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The West Kunlun orogenic belt located in the northwestern margin of
the Qinghai-Tibet Plateau is an important record of the formation and
northward extension of the plateau, but the current research mainly focuses
on the tectonic activities of the Cenozoic era, and there is still considerable
controversy regarding the formation and evolutionary history of pre-Cenozoic
orogenic belts. This study focuses on Cretaceous sandstone samples from the
Kedong region in the piedmont belt of the West Kunlun orogenic belt. U-Pb
geochronological analysis was performed on 200 detrital zircon grains from the
core samples. Combined with stratigraphic data and previous research, the main
provenance direction was investigated to constrain the tectonic evolutionary
history of the orogenic belt's peripheral regions. The results show that the detrital
zircons are aged from 290 to 208 Ma, 520-310 Ma, 810-580 Ma, 1,400-880 Ma
and 2,548-1,730 Ma, reflecting the complexity of provenance in this area. Based
on a comprehensive analysis of the characteristics of igneous rocks, zircon
age composition and stratigraphic conditions in potential source areas, it is
concluded that the primary source regions include the East Kunlun orogenic belt
and the North and South Kunlun terranes, with a low likelihood of contributions
from within the Tarim Basin. The evolution of the West Kunlun orogenic belt can
generally be divided into two opening and two closing phases. The detrital zircon
ages predominantly exhibit two peak values at 259 Ma and 459 Ma, respectively
representing the ages of transition from oceanic crust subduction to continent-
continent collision for the Paleo-Tethys Ocean and the Proto-Tethys Ocean.
Additionally, there is a temporal gap between the evolution of the Proto-Tethys
Ocean and the Paleo-Tethys Ocean. The Triassic period marks a transitional
phase in tectonic evolution, shifting into an intracontinental evolutionary stage.
This study provides new geochronological evidence for the early developmental
history of the West Kunlun orogenic belt.
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1 Introduction

The West Kunlun orogenic belt is located in the northwest
margin of the Qinghai-Tibet Plateau, bordering the Tarim Basin to
the north, the Qiangtang Terrane to the south, the Pamir Plateau
to the west, and the Altun Fault zone to the east (Figure 1A).
Compared with other orogenic belts, the West Kunlun orogenic
belt has two special features: First, the West Kunlun orogenic
belt was formed by the combination of multiple terranes from
Paleozoic to Mesozoic, and these terranes are separated by deep
faults nowadays; Second, the piedmont belt where the Western
Kunlun orogenic belt intersects with the southwestern Tarim Basin
has developed the longest foreland fold-and-thrust belt in western
China, extending approximately 230 km and accumulating nearly
ten thousand meters of clastic sediments. The piedmont belt refers to
the transition zone between the orogenic belt and the sedimentary
basin, which is the most active and frequent region in the continental
interior, and is also one of the important windows to understand
the history of plate convergence and surface evolution of the earth.
Therefore, the West Kunlun piedmont belt is an ideal region to
understand the formation process of the West Kunlun orogenic
belt and the tectonic evolution of the northern margin of the
Qinghai-Tibet Plateau (John et al., 2012; Guo et al., 2013; Cao et al.,
2015; Blayney et al., 2016; Wu et al., 2021). The tectonic evolution
of the West Kunlun orogenic belt has been studied by petrology,
geochemistry and detrital zircon chronology. Zhang et al. (2016)
found a large number of 500-200 Ma granites associated with
ocean basin subduction and closure orogeny in the West Kunlun
area, suggesting that the formation of the West Kunlun area is
directly related to the evolution of the Tethys Ocean (Zhang et al,
2016); Based on zircon dating of gneiss exposed from the Mazar-
Kangxiwar fault and early geological data, Yang et al. (2010) suggest
that the Mesozoic collision orogeny of the West Kunlun orogenic
belt occurred in the Middle to Late Triassic (Yangetal.,, 2010);
According to the comprehensive study and analysis of different
granites in the north of West Kunlun by Zhang et al. (2005), the
Mesozoic collisional orogeny of the West Kunlun orogenic belt
occurred in the Late Permian-Middle Triassic period (Zhang et al.,
2005). On the whole, the current tectonic research related to the
West Kunlun has the following deficiencies: 1) The tectonic activities
of the southwest margin of Tarim and the West Kunlun orogenic
belt are mainly focused on the analysis of granite and suture zone,
while granite is generally developed in the stages of continental
cracking and ocean crust subduction, and its interpretation has
a single direction of activity and multiple solutions of different
activities; 2) In previous studies, sedimentary rocks from typical
outcrops were selected, and there was unity, ignoring the huge thick
sediments in the piedmont zone that recorded the co-evolution of
the two regions; 3) Previous studies mainly discussed the matching
relationship of tectonothermal events based on the age of detrital
zircons in general, and lacked detailed comparison with potential
source areas As a result of these factors, the understanding of the
tectonic evolution of the southwest Tarim and West Kunlun orogenic
belt is still controversial and needs to be further studied.

The piedmont area has great potential for oil and gas resources
and low exploration degree. Two important oil and gas fields,
Kekeya and Akemomu, have been discovered in recent years,
which is the next key area for oil and gas exploration in Tarim.
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However, at present, the current understanding of the structures
and faults in the piedmont belt gas reservoirs of southwestern Tarim
is limited, and predictions regarding high-quality reservoirs and
hydrocarbon-rich areas are inaccurate. This has resulted in multiple
drilling failures in recent years. One of the important factors is
that the control factors of sedimentation and filling are not clear,
which leads to insufficient understanding of sedimentary reservoirs.
Therefore, understanding the provenance of the piedmont belt has
two important meanings: one is to predict the long-term tectonic
coupling between the evolution of the West Kunlun orogenic belt
and the Tarim Basin, the other is to better understand the macro-
control factors of sedimentary reservoir distribution, which provides
some new ideas for oil and gas exploration in the piedmont area.
The sediment provenance of the Cretaceous strata in focus in
this paper has been studied by predecessors. Zhang et al. (2021)
through provenance analysis of the Cretaceous strata in the typical
outcrops section under the West Kunlun orogenic belt, concluded
that the granite belt in the West Kunlun area is the provenance
of the southwest margin of the Tarim Basin in the Cretaceous
period (Zhang et al., 2021). Through outcrop, drilling correlation
and heavy mineral analysis, Zhangetal. (2014) believe that the
provenance of the early Cretaceous in the piedmonda came from
the South Tianshan and West Kunlun orogenic belt (Zhang et al.,
2014). In general, previous studies have the above problems (2)
and (3), leading to controversial research results. Detrital zircon
U-Pb dating technique is a method to determine the formation
age of detrital zircon grains by analyzing the U-Pb isotope ratio
of detrital zircons in sedimentary rocks. Because of its ability to
provide critical information about sediment provenance and their
sedimentary ages, this technique has been used in recent years
to determine provenance, reconstruct paleogeography, and recover
tectonic evolution (Zhu et al., 2011; Cawood et al., 2012). This paper
focuses on the thick sediments in the West Kunlun orogenic belt,
and on the basis of fine chronology analysis of detrital zircon U-Pb
dating, analyzes the provenance characteristics of different terranes
to the West Kunlun orogenic belt, and further discusses and defines
the co-evolution of the southwest margin of Tarim and the West
Kunlun orogenic belt in different periods.

2 Geological settings

The West Kunlun orogenic belt, located at the junction of
the Tarim Craton and the Qinghai-Tibet Plateau, represents the
product of the subduction of the Paleo-Tethys and Proto-Tethys
oceans and the proliferation of continental and marine debris from
the Early Paleozoic to Early Mesozoic periods (Zhang et al., 2017).
Three main fault zones developed in the orogenic belt, namely,
the Kudi suture zone, Kangxiwar fault and Hongshanhu fault from
north to south, and these faults as boundaries, the orogenic belt
from north to south can be divided into three tectonic terranes,
namely, the North Kunlun terrane, the South Kunlun terrane and
the Tianshuihai terrane (Figure 1B). The common point of the three
terranes is that they all developed Precambrian basement. The North
Kunlun terrane is considered to be the front part of the uplift of the
southwestern Tarim Craton. The sedimentary strata are Devonian
grinding conglomerate, carboniferous and Permian shallow Marine
carbonate rocks and post-Permian continental sedimentary rocks
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FIGURE 1
(A) Geological map of the west Kunlun orogenic belt. (B) Simplified tectonic map of Pamir-Tibetan orogen (modified after Cao et al.,, 2015). (1) Kudi
suture; (2) Kangxiwar suture; (3) Hongshanhu suture. (C) Lithologic column map and label of sampling horizon in West Kunlun piedmont zone. K,t,
tuyiluoke; Kyy, yigeziya; K,w, wuyitake; K>k, kukebai; K;kz, kezilesu.

(Yin et al., 2020). The South Kunlun terrane is considered to be an
independent external terrane. The sedimentary strata are siliceous
rocks, carbonate rocks and calc-alkaline igneous rocks from Upper
Paleozoic to Mesozoic (Yuan et al., 2002). The Tianshuihai terrane is
considered to be a huge accretionary wedge or independent external
terrane related to orogeny. The sedimentary strata are Paleozoic
carbonate rocks, Mesozoic pyroclastic materials and continental
sedimentary rocks (Hu et al., 2016).

Under the influence of the continuous collision and convergence
between the Indian plate and the Eurasian plate since Cenozoic,
the Tiekelik fault develops the strike-slip Kashi-Yecheng strike-
slip fault and the compression-oriented main Pamir fault to
the west, respectively. These three fault zones are used as
boundaries to distinguish the Tarim Craton and the West Kunlun
orogenic belt (Chen et al,, 2018; Jiang et al., 2024). Paleoproterozoic,
Neoproterozoic and Paleozoic rocks are widely exposed in the
periphery of the fault zone, which is considered to be the main
area for studying the Precambrian basement of the Tarim Basin
(Zhang et al., 2004; Wang et al., 2015). At the same time, because
of its special geographical location, the sedimentary rocks in
the periphery of the fault zone have an indicative significance
for the orogenic process of the West Kunlun orogenic belt. The
core sampling point of this study is located in the Cretaceous
strata of Kedong area in the northern part of Tiekelik Fault. The
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Cretaceous strata in Kedong area were continuously deposited on
top of Jurassic, and there was no major angular unconformity
in the middle. The Cretaceous mainly developed two subseries,
the upper series is limited platform facies intertidal and tidal flat
subfacies, the lower series is braided river delta facies, braided
river delta front subfacies. According to the lithology, the upper
Series is a set of carbonate rock and sand-mudstone deposits
with local gravel. The lower series is a large set of sandstone
and mudstone formations with gravel development in the middle
and bottom. The Cretaceous strata are further divided into Upper
Tuyiluoke Formation, Yigeziya Formation, Wuyitake Formation,
Kukebai Formation and Lower Kezilesu Group from top to
bottom (Figure 1C).

3 Sampling and methods

We took two samples from the kd5 well in the area, 5141.0
and 5409.4 respectively. Sample 5141.0 was collected from well kd5
at 5141.0 m. The formation is located in Kukebai Formation. The
lithology of the sample is mainly fine sandstone. Sample 5409.4 was
collected from well kd5 at 5409.4 m. The formation is located in the
Kezilesu Formation. The lithologies of the sample are mainly fine
sandstone and conglomerate.
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More than 200 zircon particles were selected from the two
sandstone samples after mechanical crushing, panning, magnetic
separation and heavy fluid. Then, under the binocular, the zircon
particles with complete crystal and clear and clean were fixed on
the double-sided tape and arranged, and the target was injected
with epoxy resin. Wait until the epoxy is fully cured and polish the
zircon to the surface until the internal structure is fully revealed.
The zircon target is then photographed by transparent/reflected
light and cathodoluminescence (CL) to determine the internal
structure of the zircon particles, avoiding cracks and inclusions
in the zircon during the testing process. Zircon U-Pb dating was
completed on the Laser denudation inductively coupled Plasma
Mass Spectrometer (LA-ICP-MS) at the Laboratory of Basin
Tectonics and Oil and Gas Accumulation, Petroleum Geology
Experimental Research Center, Research Institute of Petroleum
Exploration and Development, China. NWV 193 nm laser and
Element SF-ICP-MS mass spectrometer are used. According to the
image of cathode luminescence and reflection light, the denudation
position was determined, the instrument signal was tuned by
NIST614 to obtain the best test conditions, and the laser denudation
parameters were determined, including the spot size of 30um and
the denudation frequency of 3 Hz. In this study, 100 particles
were randomly selected from two samples for analysis, making the
number of analyzed particles consistent with statistical significance
and able to reflect the source characteristics. For the selected
denudation sites, every eight denudation sites are interlaced with a
set of standard samples for data correction, including international
standard zircon NIST610, 91,500 and PLE. Iolite software was used
for baseline correction and blank deduction to form the final data.
Finally, Isoplot4.15 software was used to calculate the age and make
the graph. If the zircon age >1000 Ma is 2*’Pb/?*°Pb, the zircon
age <1000 Ma is 2%°Pb/**U, When screening the valid data, the
ratio of 2°Pb/*¥U and 27Pb/**U is used as the selection criteria,
and the compatibility degree greater than 90% is the valid data.
Invalid data will not be considered in this study (The numbers in
the table are marked in red). The complete analysis and test results,
including zircon U-Pb isotope composition data and corresponding
zircon age results, are shown in Tables 1, 2. (two points are deleted
directly because they deviate too much from the harmonic line on
the concordance diagram).

4 Results

4.1 Morphology and origin of detrital
zircon

The
characteristics and Th/U ratio of detrital zircon can reflect the

morphological ~ characteristics, internal  structure
characteristics and evolution of rock mass in provenance area (Li,
2009). The morphology of zircon is the most basic characteristic,
which is manifested in the color of zircon, the length of zircon
particles and the ratio of the length and axis of zircon particles
(Hoskin and Schaltegger, 2003). In this study, a total of 200 detrital
zircons from two samples were selected for U-Pb isotopic age testing,
of which 157 zircons produced harmonic ages. The CL images of
the two groups of samples generally show that the particle size

of the zircons is between 50 and 300 pm, and the aspect ratio is

Frontiers in Earth Science

04

10.3389/feart.2024.1431866

about 1:1-1:3. Some zircons are angular-subangular-subcircular,
and some zircons are subcircular (Figure 2). The former indicates
that the transport distance is relatively close, which may be near-
source deposition. The latter indicates that the Cretaceous zircons
may have undergone multiple transport processes, which may be
related to the long gap between the Cretaceous and zircon ages.

The internal structural features of zircon are primarily
manifested in growth zoning. Growth zoning occurs as a result
of episodic growth during zircon crystallization due to variations
in fluid composition at different stages. Typical oscillating zoning
is generally observed in magmatic zircons, whereas metamorphic
zircons usually exhibit features such as unzoned or weakly zoned
patterns and cloudy zoning (Wu and Zheng, 2004). In addition,
the ratio of Th and U content in detrital zircons can also be used
to judge the characteristics of zircons. Generally, the Th/U ratio of
magmatic zircons is higher than 0.2, while the Th/U content ratio
of metamorphic zircons is generally less than 0.1. Among the 157
detrital zircon samples, 151 zircons have Th/U > 0.2, accounting for
96.18 percent of the total (Figure 3). This indicates that basically all
zircons have a high Th/U ratio (Th/U > 0.2), and the zircons in this
experiment have obvious girding characteristics. Combined with
the above morphological and structural analysis, it is shown that
the samples we analyzed are basically from magmatic rocks, and
the U-Pb age mainly indicates the crystallization time of zircon in
magmatic activity. Therefore, the dating results provide constraints
on the tectonic thermal time of different periods in the southwest
Tarim and West Kunlun.

4.2 Detrital zircon geochronology

A total of 100 zircons were tested from well kd5 sample
5141.0, of which 22 zircons were determined as invalid ages
(less than 90% concordant) due to serious loss of Pb content,
and the remaining 78 zircons were determined as effective ages.
The maximum age of zircon in this sample is 2548 Ma and
the youngest is 255 Ma. The age distribution of U-Pb can be
roughly divided into 510-255 Ma (N = 35, with an age peak of
460 Ma), 810-580 Ma (N = 16, no obvious peak), 1400-880 Ma
(N = 15, no obvious peak), and 2,550-1,730 Ma (N = 12, no
obvious peak). The majority of them were aged 510-255 Ma,
accounting for 44.87%.

Sample 5490.4 from well kd5, a total of 100 zircons were tested,
of which 21 zircons were determined to be effective ages (concordant
degree greater than 90 percent) due to serious loss of Pb content. The
maximum age of zircon in this sample is 2,524 Ma and the youngest
is 208 Ma. The age distribution of U-Pb can be roughly divided into
380-208 Ma (N = 26, with an age peak of 260 Ma), 650-400 Ma (N =
46, with an age peak of 459 Ma), and 2,524-930 Ma (N = 7, without
an obvious peak). The age group of 400-650 Ma accounts for 58.22%.

On the whole, the U-Pb ages of all concordant zircons can be
roughly divided into five age groups: 290-208 Ma, 520-310 Ma,
810-580 Ma, 1,400-880 Ma and 2,548-1,730 Ma, of which the
number of zircons in the 310-520 Ma age group accounts for 56.05%.
There are two age peaks of 259 Ma and 459 Ma, which are similar to
the respective age peaks of the two samples and can be used as the
representative peaks of this sample (Figure 4).
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FIGURE 2
Representative CL images of zircon grains in this study. The U-Pb analysis spots (30 um) are displayed by solid circles
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FIGURE 3
Th/U and ages for zircons analyzed in this study.

5 Discussion
5.1 Detrital zircon geochronology

The zircons obtained in this study range in age from
Paleoproterozoic to Triassic. The study area is located at the
junction of the Tarim Basin and the West Kunlun orogenic belt,
indicating that the detrital zircons in this study mainly come from
the sedimentary strata in the Tarim Basin and the Tethys tectonic
domain. At the same time, due to the limited activities of the
Precambrian Tethys, the age of the pre-Paleozoic zircons should
be strongly consistent with the tectonic thermal events in the Tarim
Basin. At the same time, the Precambrian tectonic movement of
the peripheral terranes of the piedmont belt cannot be ruled out
because the terranes inside the West Kunlun orogenic belt all have
Precambrian strata.

The results show that a global continental accretion event
occurred around 2,500 Ma, and magmatic records of this stage
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have been found in North China, South China, West Africa and
Northern Finland. Zircons from this period are widely distributed
in the Tarim Basin and its periphery, mainly in the Kuruktag and
Tiekelik areas. Zircons of this age in this study should be the records
of this accretion event (Shu et al., 2011; Ge et al., 2022). Whether
the Tarim Basin participated in the converging of the Columbia
supercontinent in the Paleoproterozoic period after 2,000 Ma is a
mystery, because the magmatic activity of this tectonic event is rarely
recorded in and around the Tarim Basin, such as the 1.87 Ga quartz
syenite with A-type granite characteristics found in the Altyn area
in the southeast margin of the Tarim Basin (Xin et al., 2011). In this
study, the number of zircons in this age group is still small, which
is presumed to come from a small number of volcanic records in
the Tarim Basin and its surroundings. During the Mesoproterozoic
era, the Tarim Craton widely received passive continental margin
sediments, with a small number of zircon ages distributed between
1,500-1,000 Ma. These zircons mainly originated from intraplate
volcanic tectonic activity. During the Neoproterozoic period,
the Tarim Basin participated in the aggregation of the Rodinia
supercontinent, because related magmatic and metamorphic rocks
were widely distributed in the Tarim Basin and its surrounding areas.
For example, Zhang et al. (2003); Zhang et al. (2007) determined the
age of 1.2 Ga of the Liancate Group igneous rocks in Southwest
Tarim by using the Sm-Nd isochron method. At the same time,
the age of 1.05 Ga of metamorphic hornblende in this area was
also determined by “°Ar/*°Ar (Zhangetal., 2003; Zhang et al,
2007), zircons at 1300 Ma to 900 Ma should come from here.
The detrital zircon sample contains more zircons from 600 to
900 Ma, which corresponds to the previous thought that the
Tarim Basin participated in the cracking process of the Rodinia
supercontinent, and a large number of magmatic activities at this
age have been recorded in the Tarim Basin. For example, Kuluktag,
Aksu, and Tiekelik have extensively developed bimodal volcanism,
mafic dike swarms, and alkaline granites, all around 800 Ma which
are the sources of zircons in this age group in this experiment
(Zhu et al., 2008; Xu et al., 2009; Long et al., 2011; Zhang et al., 2011;
Zhang et al., 2013).
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The Paleozoic and Mesozoic zircons are mainly concentrated
in the age of detrital zircons, especially the two samples have their
age peaks between 400 and 500 Ma, which is related to the Tethys
evolution occurring in the Tarim Craton and its periphery from
Sinian to Carboniferous. Since the subduction of the Proto-Tethys
Ocean to the formation of the Neo-Tethys Ocean covers the whole
Paleozoic to Mesozoic. During this period, magmatic hydrothermal
activity occurred continuously in the southern margin of Tarim,
the West Kunlun orogenic belt and its surrounding terranes, so
it can be considered that the Paleozoic and Mesozoic detrital
zircons in this experiment are derived from Tethian evolution.
Two of the major peaks in the two age ranges of 300-200 Ma and
500-400 Ma have been found in these areas, such as the 430 Ma
granite reported in the Tiekelik area (Ye et al., 2008). Biotite granite
of 442 Ma reported in the eastern section of West Kunlun (Han,
2002), granodiorite of 215 Ma reported in the southern area of
Kudi (Liu et al., 2015).

5.2 Provenance analysis

The main sources of detrital zircons in the sedimentary
basin are the orogenic belts around the basin. The West Kunlun
piedmont belt is located in the northern part of the Qinghai-Tibet
Plateau. The main surrounding terranes are Qiangtang Terrane, East
Kunlun orogenic belt, Songpan-Ganzi Terrane, Tianshuihai Terrane,
North and South Kunlun Terranes and Tarim Basin. In order to
accurately determine the provenance of Cretaceous sedimentary
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strata by zircon U-Pb age, a large number of Mesozoic and
Paleozoic zircon age data were collected from Qiangtang Terrane,
East Kunlun orogenic belt, Songpan-Ganzi Terrane, Tianshuihai
Terrane, North and South Kunlun Terranes, Tarim Basin and other
geological bodies (Figure 5). The U-Pb age data of plastids from
different regions are drawn into zircon age spectrum. In addition,
the granite age data reported by predecessors in West Kunlun area
are summarized.

In the compiled age groups of granites from the West Kunlun
region, it is evident that the ages are distinctly divided according
to the regions. The granite age of the North and South Kunlun has
two main intervals of 300-200 Ma and 500-400 Ma, which are not
available in other terranes in the West Kunlun area (Figure 6). We
speculate that the South and North Kunlun have great possibility
to provide provenance for the piedmont belt. The comparison of
detrital zircon age spectra from the peripheral terranes shows that
the peak values of Songpan-Ganzi terrane mainly occur at 255 Ma,
439 Ma, 771 Ma and 1,860 Ma, although the peaks of 300-200 Ma
and 500-400 Ma are similar to those of the Cretaceous samples.
However, a large number of detrital zircons in the Songpan-Ganzi
terrane at 800-700 Ma and 1,900-1,800 Ma are not found in the
Cretaceous detrital zircons in the piedmont belt, so the Songpan-
Ganzi terrane is not the main source of Cretaceous deposits in the
piedmont belt. The age distribution of detrital zircons is similar
between the East Kunlun orogenic belt and the North and South
Kunlun terranes, and their peak ranges are both 300-200 Ma
and 500-400 Ma, which are the reasonable source areas of the
Cretaceous strata in the piedmont belt. Although the Qiangtang
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terrane has an obvious peak value between 300 and 200 Ma, the
peak value between 500 and 400 Ma is not obvious. While the
Tianshuihai terrane has a peak value between 300 and 200 Ma and
500 and 400 Ma, there are a lot of zircons between 1,000 and 600 Ma,
which is not available in the Cretaceous samples in the piedmont
belt. Therefore, Qiangtang and Tianshuihai terranes are not the
main sources of Cretaceous deposits in the piedmont zone. The age
distribution of zircons in the Tarim Basin is very complex, and the
peak value of zircons does not appear below 500 Ma, so the internal
source of the Tarim Basin is very limited. It is speculated that the
uplift of the West Kunlun orogenic belt has played a major role in
controlling the deposition of the piedmont belt, so the provenance of
the Tarim is less than that of the Tethys tectonic terrane. Based on the
age distribution of granites and detrital zircons in different regions,
it can be concluded that the North and South Kunlun terrane is the
main source of Cretaceous in the piedmont belt, and the East Kunlun
orogenic belt has the possibility of providing the source of the
piedmont belt.
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5.3 Implications for tectonic evolution in
West Kunlun

The Qinghai-Tibet Plateau is a vast composite orogen that has
undergone multiple orogenic events during the Early Paleozoic,
Triassic, Late Mesozoic and Cenozoic periods (Tapponnier P et al.,
1986; Molnar, 1988). The detrital zircons in the Cretaceous
sediments of the West Kunlun piedmont belt are closely related to the
dynamic environment and regional paleogeographic background of
the terrane and the surrounding terrane. This includes the evolution
of the Proto-Tethys Ocean starting in the Early Paleozoic, the
subduction, reduction, and collision of the Paleo-Tethys Ocean
beginning in the Late Paleozoic, and the associated orogenic
processes (Lietal, 2018; Zhao etal., 2018). In recent years, the
West Kunlun orogenic belt has been relatively poorly studied,
and some key geological questions remain unanswered, including
its orogenic processes. In recent years, new evidence has been
continuously speculated. For example, Jiang, (1992) summarized
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the regional tectonic evolution of West Kunlun as two splits,
two collisions and one overlay based on the view of open-close
structures, that is, the West Kunlun orogenic belt experienced two
ocean-forming fractures, two subduction collisions and one overlay
orogenic process (land-continental subduction orogenic process)
(Jiang, 1992). Wang, (2004) believed that the collision of North
Kunlun terrane and South Kunlun terrane occurred in the Devonian
period, and then the subduction of the Paleo-Tethys Ocean to the
north began again, resulting in the formation of the Carboniferous
Jurassic magmatic arc. The Paleo-Tethys Ocean finally closed in
the Late Triassic to Early Jurassic period, resulting in the collision
between the Karakoram-Qiangtang terranes and the southern
margin of the South Kunlun terrane, forming the early West Kunlun
orogenic belt (Wang, 2004). Han, (2006) proposed the multi-island
ocean-continuous accretion model, suggesting that the West Kunlun
orogenic belt is a complex accretionary orogen with long-term
evolution, and the Qingi-Kun ocean slab, formed during the Sinian-
Cambrian expansion, continuously subducted beneath the northern
side of the Tarim Craton from the Ordovician to the Triassic,
leading to the southward accretion of the Tarim Craton (Han, 2006).
According to the above conditions, the time of cracking and closing
of the Proto-Paleo-Tethys ocean is the key to the formation of the
West Kunlun orogenic belt.

The age distribution of 108 zircons smaller than 600 Ma
can be divided into three groups: 520-407 Ma, 385-310 Ma, and
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290-200 Ma (Figure 7). In the late Early Paleozoic, the southern
Tarim Craton was closed, forming the West Kunlun Early Paleozoic
collision orogenic belt, which also represents the closure of the
Proto-Tethys Ocean. According to the geochemical characteristics
of Early Paleozoic granite published by predecessors, 500-450 Ma
granite has typical I-Type characteristics, and the data of this
time produced a peak value around 450 Ma, and an obvious fall
after 450 Ma. We hypothesized that the subduction of the Proto-
Tethys oceanic crust occurred before 500 Ma and continued until
450 Ma, and that 450 Ma is the time when the subduction of the
Proto-Tethys oceanic crust subducted until the collision between
the plates began. A large number of 430-400 Ma granites evolved
from high Ba-Sr to A-type granites discovered by predecessors
in the West Kunlun area (Yuan, 1999; Yuan et al., 2002; Ye et al,,
2008), at the same time, 420 to 405 Ma A-type granite was found
in the reservoir area, and it was proved that it was exposed to
the intraplate extension environment (Wang et al., 2020). Combined
with the zircon in this experiment, it appeared to fall after
450 Ma. We speculate that the South Kunlun terrane and the
North Kunlun terrane completed the convergence between 430
and 420 Ma, and this closure also represents the closure of the
original Tethys Ocean, and the entire collision orogeny lasted to
about 400 Ma.

At the end of the Early Permian, the Paleo-Tethys Ocean
subducted northward, leading to the collision of the Qiangtang
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Terrane with the Tarim Craton. Previous studies suggest that from
338 Ma to 251 Ma, the Paleo-Tethys Ocean underwent northward
subduction. The South Kunlun Terrane and the Tianshuihai Terrane
collided around 243 Ma and completed suturing by 228 Ma,
marking the final closure of the Paleo-Tethys Ocean (Jiang et al,
2013), and the Kangxiwar ophiolite belt is the product of the closure
of this collision, and the southwest Tarim developed into a back-
arc foreland basin. In this experiment, the peak value showed
a groove shape between 400 and 300 Ma, and there were gaps
between 400-380 Ma and 310-290 Ma, and there are two distinct
processes of peaks rising and falling. Therefore, we think that the
two openings and two collisions of the West Kunlun orogenic belt
are reasonable, and there is a certain vacancy between the two
openings, which also indicates that the continuity between the
Proto-Tethys Ocean and the Paleo-Tethys Ocean is not obvious,
and there may be a long interval. The piedmont belt and the
surrounding terranes, excluding the Tarim Basin, all exhibit peak
values around 250 Ma. This indicates that the subduction of the
Paleo-Tethys Ocean crust affected these terranes, with both the
internal terranes of the Western Kunlun and the surrounding micro-
terranes participating in the cyclical evolution of the Paleo-Tethys
Ocean. Due to the absence of Triassic deposits in the Southwest
Tarim Depression, there is a great debate on tectonic evolution.
Some people believe that the West Kunlun orogenic belt and the
South Tianshan Mountains are still in the process of orogeny, and
the West Kunlun orogenic belt developed thrust-fault structures
in front of them (Wu, 2018). Others believe that the orogenic
belt was completely formed in the Triassic. Then it enters the
stage of in-plate activity completely (Fang et al., 2009; Cheng et al.,
2019), combined with the age distribution of about 290-200 Ma
in this experiment and the age of the youngest single-grain zircon
208 Ma, we believe that during the early 250 Ma of the Triassic,
the evolution of the Paleo-Tethys Ocean changed from oceanic
subduction stage to continental collision. The intercontinental
collision that lasted throughout the Triassic prevented the piedmont
zone from receiving Triassic deposits. However, the Cretaceous
period where this sample is located is more than 50 Ma different
from the Triassic period, and there is no relevant age during
this period, indicating that there is a lack of effective volcanic
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activity records in the West Kunlun region after the Triassic
period, and all the peripheral plates were collaged at the end
of the Triassic period. No matter what the explanation is, the
Triassic period is a transition period of tectonic evolution into
an introntinental evolution stage. In general, the timing of the
Paleo-Tethys tectonic movement at the beginning of the Permian
corresponds well to the main peak interval of 290-200 Ma
in this study.

6 Conclusion

(1) The Cretaceous detrital zircons in the piedmont belt are aged
290-208 Ma, 520-310 Ma, 810-580 Ma, 1,400-880 Ma, and
2,548-1730 Ma, indicating that the provenance in this area is
very complex.

By comparing the ages of granites and detrital zircons
from different peripheral terranes, it is suggested that the
Cretaceous strata in the piedmont belt originated from the
North and South Kunlun terranes, and may also come
from the East Kunlun orogenic belt. The formation of the
whole West Kunlun orogenic belt experienced two opening
and two closing processes. The microlandmasses in and
around the West Kunlun orogenic belt are involved in
the evolution of the Proto-Tethys Ocean and the Paleo-
Tethys Ocean.

The subduction of the Proto-Tethys Ocean occurred before
500 Ma and lasted until 450 Ma. 450 Ma is the time when
the subduction of the Proto-Tethys Ocean subducted to
the collision between the plates. The suturing between
the South Kunlun Terrane and the North Kunlun Terrane
was completed in 430-420 Ma, which also represents
the closure of the Proto-Tethys Ocean. The entire Proto-
Tethys collision orogeny lasted until about 400 Ma. All
microlandmasses in the West Kunlun orogenic belt were
collaged during the Triassic period, and there is no record
of effective volcanic activity between the Triassic and
Cretaceous.

(4) The subduction of the Paleo-Tethys Ocean occurred before
290 Ma, and transformed from the subduction phase to
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continental collision before 250 Ma. All the microlandmasses
were completely collaged at the end of the Triassic,
corresponding to the end of the evolution of the ancient Tethys]
Ocean, and the tectonic evolution completely entered the stage
of intracontinental evolution.
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