org/articles/10.3389/feart.2024.1429601/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2024.1429601/full#supplementary-material
https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)
https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)
https://doi.org/10.1097/pas.0b013e318157f002
https://doi.org/10.3969/j.issn.1000-7598.2009.03.033
https://doi.org/10.3969/j.issn.1000-7598.2009.03.033
https://doi.org/10.3390/app11219852
https://doi.org/10.3390/app11219852
https://doi.org/10.13245/j.hust.221118
https://doi.org/10.13245/j.hust.221118
https://doi.org/10.1016/j.jrmge.2020.05.011
https://doi.org/10.1109/access.2022.3141432
https://doi.org/10.3389/fenrg.2022.844111
https://doi.org/10.3389/fenrg.2022.844111
https://doi.org/10.1023/b:nhaz.0000007168.00673.27
https://doi.org/10.3390/su15021169
https://doi.org/10.3390/app9214638
https://doi.org/10.1016/0148-9062(94)92314-0
https://doi.org/10.1002/nag.1610130304
https://doi.org/10.1007/s11069-016-2454-2
https://doi.org/10.1016/j.ijmst.2022.07.002
https://doi.org/10.3390/app11041922
https://doi.org/10.3390/app11041922
https://doi.org/10.1007/s11069-021-04862-y
https://doi.org/10.1007/s11069-021-04862-y
https://doi.org/10.1007/s11069-013-0661-7
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Huang et al. 10.3389/feart.2024.1429601

Zhang, H., Wu, W., Zhang, X., Han, L., and Zhang, Z. (2023).
Slope stability prediction method based on the margin distance
minimization selective ensemble. Catena 2023-08-20. doi:10.1016/
j.catena.2022.106055

Zhang, R., Su, J., and Feng, J. (2023a). An extreme learning machine model
based on adaptive multi-fusion chaotic sparrow search algorithm for regression and
classification. Evol. Intell. 17, 1567–1586. doi:10.1007/s12065-023-00852-0

Zhang, S., Zheng, D., and Zhang, W. (2022b). A rapid evaluation
method for the stability of red-layer highway slopes based on the SVM
algorithm. Northwest Hydropower, (000-003). doi:10.3969/j.issn.1006-2610.
2022.03.001

Zhang, W., Li, H., Han, L., Chen, L., and Wang, L. (2022a). Slope stability
prediction using ensemble learning techniques: a case study in yunyang county,
chongqing, China. J. Rock Mech. Geotech. Eng. 14 (4), 1089–1099. doi:10.1016/
j.jrmge.2021.12.011

Zhang, Y., Ding, J., Sun, J., and Zhang, D. (2023b). Prediction and online optimization
of strip shape in hot strip rolling process using sparrow search algorithmonline
sequential deep multilayer extreme learning machine algorithm. Steel Res. Int. 94.
doi:10.1002/srin.202200832

Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W. (1975). Associated and
non-associated visco-plasticity and plasticity in soil mechanics. Géotechnique 25 (4),
671–689. doi:10.1680/geot.1975.25.4.671

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2024.1429601
https://doi.org/10.1016/j.catena.2022.106055
https://doi.org/10.1016/j.catena.2022.106055
https://doi.org/10.1007/s12065-023-00852-0
https://doi.org/10.3969/j.issn.1006-2610.2022.03.001
https://doi.org/10.3969/j.issn.1006-2610.2022.03.001
https://doi.org/10.1016/j.jrmge.2021.12.011
https://doi.org/10.1016/j.jrmge.2021.12.011
https://doi.org/10.1002/srin.202200832
https://doi.org/10.1680/geot.1975.25.4.671
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Method
	2.1 Principal component analysis
	2.2 Sparrow search algorithm model
	2.3 SSA-SVM model

	3 Slope stability prediction model based on PCA-SSA-SVM
	3.1 Method principle
	3.2 PCA analysis
	3.3 PCA-SSA-SVM model construction and training
	3.4 Model evaluation indicators
	3.5 Cross-validation
	3.6 Prediction results and analysis

	4 Engineering verification
	4.1 Engineering background
	4.2 Slope profile
	4.2.1 Stratigraphic lithology
	4.2.2 Hydrogeological overview

	4.3 Slope data
	4.4 Verification based on PCA-SSA-SVM model

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

