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Lithium in coal, as a new type of associated mineral resource, has considerable
potential for exploration. Exploration of high-lithium coal seams is essential
for developing and using the associated lithium resources. To explore the
distribution of lithium resources in the early stages of development in
coal seams, the relationship between coal seam logging data and lithium
content was analyzed by taking Guojiadi Coal Mine (China) as example.
By analyzing the correlation between the different logging curves and the
lithium content in coal and combining the K-means algorithm to identify
the logging characteristics of different lithium-containing coal seams, we
finally obtained the logging identification characteristics of high-lithium coal
seams. The results reveal differences in the logging curves of coal seams
with different lithium contents. The natural gamma and lateral resistivity of
high-lithium coal seams are approximately 80 API and 100 Ω.M, respectively.
Our study shows that the early identification of high-lithium coal seams
can be evaluated from a logging perspective. We propose a preliminary
identification method of high-lithium coal seam based on logging curve
parameters by clustering analysis of borehole logging data to achieve
accurate prediction.

KEYWORDS

lithium, high-lithium coal seam, logging curve, logging response, cluster analysis,
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1 Introduction

Lithium is a vital strategic metal that plays an important role in modern industry
and new energy technology (Dai and Finkelman, 2018; Li et al., 2024). When the lithium
content in coal exceeds a certain grade, lithium deposits associated with the coal can be
formed as sedimentary lithium deposits (Zhao et al., 2022). Global lithium resources are
plentiful, mainly distributed in North and South America. At the national level, lithium
is distributed in the US, Australia, and China (Kesler et al., 2012; Ambrose and Kendall,
2020; Jiu et al., 2022). In recent years, European countries, Russia, South Africa, China,
and other coal-producing countries have researched key metals such as lithium in coal
and have successively discovered key metal deposits in the coal system (Dai et al., 2020).
The development and use of associated lithium minerals in coal can be an important
supplementary source of lithium resources, which is of great importance to the research
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and development of metal element mineral resources in coal. China
is rich in coal resources. The enrichment of associated lithium has
been found in coal in many regions of China, and the quantity of
resources is considerable (Zhang et al., 2024). Western Guizhou is
a crucial coal-producing area in southwest China. The main coal-
bearing strata are in the Upper Permian Longtan Formation. Coal
frommultiple Late Permian coal-bearing basins in western Guizhou
is highly enriched in critical metals (Liu et al., 2019; Liu et al., 2021),
particularly lithium. Most research on associated lithium resources
in coal has focused on the geochemical characteristics, occurrence
status, enrichment sources, and mineralization rules of key metals
in coal based on numerous samples (Hu et al., 2018; Tang et al.,
2022). Nevertheless, few studies have focused on predicting lithium
enrichment areas in coal.

In exploration and drilling, a series of logging activities are often
carried out on the borehole. Conventional logging mainly includes
natural gamma logging and resistivity logging. Logging data record
stratigraphic information, geophysical parameters, and other related
information, which is widely used in lithofacies identification,
stratigraphic division, and other fields (Yan et al., 2018; Day-
Stirrat et al., 2021; Lai et al., 2023). In addition, trace element-
abnormal strata can be realized through a deeper interpretation
of the logging data. Many scholars use different data processing
methods, such as machine learning, neural networks, support
vector machines, and other methods, to interpret logging data from
multiple angles and successfully achieve different purposes, such as
coal rock detection and coal facies discrimination (Puskarczyk et al.,
2019; Hayat et al., 2020; Baudzis et al., 2021). With the rapid
development of modern logging technology, a substantial amount
of data are produced in the process of logging. Nevertheless,
choosing the appropriate means to deal with huge amounts of
data is particularly important. As a big data analysis method,
clustering analysis is suitable for processing of massive data and
can extract effective key information (Amjad and Chen, 2020).
The K-means algorithm is important in clustering analysis. The
algorithm is simple and efficient and can be applied to different
analysis purposes by flexibly selecting the K value (Ikotun et al.,
2023). Zhang et al. (2024) utilized K-means clustering for data
preprocessing and accurately predicted reservoir porosity and
permeability using conventional logging curves as input. Jing et al.
(2021) selected different mechanical parameters of rock samples,
analyzed geophysical logging data based on the K-means dynamic
clustering method, and realized a lithology classification. Lai et al.
(2024) also used the K-means algorithm to realize the automatic
identification of lithology and evaluated the water saturation of
shale reservoirs in combination with logging curves. However, few
studies have focused on the identification of abnormally high-
lithium concentrations in coal seams using logging data.

Therefore, the J1301 well of Guojiadi Coal Mine in Liupanshui
Coalfield of Western Guizhou was taken as the research object, and
the systematic logging was carried out to determine the lithium
content. Using the K-means clustering algorithm, we combined the
logging data with the lithium content in the coal seam to obtain
the logging response characteristics of the high-lithium coal seam.
The whole well-logging data are identified. It is hoped that high-
lithium coal seams can be identified during coal seam exploration
and drilling to provide theoretical guidance for the exploration and
development of associated lithium mineral resources in coal.

2 Samples and methods

2.1 Sample collection

The Guojiadi Coal Mine is a part of the Liupanshui Coalfield
(Figure 1A), which is located in the southeast wing of the Qingshan
Syncline in Panxian County and Pu’an County, southwest of the
Liupanshui Coalfield, Guizhou Province (China). The main axis of
the Qingshan syncline is distributed in the NE-SW direction, with an
inclination angle of 3°–25°. The southeast limb is locally steep, and
secondary folds and faults in the NE–SW direction have developed
on both limbs (Huang and Qu, 2021). The Liupanshui Coalfield
is located in western Guizhou Province and is a set of marine-
terrigenous coal-bearing deposits (Figure 1B). The paleogeography
of coal accumulation is the long delta plain type, and the sedimentary
environment is theupperandlowerdeltaplains.Themainsedimentary
system is the delta sedimentary system.The sedimentary type is based
on distributary channel deposition, including natural levees, crevasse
fans, and interdistributary bays on both sides of the river channel.The
transition zone between the upper and lower delta plains is the ideal
location for coal accumulation, with the best coal-bearing properties
(Bilal et al., 2023; Jamaluddin et al., 2023). Generally, there are many
coal seams, with mainly medium–thick coal seams. The coal seams
are widely distributed. The stability is good, and the ash and sulfur
contents are low (Jiang et al., 2020).

Well J1301 is located in the Guojiadi CoalMine.The coal-bearing
strata include coal seams No. 12, 17, 18, 20, 26, and 28, as well as a
few thin coal seams.The coal seamhas a thickness of 0.45–2.11 m and
a depth of 196–383 m. The lithology of the whole borehole is mainly
sandstone, including siltstone, argillaceous siltstone, fine sandstone,
and limestone.All coal seamsampleswere collectedduring thedrilling
process and immediately stored bags to prevent contamination. The
coalseamsencounteredduringdrillingwerenumbered1M–11Mfrom
top to bottom (Figure 1C). Long-source distance gamma (GGFR),
natural gamma (NG01), lateral resistivity (GR01), and apparent
resistivity (RS01) logging were performed simultaneously.

2.2 Test methods

Lithium content was determined by inductively coupled
plasma–mass spectrometry (ICP–MS,NEXION2000-B,PerkinElmer,
Inc.). The determination was conducted according to GB/T
14506.30–2010. Firstly, the sample is ground to a particle size of
200 mesh.TheICP-MSsampledigestionmethodisas follows:precisely
weigh 50 mg of coal sample ground to a particle size of 0.075 mm and
transfer it into a PTEF digestion vessel. Subsequently, add HF and
HNO3, seal the vessel, and heat it at a constant temperature of 190°C
for 36 h. Once complete digestion is achieved, remove the sample
and dry it thoroughly. Then, introduce 1 mL of HNO3 (1:1) at a
temperature of 24°C followed by another drying step. Dissolve the
salts using HNO3 (1:1) solution and subsequently add Rh internal
standard solution (500 mg). Further addition includes 2 mL of HNO3
and3 mLofdeionizedwaterbeforeplacing itback inthesteelcontainer
for heating at 140°C for 5 hours. After cooling down, remove the
digestion vessel, shake well, and transfer an aliquot volume of 0.4 mL
into a centrifuge tube with subsequent adjustment to reach a final
volume of 10 mL prior to instrument analysis.
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FIGURE 1
Location of well J1301 (A) Location of the study area; (B) Sedimentary environment of the study area; (C) Lithologic map of well J1301.

The cluster analysis method is used to identify the logging
characteristics of coal seams with different lithium contents.The core
concept of cluster analysis is “birds of a feather flock together.” The
algorithm classifies data objects separately based on the degree of
similarity between them, which is an unsupervised learning method
(Ahmed et al., 2020; Chen et al., 2020). The K-means clustering
algorithm is often used in practice. K-means clustering is a fast,
iterativeprocess(ShahrivariandJalili,2016;Capó et al.,2017).Figure 2
illustrates the workflow of the K-means algorithm.

3 Results

3.1 Sample Li content and logging results

By conducting GGFR, NG01, GR01, RS01 logging in the
J1301 well, and measuring the lithium content in the coal seam, we

obtained the lithium content in Well J1301 and the average value of
the corresponding log curves (Figure 3).

GGFR is a logging method used to obtain the formation
density using the gamma photon counting rate received by
the instrument. For different lithology strata, the scattering and
absorption capacities of the gamma photons are different, and the
count rates of gamma photons received by the detector are also
different (Chen and Zhang, 2022). The GGFR value of coal seams
ranges from 300 to 2700 CPS, with a mean of 900 CPS. The GGFR
value of the lithium-rich coal seam is between 300 and 1350 CPS.
NG01 is closely related to the ash content of coal but is generally
to the organic matter composition or the humic acid content of
coal (Gao et al., 2015). The NG01 values of coal seams range from
35 to 200 API, with an average of 133 API. The NG01 values of
a lithium-rich coal seam are between 35 and 120 API. The GR01
curve is mainly affected by the sedimentary environment, original
rock mineral composition, porosity, and cement. The electrical
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FIGURE 2
K-means flow chart.

parameters of each lithology vary greatly (Duan et al., 2023). The
GR01 value of coal seams ranges from 45 to 1300 Ω.M., averaging
of 214 Ω.M. The GR01 value of a lithium-rich coal seam is between
50 and 200 Ω.M. Generally, the measured resistivity is called the
apparent resistivity, RS01.The RS01 of coal seams ranges from 50 to
500 Ω.M, averaging 218 Ω.M. The RS01 of a lithium-rich coal seam
is between 60 and 260 Ω.M.The lithium content in the coal seam of
Well J1301 varies greatly, as shown in Figure 3.

The lithium content ranged from 4.46 μg/g to 171.93 μg/g, with
a mean of 82.44 μg/g. It shows a certain regularity in the vertical
direction, and the lithium content decreases from the upper coal
seam to the lower coal seam. The coal seams from J1301-5 coal and
above show different logging response characteristics from the coal
seams below.The lithium content of the J1301-5 coal and above coal
seams is above 90 μg/g. GGFR is between 300 and 600 CPS; NG01
is less than 100 API; GR01 is between 75 and 135 Ω.M, and RS01 is
less than 200 Ω.M. The lithium content in the coal seam below the
J1301-5 coal is below 90 μg/g. The GGFR range is 938–2183 CPS,
and the fluctuation is large.TheNG01 range is greater than 100 API.
GR01 is greater than 250 Ω.M, and RS01 is greater than 250 Ω.M.

3.2 Well-logging characteristics

Radar maps of the logging characteristics of different lithologies
are obtained by counting the logging characteristics of different
types of lithology (Figure 4). The logging characteristics of coal are
quite different from those of other lithologies.The GGFR and NG01
values of coal are much higher than those of fine sandstone and
siltstone.They are also quite different from argillaceous siltstone and
limestone.The RS01 of coal is similar to that of argillaceous siltstone
and lower than that of limestone, siltstone, and fine sandstone. The
GR01 of coal is larger than that of argillaceous siltstone and smaller
than that of fine sandstone, siltstone, and limestone. The RS01 of
coal is similar to that of argillaceous siltstone and lower than that
of limestone, siltstone, and fine sandstone. The GR01 of coal is

larger than that of argillaceous siltstone and smaller than that of
fine sandstone, siltstone, and limestone. Compared with the logging
characteristics of other lithologies, the logging characteristics of coal
have specific identification characteristics.Thewell-logging data can
be further identified by cluster analysis.

A scatter plot of the lithium content and different
logging responses at the corresponding depths is drawn for
correlation analysis (Figure 5). The lithium content strongly
correlated with RS01, with R2 reaching 0.60. The lithium content
shows the next highest correlation with NG01 and GR01 (R2 of
0.40). The correlation between the lithium content and GGFR is the
lowest, with R2 of 0.14.

3.3 Cluster identification of high-lithium
coal seams

K-means clustering analysis was performed on the J1301 well
logging data using SPSS (Statistical Package for the Social Sciences)
data analysis software to obtain the logging clustering center. Based
on the lithium content in coal seams, coal seams are divided into
high-lithium coal seams (lithium content >50 μg/g) and low-lithium
coal seams (lithium content <50 μg/g) (Sun et al., 2014). Lithium-
containing coal seams are the sum of high- and low-lithium coal
seams.Theoverall logging characteristics of the lithium-bearing coal
seam in Well J1301 in Guojiadi are as follows: GGFR = 901 CPS,
NG01 = 133 API, GR01 = 214 Ω.M, RS01 = 218 Ω.M. K-means
clustering was performed on the lithium-containing, high-lithium,
and low-lithium coal seams, and the number of clusters was divided
into 2, 3, and 4. Tables 1–3 list the clustering results.

The GGFR cluster center has a large fluctuation range, from
535 to 2503 CPS, but there is no apparent distinction in RS01.
No similarity is observed in the different center point gaps for
the different cluster numbers. A plot of the NG01 and GR01
(Figure 6) reveals some differences between the and low-lithium
coal seams. The NG01 and GR01 of the high-lithium coal seam are
approximately 80 API and 100 Ω.M, respectively. NG01 and GR01
of the low-lithium coal seam approximately 100 API and 150 Ω.M,
respectively. Hence, high-lithium coal seams can be identified using
the above indicators. K-means clustering is performed on the
logging data of the J1301 well using the above values as the logging
response characteristics of the well. A clustering center consistent
with the target horizon appears when the clustering number is set to
a higher value. The clustering results can be found in Tables 4, 5.

It can be found by clustering the whole-well data (Figure 7):
NG01 of the cluster center of cluster 15 is 83 API, and the GR01
is 102 Ω.M, which is consistent with the aforementioned high-
lithium target layer. The corresponding strata of cluster 15 are
mapped individually, and a cluster prediction map is prepared.
The high-lithium coal seams are comprehensively identified, and
more lithium-containing layers are identified in the non-coal parts,
as shown in Figure 8.

4 Discussion

Herein, lithium-bearing coal seams, high-lithium coal seams,
and low-lithium coal seams were divided according to their lithium
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FIGURE 3
Lithium content and corresponding logging curves for Well J1301.

FIGURE 4
Lithology logging identification template.

contents. Using statistical logging response characteristics, coal
seams with different lithium contents were compared, and the
logging response characteristics of the different lithologies were
analyzed.NG01 andGR01 of the low-lithiumcoal seamswere higher
than those of the high-lithium coal seams. Some scholars have
studied the logging response of coal seams in different regions and

found that the gamma ray of coal is 20–50 cps, and the resistivity is
500–1200 Ω.M, which is different from the high-lithium coal seam
in Guojiadi (Bhaskar, 2006; Chatterjee and Paul, 2013; Ghosh et al.,
2016). The analysis of the high-lithium coal seam in Guojiadi
shows that the high-lithium coal seam has a high gamma ray
value and a low resistivity value.
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FIGURE 5
Correlation diagram between lithium content and well logging.

TABLE 1 Clustering center of lithium-bearing coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 1706.85 534.32 1399.15 2386.40 495.36 432.19 1074.11 2426.96 1603.11

NG01(API) 212.44 96.97 221.21 172.60 89.97 76.53 208.13 172.43 207.08

GR01(Ω.M) 425.20 118.01 337.33 551.36 117.63 116.08 150.53 552.87 509.48

RS01(Ω.M) 325.08 169.12 289.36 365.33 168.15 166.21 203.41 364.91 359.95

TABLE 2 Clustering center of high-lithium coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 1957.55 549.37 2512.82 1424.00 491.04 433.95 972.20 1634.24 2512.82

NG01(API) 126.81 85.68 122.45 137.47 79.30 69.52 141.42 131.62 122.45

GR01(Ω.M) 483.34 102.17 334.55 400.90 98.30 97.74 118.63 599.82 334.55

RS01(Ω.M) 351.75 157.04 316.07 303.09 153.01 152.28 175.02 383.42 316.07
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TABLE 3 Clustering center of low-lithium coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 535.94 1613.71 502.36 2272.36 1389.17 408.07 1706.03 2503.33 1118.09

NG01(API) 116.22 256.87 107.27 210.36 268.16 88.47 253.73 194.83 241.22

GR01(Ω.M) 147.90 408.78 148.97 755.71 293.20 150.14 456.13 1051.17 170.58

RS01(Ω.M) 192.15 316.67 192.70 412.31 279.59 192.39 347.49 464.92 219.33

FIGURE 6
Clustering results of different lithium-bearing coal seams.

The variation in lithium content can be essentially explained
by the difference in physical characteristics between high-lithium
and low-lithium coal seams. Lithium is generally hosted in clay
minerals, and high-lithium coal seams tend to have higher clay
mineral contents, which cause physical differences between seams,
thus affecting the logging characteristics. This result may be due
to the following reasons. 1) Lithium is generally found in clay
minerals in coal, and we can obtain lithium information indirectly
by analyzing the logging reflections of clay minerals in coal. When
the clay content is high, the lithium content in coal tends to be higher
than that in coal seams with lower clay content (Li et al., 2023). Clay
minerals tend to show lower gamma responses in the gamma logs
because their content is usually low, and as fine granular materials,
they exist in tiny particles in reservoirs such as coal seams.Therefore,
the peak value of clay minerals in NG01 logging curves is usually
low, and the NG01 signal may be weak compared to other common
minerals (such as quartz and feldspar) (Ehsan and Gu, 2020; Jiang,
2021). 2) Common minerals such as quartz and feldspar usually
have high electrical conductivity, so they will show higher values
in the resistivity logs. However, clay minerals contain relatively
more water and salt plasmas, resulting in lower lateral resistivity
(Han and Misra, 2018; Zhao et al., 2019). Many scholars have also
pointed out that coal has a wide range of gamma ray response,

especially when some thin coal seams are mixed with surrounding
rocks, which will make some coal seams have a higher gamma ray
response. This may lead to incorrect predictions of high-lithium
coal seams when using cluster analysis methods (Keskinsezer, 2019;
Yusefi and Ramazi, 2019).

A cluster center consistent with the target layer appears when
the whole-well logging data are clustered and the number of
clusters is set to a higher value. This result may be due to
the following reasons. 1) From the perspective of the K-means
clustering algorithm principle, setting different cluster numbers
will have different effects on the clustering results. An increase
in the number of clusters leads to an increase in the number
of cluster centers, and the distance between each cluster center
will increases. A larger number of clusters can better separate
different clusters. 2) From a practical perspective, rocks with
different lithologies will be encountered as the drilling depth
increases. These rocks have experienced different sedimentary and
diagenetic processes, and the corresponding logging characteristics
will differ. A higher clustering number can classify rocks of
different lithologies more accurately. At the same time, we also
need to consider other factors, such as the depth of the coal
seam and its thickness, which will affect the identification of high-
lithium coal seams. This increases the uncertainty of identification
(Antariksa et al., 2022).

The relationship between well-logging curves and lithium
content was obtained by analyzing and summarizing the responses
of well-logging curves of different types of coal seams in high-
lithium areas. The response characteristics of the logging curves
of coal seams with different lithium contents differed. For NG01
and GR01, there are still similar cluster centers when different
cluster numbers are set. This shows that coal seams with different
lithium contents are also significantly different, and this center
can be used as a basis for identifying high-lithium coal seams.
The well-logging curves were clustered and compared with the
aforementioned high-lithium coal seam clustering centers. High-
lithium coal seam clustering data were distributed throughout the
well. Hence, the data of the whole well can be identified using this
method, not just limited to a specific range, and some high-lithium
coal seams can be identified with high accuracy.

In connection with reality, lithium exists in coal seams, and may
also be enriched in other rocks, such as roof and floor plates (Dai
and Finkelman, 2018). In the clustering, a high-lithium coal seam
clustering center exists in the coal seam, and is distributed widely
in other lithologies, which is consistent with the above. The
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TABLE 4 Well logging clustering center of Guojiadi J1301 well (1–10).

logging
curve

Cluster

Center
1

Center
2

Center
3

Center
4

Center
5

Center
6

Center
7

Center
8

Center
9

Center
10

GGFR(CPS) 277.65 2026.73 237.20 1920.41 1219.41 1666.68 250.19 299.95 2501.00 331.26

NG01(API) 31.05 722.95 17.20 192.91 175.94 469.38 22.69 34.59 189.60 51.61

GR01(Ω.M) 810.41 218.00 2489.60 543.68 183.00 179.76 1928.50 443.77 1135.80 143.54

RS01(Ω.M) 433.04 259.22 580.58 380.20 224.31 230.58 547.11 354.38 477.63 204.84

TABLE 5 Well logging clustering center of Guojiadi J1301 well (11–20).

logging
curve

Cluster

Center
11

Center
12

Center
13

Center
14

Center
15

Center
16

Center
17

Center
18

Center
19

Center
20

GGFR
(CPS)

1635.50 2014.02 2534.33 272.89 469.54 1662.48 2087.29 311.65 795.51 1510.88

NG01
(API)

130.75 46.55 150.21 21.55 83.69 69.76 800.00 42.96 122.56 131.00

GR01
(Ω.M)

994.75 298.17 367.58 1356.50 102.44 258.78 475.14 252.20 109.96 533.23

RS01
(Ω.M)

460.12 301.64 326.95 500.96 157.56 279.18 362.72 280.77 161.58 376.95

FIGURE 7
Clustering center.

trace element content cannot be determined directly from the
logging curves because they only reflect the physical, chemical, and
petrological characteristics of the formation. However, by analyzing
the logging response characteristics of coal seams, coal seams with
different lithium contents can be distinguished and used as criterion.
This means that the early identification of high-lithium coal seams

can be evaluated from the perspective of logging. The possibility
of trace elements and their content range can be inferred from
a comprehensive analysis of the whole logging data and other
geological data. Further experimental analysis is required to confirm
the existence and content of trace elements.

5 Conclusion

The lithium content in theGuojiadi CoalMine is high, averaging
82.44 μg/g, which is much higher than the international lithium
content in coal and is highly representative. The lithium content
in the coal seam is strongly correlated with the RS01, GR01, and
NG01 logging curves. Coal seams with different lithium contents
have different logging characteristics. The NG01 and GR01 values
of high-lithium coal seams are approximately 80 API and 100 Ω.M,
respectively. The NG01 and GR01 values of low-lithium coal seams
are approximately 100 API and 150 Ω.M, respectively. Hence, high-
lithium coal seams can be identified by performing K-means
clustering on the natural gamma and lateral resistivity logs of the
entire drilling well and comparing the log characteristics of regional
high-lithium coal seams. The k-means clustering method is used to
identify high-lithium coal seams in Guojiadi Coal Mine. Although
there are some wrong classifications of high-lithium coal seams,
the differential analysis of different lithium-bearing coal seams and
the rapid identification of high-lithium coal seams are the main
contributions of this work. Most importantly, this study shows that
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FIGURE 8
Clustering result diagram.

the early identification of high-lithium coal seams can be evaluated
from a logging perspective.
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