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Reduction Center of China, Ministry of Emergency Management, Beijing, China

Earthquake-induced landslides (EQIL) are one of the most catastrophic
geological hazards. Immediate and swift evaluation of EQIL hazard in the
aftermath of an earthquake is critically important and of substantial practical
value for disaster reduction. The selection of influencing factor layers is crucial
when using machine learning methods to predict EQIL hazard. As important
input factors for EQIL hazard models, lithology and precipitation are extensively
employed in forecasting EQIL hazard. However, few work explored whether
these layers can improve the accuracy of EQIL hazard predictions. With Random
Forest (RF) models, we employed a traditional and a state-of-the-art sampling
strategy to assess EQIL modelling with and without lithology and precipitation
data for the 2022 Luding earthquake in China. First, by excluding both factors,
we used eight other influencing factors (land use, slope aspect, slope, elevation,
distance to faults, distance to rivers, NDVI, and peak ground acceleration) to
generate a landslide hazard map. Second, lithology and precipitation were
separately added to the original EQIL hazard models. The results indicate
that neither lithology nor precipitation have positive effects on the prediction
of EQIL for both sampling strategies. The high-risk areas (or low-risk areas)
tend to cluster within certain lithology types or precipitation ranges, which
significantly affects the accuracy of the hazard map. Additionally, the model
with the state-of-the-art sampling strategy deteriorates more than the model
with the traditional sampling strategy. We believe this is very likely due to the
strong spatial clustering of negative sample points caused by the latest sampling
strategy. Our findings will contribute to the assessment of post-earthquake
landslide hazards and the advancement of emergency disastermitigation efforts.
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1 Introduction

Earthquake-induced landslides pose significant threats to human life and property.
EQIL hazard maps, indicating the likelihood of landslides in areas affected post-
earthquake, are critical for enabling decision-makers to implement emergency responses.
Thus, accurately predicting and mapping the hazard of earthquake-induced landslides
is indispensable (Jibson et al., 2000; Marano et al., 2010; Raspini et al., 2017). Despite
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considerable research efforts, the accuracy of EQIL hazard
maps frequently falls short, leading to a substantial number
of areas being misjudged or their risk levels exaggerated
(Dreyfus et al., 2013; Allstadt et al., 2018). This situation hampers
decision-makers’ ability to devise accurate emergency response
strategies, thus making the creation of high-quality EQIL hazard
maps a particularly challenging task.

Machine learning methods are currently the mainstream
approach for creating EQIL hazard maps (Shao and Xu, 2022).
In machine learning approaches, selecting the influencing factors
for co-seismic landslides is a critical step that directly impacts
the outcomes of predictions. During the selection of influencing
factors, lithology factors and mean annual precipitation are
widely used by researchers (Shao et al., 2022; Aditian et al.,
2018; Pyakurel et al., 2024; Li et al., 2024; Khaliq et al., 2023;
Nefeslioglu et al., 2008). Especially, lithology factors are recognized
as one of the landslide-triggering factors considered in any
landslide susceptibility assessment using data-driven methods,
a fact well acknowledged in the field (Guzzetti et al., 1996;
Van Westen et al., 2006; Blahut et al., 2010). But whether these
factors positively impact the precision of EQIL hazard prediction
results has seldom been explored.

The classification of lithology is usually conducted through
stratigraphic ages, with rocks from various epochs exhibiting
distinct physical properties (Gallen et al., 2015). These differences
contribute to varying levels of landslide susceptibility. Although
there is a strong correlation between lithology and EQIL
hazard, lithology layers come in a wide variety and often
have lower resolution, with significant differences in lithology
across different regions. Therefore, lithology factors may not
always play a beneficial role in predicting EQIL hazards.
Precipitation increases pore water pressure and reduces the
shear resistance of soil and rock layers, thereby leading to
landslides (Aditian et al., 2018). Precipitation data (such as
mean annual precipitation) is also a significant factor affecting
landslide occurrence. However, the resolution of mean annual
precipitation layers is coarse, at 0.1°, and regional differences are
significant. Whether using mean annual precipitation layers can
effectively enhance the accuracy of EQIL predictions merits further
investigation.

To address these issues, this study utilized high-quality landslide
inventories from eight earthquake events in China to create
two sets of positive and negative sample points datasets for
machine learning, employing both traditional and contemporary
non-landslide point sampling strategies. Utilizing the Random
Forest model, eight influencing factors were selected: “land
use,” “slope aspect,” “slope,” “elevation,” “distance to fault lines,”
“distance to rivers,” “NDVI,” and “peak ground acceleration.”
These were used to predict the EQIL hazard for the VII degree
area affected by the 2022 Luding earthquake. The prediction
results were validated against the interpreted landslide inventory
for this earthquake, exploring the accuracy of the prediction
outcomes from the two sampling strategies. Subsequently,
lithology factors and mean annual precipitation were added to
the aforementioned eight influencing factors, while keeping the
machine learning model and sample datasets unchanged. This
allowed for an exploration of how the inclusion of lithology
or precipitation factors affects the differences in prediction

outcomes. The novelty of this study lies in its demonstration
of how lithology and mean annual precipitation impact the
accuracy of EQIL hazard predictions. It shows that both factors
have a significant effect on prediction accuracy. Avoiding these
factors can notably enhance the precision of EQIL hazard
forecasts.

2 Study area

The study area selected for this research encompasses the VII
degree zone affected by the 6.8 magnitude Luding earthquake
in 2022 (Figure 1), situated at the southeastern edge of the
Tibetan Plateau, covering the southern part of Luding County
and the northern part of Shimian County in Ganzi Prefecture.
The earthquake’s epicenter was located near the Moxi Fault,
close to the Gongga Mountain Hailuogou Glacier Forest Park,
along the southeastern edge of the Tibetan Plateau within
the Xianshuihe fault zone. The Xianshuihe fault zone is one
of the highly active and large-scale boundary strike-slip fault
zones, positioned at the eastern edge of the Tibetan Plateau,
where the Bayan Har block meets the Sichuan-Yunnan block.
It intersects with the Longmenshan Fault Zone and the Anning
River Fault Zone, forming the famous “Y-shaped” fault zone in
western Sichuan (Wang et al., 2015).

This earthquake triggered at least 5,007 landslides, with
preliminary spatial distribution analysis indicating that the
landslides were concentrated in areas of VIII and IX earthquake
intensity. There is a clear connection between the coseismic fault
and the distribution of landslides, with the landslides primarily
clustered around both sides of the causative fault. Notably, there
are more landslides on the northeast side compared to the
southwest side (Huang et al., 2023).

3 Materials and methods

3.1 Landslide inventories

We obtained open access lists of high-quality earthquake
landslides from publicly available research, as follows: the 2008
Wenchuan earthquake (Xu et al., 2014a), the 2010 Yushu earthquake
(Xu et al., 2013), the 2013 Lushan earthquake (Xu et al., 2015),
the 2013 Minxian earthquake (Xu et al., 2014b), the 2014 Ludian
earthquake (Wu et al., 2020), the 2017 Jiuzhaigou earthquake
(Xu et al., 2018), the 2017 Milin earthquake (Hu et al., 2019), the
2022 Lushan earthquake (Shao et al., 2022), and the 2022 Luding
earthquake (Huang et al., 2023). High-quality landslide inventories
from the first eight earthquakes were used to create the training
samples. The landslide inventory from the 2022 Luding earthquake
was used to validate the EQIL hazard prediction results for the
Luding study area.

3.2 Identifying influencing factors for EQIL

The occurrence of landslides is influenced by a variety of
factors, and scientifically selecting these factors is crucial for
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FIGURE 1
Overview of the study area for the Ms 6.8 Luding Earthquake in 2022.

conducting studies on regional landslide risk assessment. To
investigate the impact of lithology and mean annual precipitation
on the precision of EQIL hazard prediction, we selected ten
potential factors that could cause landslides. This selection
was made after a comprehensive process that included field
observations, collection of available data, review of relevant
literature, and numerous tests (Fan et al., 2021; Chen et al.,
2017; Pham et al., 2017; Tien et al., 2016; Youssef et al., 2016).
The factors are elevation, slope aspect, slope, land use, mean
annual precipitation (MAP), lithology, distance to faults,
distance to rivers, NDVI, and peak ground acceleration (PGA)
during earthquakes. The data sources for these factors can
be seen in Table 1.

It is noteworthy that, in the case of the 2022 Luding earthquake
event, there was some discrepancy between the epicenter location
and peak ground acceleration provided by the USGS and the
results of field investigations. Therefore, we estimated and mapped
the peak ground acceleration raster for the study area based on
intensity zones provided by the China Earthquake Administration.
Examples of influencing factor layers focused on the study area
are shown in Figure 2.

3.3 Creation of machine learning training
sample points

3.3.1 Creation of positive sample points
In this study, the landslide inventories from the eight

selected earthquake events are all represented as landslide
polygon layers. Centroids of the landslide polygons were
generated using ArcMap version 10.8. Given that many landslide
polygons are of irregular shapes, some centroids did not fall
within their respective polygons (Qiu et al., 2024). Therefore,
using ArcMap, all centroids located within the landslide
polygons were selected to serve as landslide points (positive
sample points).

3.3.2 Creation of negative sample points
In traditional landslide hazard assessments, the sampling ratio

of positive (landslide) to negative (non-landslide) sample points
is 1:1 (Hong et al., 2020). Zhu et al. (2017) proposed a method
in areas with landslide polygons where every seismic zone is
filled with a sampling grid at 100 m intervals. If a grid cell
contains a landslide point, or if 30% of the grid cell is covered
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TABLE 1 Sources and resolution of data layers for influencing factors.

Provider Spatial resolution Source

SRTM 30 m http://Ipdaac.usgu.gov/

SRTM 30 m Derived from the SRTM30 DEM

SRTM 30 m Derived from the SRTM30 DEM

Wuhan University 30 m 10.5821/zenodo.4417809

USGS 30 m http://earthquake.usgs.gov/earthquakes/search/

NASA GPM 0.1° http://gpm.nasa.gov/

Ye et al. (2017) 1:2,500,000 http://doi.org/10.12029/gc2017Z103

Ye et al. (2017) 1:2,500,001 http://doi.org/10.12029/gc2017Z103

OSM 30 m http://www.openstreetmap.org

Sentinel-2 30 m http://dataspace.copernicus.eu/

FIGURE 2
EQIL influencing factor layers in the study area.

by landslide polygons, that cell is marked as a landslide grid.
Then, non-landslide points are randomly selected from areas
not marked as landslide grids. In seismic zones where the
landslide inventory consists of point data, non-landslide points are
generated using the range of point buffers, ultimately balancing
the total number of landslide and non-landslide points at a one-
to-one ratio. M. A. Nowicki Jessee also utilized this method for
global sampling of positive and negative sample points for EQIL
(Nowicki et al., 2018). Huang and colleagues concluded that an
unequal number of positive and negative sample points affects
model performance and adopted a 1:1 ratio for sampling positive
and negative sample points (Huang and Zhao, 2018; Tien et al.,
2012). Currently, in studies concerning landslide hazard, traditional

methods predominantly utilize a sampling ratio of 1:1 for positive
and negative samples.

However, some studies have proposed alternative negative
sample sampling strategies that achieved results superior to
the traditional approach. Shao and colleagues argued that
the conventional 1:1 sampling method might exaggerate the
proportion of landslide samples in the study area, thereby
diminishing model performance. They introduced logistic
regression models constructed with different sampling intensities
and non-landslide/landslide sampling ratios, applying their method
to the Lushan earthquake (Shao et al., 2020). Yang H. et al.,
(2023) predicted landslide susceptibility using an uncertain
positive/negative sample ratio method, while Pourghasemi and
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colleagues explored three different ratios to identify the most
suitable ratio for model training, finding that a 1:2 ratio of positive
to negative samples yielded the best results (Pourghasemi et al.,
2020). After multiple trials of different ratios of positive to negative
samples, Sun and colleagues opted for a 1:5 ratio, randomly selecting
negative sample points within the study area (Sun et al., 2023).These
studies suggest that the 1:1 sampling strategy might not be the most
appropriate choice for selecting negative sample points.

Regarding the scope of negative sample point sampling,
traditional methods often lack detailed descriptions. He and others
suggested randomly sampling negative sample points within the
range provided by the USGS ShakeMap (He et al., 2021). Many
references simply state “selection within the study area,” where
the study area is usually a range delineated by the authors or
the boundaries of a province, city, or county (Wu et al., 2023;
Heo et al., 2023; Hu et al., 2021).

In the absence of a clear standard for the range of negative
sample point sampling and the ratio of positive to negative
sample points, Yang H. et al., (2023) proposed a heterogeneous
negative sample sampling strategy, which achieved commendable
results in the inversion of the Wenchuan earthquake. It significantly
reduced the areas overestimated for EQIL hazard, though this study
was not applied to predictions in areas without historical EQIL
landslide inventories. In order to fully consider the characteristic
differences between the landslide surface in the historical landslide
inventory and its surrounding non-landslide surface, we improved
the negative sample point sampling strategy of Yang et al., in order
to generate more high-quality negative sample points around the
landslide surface, and put them into the EQIL hazard prediction in
areas without historical earthquake landslide inventory.

3.3.2.1 Creation of negative sample points using the
improved heterogeneous sampling strategy

Using ArcGIS, a 2 km∗ 2 km grid (fishnet) is generated for the
landslide inventory, retaining grids that contain positive sample
points. Within each grid, the landslide area (a), non-landslide area
(b), and the number of landslide points (c) are calculated. The
number of negative sample points to be sampled in each grid (d)
is then calculated using the formula (d = b

a
× c). Corresponding

numbers (d) of random points are generated within each grid as
negative sample points. Given that all rasters used in this study have
a resolution of 30 m × 30 m, the aim is to sample as many high-
quality negative sample points as possible to cover non-landslide
areas surrounding the landslide zones. To prevent negative sample
points from falling within the same grid as landslide areas, causing
errors, and to avoid duplication of multiple negative sample points
in the same grid, the negative sample points must adhere to the
following rules: 1. Negative sample points should bemore than 43 m
away from landslide polygons (the length of the diagonal of a 30 m ×
30 m grid). 2.The distance between each non-landslide point should
be more than 50 m.

3.3.2.2 Creation of negative sample points using the
traditional strategy

To conduct comparative studies and investigate the impact of
lithology and mean annual precipitation on the accuracy of the
traditional negative sample point sampling strategy, we also need to
create negative sample points generated by the traditional strategy.

In the traditional approach, the ratio of positive to negative sample
points is set at 1:1.Thus, within the aforementioned grid (fishing net)
scope, we generate a number of negative sample points equal to the
number of positive sample points. Other than the difference in the
number of negative sample points, all other rules remain the same.

3.4 Random forest model

Random Forest is a powerful machine learning model known
for its exceptional performance in several areas. First, it excels in
handling large datasets. Thanks to the parallel nature of Random
Forest, it can efficiently process data containing millions of samples
without leading to overfitting. This makes it highly advantageous
for applications in big data environments. Secondly, Random Forest
boasts remarkable robustness. It tolerates outliers andnoisy datawell
due to its foundation on ensemble learning from multiple decision
trees. By aggregating the outcomes of various trees, Random Forest
minimizes the impact of individual tree errors on the overall
model, thereby enhancing the model’s robustness. Furthermore,
Random Forest can effectively assess the importance of features.
This capability is incredibly useful as it aids in identifying which
features play critical roles in prediction. This contributes to feature
selection, simplifying the model and improving its interpretability.
Increasingly, studies have demonstrated the efficacy of Random
Forest models in landslide susceptibility research.

4 Results

4.1 Results of positive and negative sample
point creation

Sample points were created for the historical earthquake events
using both the traditional strategy and the improved heterogeneous
sampling strategy. The numbers of positive sample points and
negative sample points created by the two strategies are presented
in Table 2. Figure 3 illustrates the sample point creation results using
the 2017 Jiuzhaigou EQIL inventory as an example. Figure 3A shows
the landslide polygon inventory, Figure 3B displays the positive
sample points, Figure 3C represents the negative sample points
generated by the traditional strategy (Strategy 1), and Figure 3D
depicts the negative sample points generated by the improved
heterogeneous sampling strategy (Strategy 2).

4.2 EQIL hazard prediction using eight
influencing factors under two sampling
strategies

This section utilizes two sampling strategies and employs eight
influencing factors: “land use,” “slope aspect,” “slope,” “elevation,”
“distance to faults,” “distance to rivers,” “NDVI,” and “peak ground
acceleration.” These are used for predicting the EQIL hazard in
the VII degree area affected by the 2022 Luding earthquake. The
accuracy and precision of the prediction results are validated using
the interpreted landslide inventory from this earthquake event.
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TABLE 2 Number of landslide inventories, positive samples, and negative samples for eight historical earthquake events.

Mw UTC Landslide polygons Positive sample Negative samples
(strategy 1)

Negative samples
(strategy 2)

Wenchuan, china 7.9 2008.05.12 197,481 196,037 196,037 1,760,754

Yushu, China 6.9 2010.04.13 2036 1872 1872 73,637

Minxian, China 5.9 2013.07.21 2,330 2,137 2,137 15,284

Lushan, China 6.6 2013.04.20 15,546 14,943 14,943 108,996

Ludian, China 6.2 2014.08.03 1,024 1,016 1,016 17,066

Jiuzhaigou, China 6.5 2017.08.08 4,834 4,248 4,248 19,656

Milin, China 6.4 2017.11.17 766 684 684 21,108

Lushan, CHina 5.8 2022.06.01 2,352 2,334 2,334 22,297

sum ∼ ∼ 226,369 223,271 223,271 2,038,798

4.2.1 Modeling results of the two sampling
strategies

The Random Forest model can directly output the contribution
of influencing factors. The contributions of the eight influencing
factors under the two sampling strategies are presented in Figure 4.

The EQIL hazard prediction results under the two sampling
strategies are shown in Figure 5.

4.2.2 Validation of prediction results
4.2.2.1 ROC curve

The ROC curve and AUC value are utilized to assess the
performance of the models. The samples were randomly divided
into two subsets, with 70% serving as the training data and the
remaining 30% used for validation. The Random Forest models
were then applied to their respective validation datasets to estimate
the probability of landslides. These predicted probabilities of
landslides were compared against their known labels to determine
the predictive capability of the models. The Area Under the Curve
(AUC) was calculated for this purpose. As shown in Figure 6, both
strategies achieved high AUC values. The traditional strategy’s AUC
(0.8909)was slightly higher than that of the improved heterogeneous
strategy (0.8816), indicating that the models constructed from
datasets prepared by both strategies performed well.

4.2.2.2 Validation against the interpreted landslide
inventory

Earthquake-induced landslides are universally acknowledged
as stochastic events (36), making it impossible for EQIL
landslide hazard predictions to achieve 100% accuracy. As
illustrated in Figure 7, by selecting areas near the epicenter with
a dense concentration of landslide inventories for comparison, it is
clear that the spatial distribution of medium to high hazard levels in
both prediction results closelymatches the spatial distribution of the
interpreted landslide inventory. The vast majority of landslide areas
fall within the regions predicted to have medium or higher hazard
levels, demonstrating the reliability of both prediction outcomes.

We selected six densely landslide-populated areas, each
measuring 4 km by 6 km (as shown in Figure 8), for a closer
comparison of the two prediction results. This comparison clearly
reveals that all landslide areas fall within the predicted regions of
medium or higher risk. However, in both sets of results, there are
sectionswithin themedium to high hazard areaswhere no landslides
occurred.Therefore, we quantified the number of non-landslide grid
cells within the areas classified as medium or higher hazard for each
region, with the results presented in Table 3.

It is evident that the improved heterogeneous sampling strategy
(Strategy 2) resulted in fewer areas classified as medium or higher
hazard on non-landslide surfaces compared to the traditional
sampling strategy (Strategy 1). This demonstrates that the actual
predictive performance of the improved negative sample point
heterogeneous sampling strategy surpasses that of the traditional
negative sample point sampling strategy, with a performance
improvement of approximately 30% in areas prone to landslides.

4.3 EQIL hazard prediction with the
addition of lithology factors

In this section, the set of influencing factors is expanded.
Building upon the previously utilized eight influencing factors,
lithology factors are added, making a total of nine influencing
factors. The lithology layer is categorized into 14 classes based on
stratigraphic age. This section explores the EQIL hazard prediction
results under the two strategies with the inclusion of lithology
factors, comparing the differences with predictions made without
using lithology factors.

4.3.1 Prediction results after adding lithology
factors using the traditional sampling strategy

The contributions of the nine influencing factors and the
ROC curve of the model are presented in Figure 9. It can
be seen from the contribution table that the contribution of
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FIGURE 3
Using the 2017 Jiuzhaigou Earthquake Landslide Inventory as an Example, (A) shows the landslide inventory polygons, (B) displays the created positive
sample points, (C) illustrates the negative sample points generated by Strategy 1, and (D) shows the negative sample points generated by Strategy 2.

lithology factors is about 10%. The trends in contributions from
other factors remain essentially consistent with those observed
when lithology factors were not included. This indicates that the
addition of lithology factors does have a certain impact on the
prediction results. The ROC curve reveals that the AUC value of
the model constructed with lithology factors is 0.9104, slightly
higher than the AUC value of 0.8909 when lithology factors were
not used. Based solely on the ROC curve, the modeling results
incorporating lithology factors appear superior. However, this
conclusion is drawn purely from themodel construction perspective
and requires further comparative analysis with actual prediction
effectiveness.

Figure 10 sequentially presents the results without using
lithology factors from earlier sections, the current prediction results,
and the lithology factor layer. Overall, a significant segmentation

phenomenon in the current prediction results is clearly visible. By
comparing with the lithology factor layer, it is observed that the
boundaries of the apparent segmented blocks in these results align
with the boundaries of different lithology classifications within the
lithology layer. This demonstrates that, despite lithology factors
contributing only about 10%, they have a significant impact on
the actual prediction effectiveness. We selected areas where the
differences between the two sets of results are most pronounced,
marked with blue boxes. Within these blue-boxed areas, regions
classified as “Archaeozoic” exhibit a wide range of relatively higher
hazard levels compared to the results without lithology factors. We
zoom into these blue-boxed areas for a closer comparison with
the landslide inventory from this earthquake to explore whether
the addition of these medium to high hazard regions is justified,
as shown in Figure 11.
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FIGURE 4
Contribution of eight influencing factors under two strategies.

FIGURE 5
(A) shows the prediction results using the traditional strategy, and (B) displays the prediction results using the improved heterogeneous strategy.
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FIGURE 6
ROC Curves for the Training Sets of the Two Strategies. (A) Shows the ROC curve for the traditional strategy, and (B) displays the ROC curve for the
improved heterogeneous sampling strategy.

FIGURE 7
Epicentral Area and Interpreted Landslide Inventory Maps for the Two Prediction Outcomes. (A) Represents the epicentral area using the traditional
strategy, and (B) shows the epicentral area with the improved heterogeneous sampling strategy.
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FIGURE 8
Selected six area locations and comparison of results for each area using the two strategies.

TABLE 3 Verification grid number results for six areas.

Number Strategy 1 Strategy 2 Number of grids
on non-slip
surfaces

Percentage of
high-hazard

areas in strategy
1 non-landslide
surfaces (%)

Percentage of
high-hazard

areas in strategy
2 non-landslide
surfaces (%)

1 20,877 13,083 25,576 81.63 51.15

2 23,048 15,098 25,029 92.09 60.32

3 22,610 16,440 23,972 94.32 68.58

4 22,532 15,766 24,341 92.57 64.77

5 20,394 10,780 25,341 80.48 42.54

6 17,976 6,749 25,161 71.44 26.82

FIGURE 9
Contributions table and ROC curve for the traditional strategy using lithology factors.
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FIGURE 10
(A) shows the results using the eight factors from earlier sections, (B) displays the current results, and (C) illustrates the lithology factor layer.

FIGURE 11
Enlarged comparison of the blue areas in Figure 10. (A) Figure 10A's detail view, and (B) Figure 10B's detail view.

It is evident that in both images, landslide areas are located
within regions classified as medium or higher hazard. However,
the prediction results utilizing lithology factors contain more
mistakenly predicted medium to high hazard areas compared to
those without lithology factors. Therefore, we can conclude that
under the traditional sampling strategy, employing lithology factors
does not enhance the precision of predictions. On the contrary, it
affects the original prediction outcomes, resulting in a significant
number of incorrectly predicted areas.

4.3.2 EQIL hazard prediction results with the
addition of lithology factors under the improved
heterogeneous sampling strategy

The contributions of the nine influencing factors and the ROC
curve of the model are presented in Figure 12.

The contribution table shows that under the improved sampling
strategy, the contribution of lithology factors is lower than that
under the traditional strategy (about 10%), accounting for only
about 6%. The ROC curve indicates that incorporating lithology
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FIGURE 12
Contributions of various factors and ROC curve with the addition of lithology factors using the improved heterogeneous strategy.

factors under the improved strategy results in a higher AUC
value compared to not using them. Similar to the traditional
sampling strategy, the inclusion of lithology factors improves the
model’s simulation effect. Moving on to an analysis of the actual
prediction results, Figure 13 compares the outcomes without using
lithology factors under the improved strategy, the current results,
and the outcomes with lithology factors under the traditional
strategy. Under the improved heterogeneous sampling strategy, the
overall prediction results exhibit a more pronounced difference
compared to the results obtained without incorporating lithology
factors. As previously demonstrated, the improved heterogeneous
sampling strategy enhances prediction accuracy, reduces areas of
medium to high hazard, and increases the proportion of low
hazard areas predicted. Therefore, after adding lithology factors,
the segmentation phenomenon becomes more marked compared
to using the strategy without lithology factor. Within the blue-
boxed areas in Figure 13, regions classified as “Archaeozoic”
lithology also show a significant number of areas where the hazard
level has been mistakenly overestimated, compared to predictions
made without lithology factors.

As the previous article verified, the prediction results without
lithology factors under the two sampling strategies are reliable.
However, the two sets of results with lithology factors added in
this chapter have large errors. The use of lithology factors will lead
to excessively high hazard levels in some lithology areas in the
study area. From this, we can conclude that lithology has a negative
effect on the prediction of EQIL hazard. On the contrary, not using
lithology factors will have a better prediction effect.

4.4 EQIL hazard prediction including
precipitation factors

Having explored the EQIL hazard prediction with the addition
of lithology factors previously, this section investigates the EQIL
hazard prediction incorporating precipitation factors. Similarly, the
analysis employs the eight influencing factors plus the mean annual
precipitation, making a total of nine factors. The hazard predictions
are conducted using the two sampling strategies, with a comparative
validation to verify the accuracy of the prediction results.

4.4.1 Prediction results after adding precipitation
factors using the traditional sampling strategy

The contributions of the nine factors, the ROC curve, and the
prediction results are shown in Figure 14, and the prediction results
are illustrated in Figure 15.

From the contribution table, it is noticeable that the contribution
of the mean annual precipitation factor is second only to peak
ground acceleration, with a contribution significantly higher than
other influencing factors, at about 19%. This indicates that the
mean annual precipitation factor has a substantial impact on
predicting landslide hazard. The ROC curve reveals a higher AUC
value (0.9216) after incorporating the mean annual precipitation
factor, but the actual prediction performance requires further
comparative research. The comparison and validation against the
landslide inventory are shown in Figure 16. Sequentially, Figure 16
presents the prediction results using the eight factors under the
traditional sampling strategy, the current prediction results, and the
mean annual precipitation layer. Given the high contribution of
mean annual precipitation, there’s a strong consistency between the
prediction effect graph and the distribution trend of mean annual
precipitation. Compared to the results without using precipitation
factors, the lower part of the map shows lower hazard levels, while
the upper part shows higher hazard levels. Considering the landslide
inventory for this earthquake event, many landslide areas in the
lower part of the current prediction results are underestimated in
terms of hazard level, whereas the upper part has many medium to
high hazard areas without landslides occurring, leading to severe
underestimation and overestimation of hazard levels. Under the
traditional sampling strategy, despite the superior AUC value with
precipitation factors, the prediction results were poorer, failing to
enhance prediction accuracy and resulting in numerous incorrectly
predicted areas.

4.4.2 Prediction results after adding precipitation
factors under the improved heterogeneous
sampling strategy

The contributions of the nine influencing factors and the ROC
curve of the model are presented in Figure 17, and the results are
illustrated in Figure 18. Under the heterogeneous sampling strategy,
the mean annual precipitation contributes more significantly than
the peak ground acceleration, approximately 20% compared to
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FIGURE 13
(A) shows the results of the eight factors using the improved heterogeneous strategy from earlier sections, (B) displays the current results, and (C)
illustrates the results of adding lithological factors using the traditional strategy from earlier sections.

FIGURE 14
Contributions of various factors and ROC curve with the addition of mean annual precipitation using the traditional strategy.

about 14% for the latter. This indicates an unrealistic dominant
role of mean annual precipitation, given that our study focuses on
landslides triggered by earthquakes, where seismic factors (peak
ground acceleration) should logically have the highest contribution.
Despite a higher AUC value with the inclusion of precipitation
factors, the actual outcomes, as shown in Figure 19, present some
concerns. Comparing previous results without precipitation factors
and the current prediction outcomes, the current results exhibit
a more pronounced segmentation phenomenon. In the prediction
map, lower hazard levels are assigned to landslide areas in the
lower part of the layer, while higher hazard levels are attributed
to non-landslide areas in the upper part. This leads to a more
distinct regional segmentation than seen with the traditional
sampling strategy predictions, aligning closely with themean annual
precipitation layer. It is evident from the map that areas with higher
annual precipitation generally have higher EQIL hazard levels, and
areas with lower annual precipitation have lower EQIL hazard levels,
which is unreasonable.

Based on the prediction results using mean annual precipitation
factors under both the traditional sampling strategy and the
improved heterogeneous sampling strategy, we can conclude that
using the annual average precipitation factor will have a significant
negative effect on the prediction results, not favorably for enhancing
the precision of earthquake-induced landslide hazard predictions.

5 Discussion

In landslide susceptibility mapping, the quality of input
data decisively influences the quality of landslide susceptibility
assessment (Pradhan, 2013; Pradhan et al., 2014; Kalantar et al.,
2018). Hence, the sampling of training sample points and the
selection of influencing factors are critical steps that determine
the quality of input data. During the process of negative sample
sampling, the improved heterogeneous sampling strategy can
generate a large number of non-landslide points around landslide
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FIGURE 15
Result map with the addition of mean annual precipitation using the traditional strategy.

areas. There are fewer non-landslide points in densely landslide-
affected areas and more in sparsely affected areas. This strategy
enables a focused differentiation between the characteristics
of historical co-seismic landslide areas and surrounding non-
landslide areas. In existing studies, nearly all EQIL hazard maps
overestimate the hazard level of the seismic area, especially
giving excessively high hazard ratings to the epicentral region
(Dreyfus et al., 2013; Allstadt et al., 2018). This study demonstrates
that the improved heterogeneous sampling strategy can more
accurately predict the spatial location of EQIL occurrences, reducing
the overestimated hazard areas around the epicenter.This proves the
strategy to be reasonable and advanced, making the investigation
into the effectiveness of using lithology and precipitation
factors under this strategy and the traditional strategy highly
persuasive.

Lithology factors and mean annual precipitation are important
influencing factors for the occurrence of EQIL (Duman et al., 2006;
Yalcin, 2008; Ercanoglu and Temiz, 2011; Nefeslioglu et al., 2012;
Das et al., 2013; Nefeslioglu et al., 2008). However, the results of
this study indicate that under both sampling strategies, the use
of lithology and mean annual precipitation factors has an adverse
impact on EQIL hazard prediction. We believe this is closely
related to the model training sample dataset. Initially, the training
samples for EQIL hazard prediction following an earthquake event
should be created using the historical EQIL inventory from the
location of that earthquake. However, in reality, historical landslide
inventories from the same location area are scarce. To address
this issue, we considered creating a large sample dataset using
high-quality landslide inventories from eight historical earthquake
events in China, aiming to identify the patterns of EQIL occurrence
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FIGURE 16
Comparison using the landslide inventory. (A) Shows the results of the eight factors under the traditional strategy from earlier sections, (B) displays the
current results, and (C) illustrates the Mean Annual Precipitation layer.

FIGURE 17
Contributions of various factors and ROC curve with the addition of mean annual precipitation using the improved heterogeneous strategy.

through machine learning and then apply these insights to EQIL
hazard prediction after an earthquake event. These eight historical
earthquake landslide inventories are distributed across different
regions in Southwest China, where there is a significant variation
in lithology and mean annual precipitation across regions. This
variation is likely a reason for the poor performance of lithology
and mean annual precipitation factors. It is possible that certain
lithologies or ranges of annual precipitation have a large number of
historical earthquake landslide samples (or non-landslide samples),
leading to a higher (or lower) hazard level being predicted for
these lithologies or precipitation ranges in the prediction area, thus
resulting in poor performance when using lithology and mean
annual precipitation factors.

Secondly, the resolution of lithology and mean annual
precipitation layers is relatively low, resulting in significant
segmentation. The scale of lithology data is 1:2,500,000, which
corresponds to a spatial resolution of approximately 660 m.
After classifying lithology by geological age, the segmentation

phenomenon becomes pronounced. If mispredictions occur, it
can easily lead to hazard levels being generally overestimated or
underestimated within certain lithology regions. In such cases, the
segmentation phenomenon in prediction results is inevitable unless
higher precision lithology data are used, a more detailed lithology
classification method is applied, or lithology factors are not utilized
at all. The resolution of mean annual precipitation is 0.1°, and
even after interpolation to a 30 m resolution grid, the variability
between different regions remains significant. The impact of layer
resolution differences on lithology and mean annual precipitation
factors cannot be overlooked.

Furthermore, the two sampling strategies used in this study
generate non-landslide sample points in areas near landslide
samples, emphasizing the differences in characteristics between
landslide and surrounding non-landslide areas, thereby achieving
better prediction results. However, this approach also results in a
strong clustering of non-landslide sample points, especially with
the improved heterogeneous sampling strategy, which produces ten
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FIGURE 18
Result map with the addition of mean annual precipitation using the improved heterogeneous strategy.

times as many negative sample points as the traditional strategy,
leading to even greater clustering. This could explain why, in the
experiments described earlier, the use of lithology or precipitation
factors led to a more pronounced segmentation phenomenon with
the heterogeneous sampling strategy compared to the traditional
strategy. Coupled with the regional differences and lower resolution
of lithology and mean annual precipitation factors, this might cause
negative sample points to cluster around certain lithology types
and precipitation ranges, resulting in these areas being assigned
lower hazard levels and affecting the accuracy of the prediction
results.

To verify this hypothesis, we analyzed the number of positive and
negative sample points located within each lithology classification
in the study area under the traditional sampling strategy,
as shown in Table 4.

It was observed that the number of landslide sample points in the
“Archaeozoic” lithology category is about three times the number
of non-landslide sample points. This disproportion could lead to
the “Archaeozoic” lithology areas in the study region generally
being assigned a higher EQIL hazard level, resulting in erroneous
predictions.

Finally, although lithology and precipitation factors are
important, why are the results without using these two factors
so reliable? We believe that the other influencing factors used
may have a certain degree of correlation with these two factors.
Topography can influence precipitation distribution patterns
through its impact on large-scale weather systems, atmospheric
flows, and the microphysics of clouds (Wu et al., 2005; Beniston,
2006; Liu et al., 2024; Yang, D. et al., 2023). Elevation, slope aspect,
and slope gradient have been shown to have strong correlations
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FIGURE 19
(A) shows the result map using eight factors with the improved heterogeneous strategy from earlier sections, and (B) displays the current result map.

TABLE 4 Number of positive and negative sample points in each
lithology classification.

Positive samples Negative samples

Quaternary 205 1704

Jurassic 2,411 13,069

Triassic 27,761 56,202

Permian 10,616 12,741

Devonian 25,389 34,389

Silurian 29,334 40,092

Ordovician 2,202 2,241

Proterozoic 92,710 40,045

Archaeozoic 13,723 3,127

with precipitation (Liu et al., 2018; Zhang et al., 2014). Distance
to rivers and proximity to seas also share a strong correlation
with precipitation levels (Zheng et al., 2017). The Normalized
Difference Vegetation (NDVI) is used to assess the condition
of surface vegetation. The relationship between precipitation
and NDVI is dynamic, influenced by various factors, including
geographical location, season, soil type, and vegetation type. To
a certain extent, there is a strong correlation between NDVI and

precipitation (Ding et al., 2007; Kawabata et al., 2001). The link
between landslides and lithology considers the geological strength
index and cohesion of rocks (Gallen et al., 2015). Although rocks
from different geological ages can have significant differences
in shear strength, but the actual strength of rock is affected by
many factors (Gallen et al., 2015; Li et al., 2020; Schmidt and
Montgomery, 1995; Hoek and Brown, 1980; Ye et al., 2024). It
is difficult to characterize shear strength on global and regional
scales (Dreyfus et al., 2013). However, environmental factors are
very likely to affect the strength of near-surface rocks (Gallen et al.,
2015), and there is a certain correlation between environmental
factors and lithology. Factors such as slope aspect, slope gradient,
elevation, land use, distance to rivers, and the NDVI all affect
environmental conditions to some extent, thereby affecting rock
strength. In summary, although lithology and precipitation factors
were not directly used, employing other factors may have indirectly
considered these two factors as well.

6 Uncertainties and prospects

This study employs traditional and novel negative sample
sampling strategies to create sample points from historical
earthquake-induced landslides and investigates the impact of
lithology factors and mean annual precipitation on the accuracy
of earthquake-induced landslide hazard predictions. This is of
significant importance for future research on the influencing factors
and precision of earthquake-induced landslide hazard predictions.
However, there are still some limitations that need to be further
improved and explored.
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We improved the latest EQIL negative sample point sampling
strategy proposed by Yang, H. et al., (2023). However, the 2 km
× 2 km grid for negative sample points may not be suitable for
all EQIL inventories used in this study. Therefore, in the future,
grids of appropriate sizes can be customized for each earthquake
event’s landslide inventory, considering factors such as the range
of the landslide inventory and the area of landslide polygons.
Moreover, the approach is not limited to grids; methods such as
buffer zones can also be used to define the sampling range for
non-landslide points.

This study found a significant discrepancy between the ROC
curves of machine learning methods and the actual prediction
outcomes, indicating that ROC curves can be misleading. A higher
AUC value does not necessarily equate to better prediction results.
Future efforts should focus on evaluating models based on actual
outcomes or developing more sophisticated methods to assess
model quality.

Lithology and precipitation factors are considered significant
influencing factors for EQIL. However, this study found that their
impact on the accuracy of actual predictions was poor. Future
research should explore how to improve these two factors to
make them more effectively applicable to EQIL prediction, such as
enhancing the precision of lithology and mean annual precipitation
layers or using alternative layers that can represent lithology and
precipitation more accurately.

This study utilized sample points created from eight historical
EQIL inventories. In the future, more high-quality EQIL lists can be
added to improve the sample point data, allowing for the selection of
influencing factors that are more suitable for the dataset to construct
the model. The broader the coverage of sample points, the wider the
prediction range can be, leading to higher prediction accuracy. The
more appropriate the influencing factors, the better the prediction
outcomes will be.

This study exclusively employed the Random Forest
model for modeling and did not engage in a series of
studies with other machine learning models. Therefore, the
effectiveness of the methodologies and datasets used in this
research when applied to other machine learning models
remains uncertain.

7 Conclusion

This study exploring the impact of lithology factors, classified
by geological age, and mean annual precipitation on the accuracy
of earthquake-induced landslide hazard predictions. The use
of lithology and mean annual precipitation factors was found
to reduce the accuracy of the predictions. Without these two
factors, both strategies demonstrated good predictive performance,
with the improved heterogeneous sampling strategy showing an
approximate 30% improvement in predictive performance in the

epicentral region compared to the traditional strategy. In summary,
lithology factors classified by geological age and mean annual
precipitation factors have a significant negative impact on EQIL
hazard predictions.They are not suitable for EQILhazard prediction.
This research holds significant implications for the selection of
influencing factors and the precision of future earthquake-induced
landslide hazard predictions.
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