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In order to explore the relationship between groundwater levels and hydro-
meteorological factors in Fengnan District, accurate estimation of groundwater
levels in the area was undertaken. Real data on groundwater levels, water
consumption, and rainfall from 2018 to 2021 in various townships within
Fengnan District were selected. Utilizing the Principal Component Analysis
method, the main influencing factors were extracted from the hydrological
data of each township. Subsequently, a groundwater level calculation
model was established using the CIWOABP(Cubic map - Intelligent weight
adjustment - Whale Optimization Algorithm–Back Propagation) neural network
in combination with these factors. The results indicate that: (1) Principal
Component Analysis extracted a total of five principal components from various
hydrological data in Fengnan District, namely, groundwater levels of monitoring
wells #11 and #12, rainfall from rainfall station r1, and water consumption from
Fengnan (FN) and Qianying (QY) towns. (2) The CIWOABP neural network was
trained using 36 sets of actual measurement data and validated with 12 sets of
simulated data. The mean absolute errors (MAE) for monitoring wells #11 and
#12 were 0.19 and 0.23 respectively, and the mean squared errors (MSE) were
0.05 and 0.09 respectively. The model exhibited high computational accuracy
and can be effectively employed to calculate actual groundwater levels. The
research outcomes can provide theoretical and methodological insights for
groundwater resource management in the North China Plain.

KEYWORDS

groundwater level, principal component analysis, intelligent weight adjustment, whale
optimization algorithm, BP neutral network

1 Introduction

Groundwater resources play an irreplaceable role in various sectors such as
production, daily life, and ecological environments (Chai et al., 2023; Stigter et al.,
2023). However, persistent overexploitation and improper utilization of groundwater have
led to various issues, including continual decline in groundwater levels (Costa et al.,
2021) and deterioration of water quality (Hou et al., 2023). These problems pose
threats to the sustainable utilization of water resources and ecological balance. Effectively
addressing these potential risks necessitates the accurate prediction of groundwater
level fluctuations, a challenging task. Groundwater level prediction is often hindered
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by issues such as high-dimensional data, model complexity, and
computational costs, posing significant challenges in practical
applications (Zaghiyan et al., 2021). Therefore, the quest for a more
efficient and precise groundwater level prediction method becomes
especially crucial.

Subject to the comprehensive influences of various factors
including rainfall, soil type, evapotranspiration, groundwater
extraction, recharge, seasonal and climatic variations, land
cover, and groundwater flow, the simulation and prediction of
groundwater levels face substantial hindrances (Li et al., 2013;
Deb, 2024). In order to mitigate the adverse impact of these
complex factors on the simulation and prediction of groundwater
level fluctuations, some researchers have employed the Principal
Component Analysis (PCA) method to address the intricate
relationships among influencing factors of groundwater levels.
This approach involves dimensionality reduction to enhance the
accuracy and stability of predictive models. Generally, there are two
approaches to dimensionality reduction of original data concerning
groundwater levels and their influencing factors using PCA:Thefirst
approach involves employing PCA to extract primary components
from a multitude of factors that contribute to fluctuations in
groundwater levels (Almanaseer and Sankarasubramanian, 2012;
Chang et al., 2017). Jung et al. (2021) utilized Principal Component
Analysis to perform dimensionality reduction on observed data
including rainfall, evaporation, groundwater usage, tides, and more.
Subsequently, they identified rainfall as a primary component,
leading to a notable reduction in subsequent monitoring costs. The
second approach involves Principal Component Analysis to extract
composite data from a single factor that represents the original
dataset (Naderianfar et al., 2017; Kim et al., 2021). Triki et al. (2014)
applied Principal Component Analysis and cluster analysis to actual
groundwater level data from 24monitoring wells, categorizing them
into three distinct groundwater fluctuation patterns. They further
analyzed how these different patterns responded to variations in
rainfall and temperature.

When dealing with accurate simulation and prediction of
groundwater levels, traditional hydraulic calculations and big data-
driven neural networks emerge as two primary methodologies.
Traditional approaches build mathematical models for groundwater
flow based on hydraulic motion equations. However, the complexity
of groundwater systems and difficulties in data acquisition restrict
their applicability and predictive capability (Matiatos et al.,
2019; Li X. Q. et al., 2022). In recent years, neural network
technology has emerged as a promising avenue for groundwater
level prediction, offering new perspectives. Neural network types
such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Long Short-Term Memory Networks
(LSTM) have been widely applied in groundwater level modeling.
They can capture nonlinear relationships, enhancing model
accuracy and generalization (Bowes et al., 2019; Xu et al., 2022;
Yang and Zhang, 2022). Among these, the Backpropagation
Neural Network (BPNN) stands out for its adaptability and
generalization capabilities. BP neural networks adjust weights
across multiple layers of neurons, learning groundwater level
variation patterns from input data to achieve precise predictions
(Zhang et al., 2022). Moreover, the incorporation of optimization
algorithms further enhances the performance of the BP neural
network. These algorithms adjust weights and biases to reduce

prediction errors. Optimization techniques such as Artificial
Bee Colony, Ant Colony, and Wavelet Decomposition have been
introduced to improve model convergence speed, computational
accuracy, and stability, resulting in improved predictive capabilities
(Dash et al., 2010; Hosseini et al., 2016; Li et al., 2019;
Zhang, 2022; Serravalle Reis Rodrigues et al., 2023).

The reviewed studies present advanced methodologies
leveraging the Whale Optimization Algorithm (WOA) for
improving water resource management. Notably, (Wang et al.,
2023) introduces a robust monthly runoff interval prediction model
combiningWOA,VariationalModalDecomposition (VMD), LSTM
networks, and non-parametric kernel density estimation. This
innovative approach addresses the limitations of traditional point
prediction by effectively capturing prediction uncertainty, thus
aiding water management decisions. Other studies demonstrate
the application of enhanced WOA variants in diverse contexts.
For example, a multi-level scheduling method for mine water
reuse utilizes opposition-based learning, Levy flight, nonlinear
convergence factors, and adaptive inertia weight to enhance
convergence speed, accuracy, and efficiency, significantly boosting
reuse efficiency (Bo et al., 2022). Another study focuses on
optimizing water resource allocation in Handan, China, using an
ameliorative WOA with logistic mapping and inertia weighting,
leading to more reliable water usage predictions (Yan et al.,
2018). Further, an enhanced WOA for clustering incorporates
elements from water wave optimization and tabu search, achieving
superior performance compared to existing algorithms (Singh et al.,
2023). Finally, the application of WOA and its enhancement at
the Klang Gate Dam for reservoir operation optimization shows
significant improvements in reducing water deficits and increasing
reliability (Lai et al., 2021). Collectively, these studies highlight
the versatility and efficacy of WOA and its variants in addressing
complex water management challenges, providing valuable insights
and tools for decision-makers.

In conclusion, the fluctuation of groundwater levels is influenced
by complex factors, and traditional hydraulic calculation methods
struggle to comprehensively account for various changing elements
compared to neural network models. Therefore, this study aims
to explore and enhance groundwater level prediction methods
by combining principal component analysis for dimensionality
reduction with an optimized BP neural network model. This
approach seeks to elevate the accuracy and stability of groundwater
level simulation.

2 Materials

2.1 Research area

TheNorth China Plain is the world’s largest area of groundwater
funneling, with the majority of groundwater funnel zones
concentrated in Hebei Province. Currently, over 20 groundwater
funnel zones have merged into a vast interconnected area within
Hebei Province, forming a super-sized groundwater funneling
region. The study area (Fengnan District) is located in the eastern
coastal plain of Hebei Province, in the southern part of Tangshan
City, situated between 117°51′43″E and 118°25′28″E longitude, and
39°11′59″N and 39°39′28″N latitude. The study area is bordered
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FIGURE 1
Map of research area. Created by ArcGIS 10.6 software (https://www.arcgis.com).

to the north by Fengrun District and Lutunan District of Tangshan
City, to the south by the Bohai Sea, and is adjacent to Kaiping
District, Luan Nan County, and Caofeidian New Area of Tangshan
City to the east. To the west, it adjoins Binhai New Area and Ninghe
District of Tianjin Municipality. Within the study area, there are
two fifth-level rivers, Tang River and Sha River, and adjacent to it,
there are two other rivers, Ning River and Luan River. The study
area spans approximately 50 km from north to south and 48 km
from east to west, covering a total area of 1288.4 square kilometers.
The distribution of groundwater monitoring wells within Fengnan
District and its surroundings is illustrated in Figure 1.

2.2 Data source

In the study area, the groundwater level experiences fluctuation
due to both anthropogenic factors such as domestic and industrial
water consumption, and natural factors including rainfall and
infiltration. Currently, we have obtained water consumption data
for major townships within the region from 2018 to 2021,
rainfall data from rainfall stations, and groundwater level data
from 12 monitoring wells. Detailed data information can be
found in Table 1.

3 Methods

3.1 Combined PCA and CIWOABP neural
network structures

The empirical dataset of this study exhibits the following
characteristics: a relatively small variety of factors influencing

groundwater level fluctuations, longer time series for the data
records, but a relatively smaller number of data instances; within
the same factor, multiple data categories are present, including
12 types of monitoring wells for groundwater levels, four rainfall
stations for rainfall, and eight townships for water consumption.
If the raw dataset is directly employed for training and prediction
using the BP neural network, it is difficult to achieve highly
desirable results.

Therefore, Dimensionality reduction was performed on water
consumption, rainfall, and groundwater level data based on
PCA. This process involved selecting mutually complementary
townships, rainfall stations, and monitoring wells, as well as
eliminating collinearity among variables. Principal components
with cumulative variance contribution rates ranging from 85% to
100%, or eigenvalues greater than 1, were chosen as input and output
data for the CIWOABP neural network (Wold et al., 1987; Jolliffe,
2022). Ultimately, a fitting study of the groundwater level calculation
model for the Fengnan area was conducted. The technical roadmap
of the study is illustrated in Figure 2.

3.2 Principal component analysis

The PCA method finds widespread application in data
dimensionality reduction and denoising. PCA achieves this
by linear transformation, converting high-dimensional data
into a lower-dimensional space where the components are
relatively independent. This approach maximizes the retention
of essential key information from the original dataset, thereby
achieving dimensionality reduction. The calculation steps of
PCA are as follows (Demšar et al., 2013; Lin et al., 2022;
Marukatat, 2023):

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1445241
https://www.arcgis.com/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2024.1445241

TABLE 1 Data attributes.

Data type Rainfall Water consumption Groundwater level

Data source Hydrological Data of the Haihe River
Basin. Volume 1. Luanhe River Basin,
Small Rivers along the Coast of Hebei
Province. Hydrological Yearbook of the

People’s Republic of China

The water supply company’s centralized
management system

The water supply company’s centralized
management system

Collection method Compiled by the Hydrological Bureau
of the Haihe River Water Conservancy
Committee of the Ministry of Water

Resources, China, etc.

Monitor the user’s water meter; Upload
data to the management system in

real-time

Monitor the water level gauge in the
well; Upload data to the management

system in real-time

Data composition Fengnan (r1), Qianying (r2),Tangfang
(r3), Laopu (r4)

FN, QY, DX, XJ, CH, XG, DO, HG 12 Wells (#1∼#12)

Time period 2018–2021 2018–2021 2018–2021

FIGURE 2
Technical flow chart.

The formula for calculating the covariance matrix is as
Equation 1:

C = 1
m
∑m

i=1
(xi − μ)(xi − μ)

T (1)

where C represents the covariance matrix, m is the number of
samples, xi denotes the original data, and μ is the mean vector
of the data.

The formula for eigenvalue decomposition is as Equation 2:

C = PDP−1 (2)

where P is a matrix composed of eigenvectors, and D is a diagonal
matrix consisting of eigenvalues arranged on the diagonal.

Selecting the eigenvectors corresponding to the k largest
eigenvalues as principal components, the dimension-reduced data
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can be calculated using Equation 3:

y = x(v1 v2⋯vk) (3)

where y represents the data after dimensionality reduction, x is
the data after subtracting the mean from the original data, and vi
represents the eigenvector of the ith principal component.

4 CIWOABP neural network

4.1 Whale optimization algorithm

In nature, whales form social groups and seek food based on
interactions and foraging behaviors among individuals. Whales
adjust their behavior to find more food by responding to changes
in their surroundings and their own perception of the environment.
The WOA applies this foraging strategy, treating the problem-
solving process as a search for food (i.e., optimal solutions) in
the solution space. In Figure 2, the basic structure of the BP
neural network is 'input layer - neurons - output layer’, which
involves forward propagation calculation and backward feedback
adjustment of weights and biases to optimize the solution.Thewhale
optimization algorithm combines global and local search strategies
to optimize the weights and biases of the BP neural network,
thereby improving the performance and convergence speed of the
neural network (Mirjalili and Lewis, 2016).

In theWOA, the current optimal individual is assumed to be the
prey, while other individuals converge towards the optimal one.The
mathematical model of this process is represented as follows:

X(ti+1) = Xp(ti) −A ⋅ |B ⋅Xp(ti) −X(ti)| (4)

where X is the individual’s position vector, ti represents the ith
iteration or evolution count, Xp denotes the prey’s position vector,
and A and B are coefficient vectors, which can be defined as:

A = 2ar1 − a (5)

B = 2r2 (6)

where r1 and r2 are random numbers within the range [0, 1], a is
known as the convergence factor, which linearly decreases from 2 to
0 as the iteration count increases, i.e.,:

a(ti) = 2−
2ti
tmax

(7)

where tmax represents the maximum number of iteration evolutions.
To mathematically describe the bubble-net feeding behavior of

whales, this study incorporates two distinct approaches within the
WOA algorithm: the Converging Encircling Mechanism and the
Spiral Updating Position. The Converging Encircling Mechanism is
implemented through Equations (4–7) as the convergence factor 'a'
diminishes. In the Spiral Updating Position method, the simulated
spiral motion of whales is employed to capture prey, and its
mathematical model is represented as Equation 8:

X(ti+1) = D′ ⋅ ebl ⋅ cos (2πl) +Xp(ti) (8)

where D′ = |Xp(ti) −X(ti)| represents the distance between the
current individual and the prey, b is a constant, and l is a random
number within the range [-1, 1].

In addition to the bubble-net feeding behavior, whales can also
search for food randomly. When |A| > 1, individual whales perform
random searches based on their positions relative to each other. The
mathematical model for this is:

X(ti+1) = Xrand(ti) −A ⋅ |C ⋅Xrand(ti) −X(ti)| (9)

where Xrand represents the position vector of a randomly selected
whale individual from the current population.

4.2 Cubic map

The initial whale population generated by random methods
is unevenly distributed in the solution space, with poor diversity,
which cannot effectively extract useful information from the
solution space, thus affecting the search efficiency of the algorithm
to some extent. Cubic mapping can be used to replace pseudo-
random number generators, i.e., generating chaotic numbers
between 0 and 1. Previous research has shown that using chaotic
sequences for population initialization often yields better results
(Wang et al., 2014; Kaur and Arora, 2018).

In this study, the Cubicmap is employed to optimize the random
approach for initializing the population in the WOA, with the
following Equation 10:

zk+1 = c(1− z2k) (10)

where zk represents the iteration value of the kth generation, and c
is the adjusting coefficient.

4.3 Intelligent weight adjustment

From the previous Equation 7, it can be observed that in the
basicWOAalgorithm, the value of the control parameter “a” linearly
decreases from 2 to 0 as the number of iterations increases. In
fact, the optimization process of the WOA algorithm is highly
complex, and the linear decrease strategy of the control parameter
“a” cannot adapt well to the actual optimization process. It can
easily lead to low convergence accuracy or getting stuck in local
optima (Li M. et al., 2022).This study employs an adaptive algorithm
to modify the weight values of the whale population during each
evolution process, as Equation 11:

w = wmin +m(wmax −wmin)e
−ti
tmax (11)

where w is the weight coefficient, wmin and wmax are the initial
and final values of the weight coefficient, and m is the adjustment
coefficient.

4.4 Model evaluation

To validate the predictive results of the PCA-CIWOABP
coupled model for groundwater levels in the Fengnan area, this
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study employs the following six evaluation metrics as quantitative
assessment criteria for evaluating the prediction results: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
Nash efficiency coefficient (NSE) and Pearson correlation coefficient
(R), with the calculation formulas as Equations 12–17 (Zhang et al.,
2023; Zhang et al., 2024a; Zhang et al., 2024b):

MAE =∑n
i=1
|hi − fi|/n (12)

MSE =∑n
i=1
(hi − fi)

2/n (13)

RMSE =∑n
i=1
((hi − fi)

2/n)1/2 (14)

MAPE =∑n
i=1
|(hi − fi)/ fi|/n∗ 100% (15)

NSE = 1−∑n
i=1
(hi − fi)

2/∑n
i=1
(hi − h)

2
(16)

R =∑n
i=1
(hi − h)( fi − f)/[√∑

n
i=1
(hi − h)

2√∑n
i=1
( fi − f)

2
] (17)

where hi represents the actual measured values, fi represents the
predicted values, h and f are the average values of their respective
datasets, and n denotes the number of data samples.

5 Result and discussion

5.1 Fluctuations in the distribution of
groundwater levels

In this study, the fluctuation of groundwater level is primarily
associatedwith residential water consumption and rainfall, while the
distribution of groundwater level is correlated with the local water
systems and elevation. Based on the annual average groundwater
levels of monitoring wells within the region from 2018 to 2021, a
contour map of groundwater levels was generated using the inverse
distance weighted interpolation method, as shown in Figure 3.

To further investigate the seasonal fluctuation of groundwater
levels within the Fengnan area, this study tookmonitoring wells #01,
#05, #07, and #12 as examples and plotted the water level variations
for each month. The specific results are depicted in Figure 4.

The groundwater levels at various monitoring wells exhibit a
trend of “initial decrease followed by an increase,” with the lowest
levels typically occurring between May and July. Among them, the
lowest water levels for eachmonitoring well were generally observed
in May for the years 2018, 2019, and 2021. However, in 2020, the
groundwater levels at all locations reached their nadir in July. For
instance, monitoring well #12 reached its lowest levels in July 2020
and May 2021, with levels of 3.73 m and 4.45 m respectively.

The fluctuation of groundwater levels is not only influenced
by local government water management measures but also related
to the replenishment from nearby water systems. Combining with
Figure 1, it can be observed that monitoring well #01 is located
near the downstream of the Tang River, monitoring well #05
and #12 are situated in the middle and upper reaches of the
Sha River respectively, and monitoring well #07 is positioned

between the Tang River and the Sha River, receiving minimal
replenishment from the river systems. Additionally, monitoring well
#01 is closer to the Bohai Sea compared to other monitoring wells,
and the rivers in Figure 1 all belong to the fifth-level river system,
indicating relatively weak influence of river systems on groundwater
levels. Therefore, monitoring well #01 steadily increased from 2018
to 2021, with a water level difference of 7.02 m between the
beginning of 2018 and the end of 2021; monitoring well #05, #07,
and #12 did not show significant changes in water levels compared
to monitoring well #01, with differences in groundwater levels at
the beginning and end of 2018 and 2021 being less than 1 m for
monitoring well #05 and #07.

5.2 Principal component analysis results

In this study, due to the existence of multiple indicator factors
for rainfall, water consumption, and groundwater levels, directly
constructing a neural network would require a substantial amount
of measured data. Consequently, the raw data was first standardized
and then subjected to PCA using SPSS.The cumulative contribution
rates and correlation coefficients of each component are illustrated
in Figures 5, 6, respectively. In order to reduce data dimensionality,
enhance data interpretability, filter out data noise, and prevent
overfitting, this paper not only ranked and accumulated the variance
contribution rates of each component one by one but also regarded
components with cumulative variance contribution rates greater
than 85% as the principal components of their respective datasets.

As shown in Figure 5, for groundwater levels, the variance
contribution rates of monitoring wells #11 and #12 are 71.74% and
13.77%, respectively, with a cumulative contribution rate exceeding
85%.Hence, these twomonitoringwells can be extracted as principal
components and denoted as G1 and G2. Concerning residential
water usage, the variance contribution rates for towns FN and
QY are 78.78% and 14.23%, respectively, resulting in a cumulative
contribution rate exceeding 90%. Therefore, these two towns can
be extracted as principal components and labeled as W1 and W2.
For rainfall, only rainfall station r1 achieves a contribution rate of
92.80%, leading to a cumulative contribution rate exceeding 90%.
Thus, this rainfall station can be extracted as a principal component
and denoted as R1.

Considering the correlation coefficients in Figure 6, it's evident
that the larger the absolute value of correlation coefficient between
components, the closer the relationship between the original
variables and that principal component. For groundwater levels, the
first principal component G1 shows higher correlation coefficients
with monitoring wells #3 to #7, while the second principal
component G2 demonstrates higher correlations with monitoring
wells #1 to #10, all exceeding 0.5.The linear combinations expressing
the relationships between each principal component and the original
variables are as Equations 18 and 19:

G1 = 0.257G#1 − 0.135G#2 − 0.105G#3 + 0.177G#4 − 0.101G#5 − 0.238G#6

− 0.180G#7 + 0.063G#8 + 0.243G#9 + 0.338G#10 − 0.235G#11 + 0.024G12
(18)
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FIGURE 3
Distribution of annual average groundwater levels: (A) 2018, (B) 2019, (C) 2020, and (D) 2021.

G2 = 0.102G#1 + 0.120G#2 + 0.128G#3 + 0.100G#4 + 0.095G#5 + 0.102G#6

+ 0.119G#7 + 0.118G#8 + 0.092G#9 + 0.078G#10 + 0.078G#11 + 0.127G12
(19)

where Gi represents the standardized data of the original
variables.

For residential water consumption, the first principal
component W1 has a strong correlation with DX, XJ, CH, HG, and
XG, while the second principal component W2. shows a significant
correlation only with DQ, all with correlations above 0.5. The linear
combination expressions between each principal component and
the original variables are as Equations 20 and 21:

W1 = 0.191WFN + 0.067WQY + 0.189WDX + 0.186WXJ

+ 0.158WCH + 0.080WDQ + 0.193WHG + 0.152WXG (20)

W2 = −0.063WFN + 0.608WQY − 0.096WDX − 0.050WXJ

− 0.148WCH + 0.576WDQ − 0.041WHG − 0.107WXG (21)

whereWi represents the standardized data of the original variables.
For rainfall, the primary component R1 shows significant

correlation coefficients with r2 to r4, all exceeding 0.8. The linear
combination between the principal component and the original
variables is expressed as Equation 22:

R1 = 0.265Rr1 + 0.261Rr2 + 0.263Rr3 + 0.248Rr4 (22)

where Ri represents the standardized data of the original variables.

5.3 Simulation results and analysis

The magnitude of calculation errors in the BP neural network
model is not only related to the application of data mining
techniques but also depends on the selection of input and
output layer factors. To achieve a higher simulation accuracy
model, this study utilizes principal component analysis to perform
dimensionality reduction on the original data, thereby eliminating
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FIGURE 4
Fluctuations in monthly average groundwater levels: (A) #01, (B) #05, (C) #07, and (D) #12.

FIGURE 5
Cumulative variance contribution ratio.

the influence of collinearity. Ultimately, five principal components
are obtained as the input and output layer factors for the neural
network model.

The hydro-meteorological actual measurement data from 2018
to 2020 were selected to construct the groundwater level model for
the Fengnan area. The actual measurement data from 2021 were
used for model validation. The BP neural network was set up with
the sigmoid activation function for the input layer and the tansig
activation function for the output layer.The network was trained for
1000 iterations with a learning rate of 0.01 and a target minimum
error of 0.00005. In the WOA, the initial population size and the
maximum evolution generations were set to 30 and 50, respectively.
The upper and lower limits of the independent variables were set

to three and -3, respectively. For initializing the population using
chaotic mapping, the adjustment coefficient c was set to 1. For
updating the shrink-wrap mechanism using the adaptive weight
method, the initial values wmin and wmax of the weight coefficients
were set to 0 and 1, respectively, and the weight coefficient m
was set to 1.

Furthermore, the neural structure in the BP neural network
is a single layer with the number of neurons determined using
a loop iteration in the Matlab algorithm. After evaluating the
mean squared error, it was ultimately set to seven neurons.
The neural network structure is 3-7-2. The comparison between
different model training results and actual measurements is shown
in Figure 7.
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FIGURE 6
Correlation coefficient.

FIGURE 7
Comparison and analysis of different models: (A) The simulated prediction value of groundwater level in #11, and (B): The simulated prediction value of
groundwater level in #12.

The simulation and prediction values of the BP neural network
and the CIWOABP neural network exhibit significant differences.
Detailed data information can be found in Table 2. The overall
error of the CIWOABP neural network’s simulation prediction
values is less than 12%. For monitoring wells #11 and #12,
MAE is 0.19 and 0.23, MSE is 0.05 and 0.09, RMSE is 0.22
and 0.31, MAPE is 5.06% and 2.77%, NSE is 0.95 and 0.97,
and R is 0.987 and 0.993, respectively. On the other hand,
the BP neural network demonstrates lower prediction accuracy,
with MAE values for monitoring wells #11 and #12 being 1.06
and 2.20, both exceeding 1. This indicates that the model’s
generalization ability is poor, and the credibility of the simulated
results is low. Based on the validation results of the two models,
it can be concluded that the PCA-CIWOABP neural network
established for predicting groundwater levels in the Fengnan

area has high prediction accuracy, good fitting performance, and
can be used to calculate and predict actual groundwater levels
effectively.

6 Discussion

The study area of this article is located in the North China Plain,
the largest “groundwater funnel” area in China, where the local
government has been continuously strengthening management
measures in recent years. Measures include hydrogeological
investigations, development of groundwater models, zoning
protection of groundwater, and pollution control and remediation
of groundwater (Kløve et al., 2014; Gleeson et al., 2020).
The introduction of groundwater models and development,
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TABLE 2 Comparison of simulations between BP and CIWOABP.

Model PCA-BP PCA-CIWOABP

Wells #11 #12 #11 #12

MAE 1.06 2.2 0.19 0.23

MSE 1.84 3.79 0.05 0.09

RMSE 4.08 5.49 0.22 0.31

MAPE 24.03% 25.43% 5.06% 2.77%

NSE 1.84 1.32 0.95 0.97

R 0.02 −0.29 0.99 0.99

as outlined in the introduction, primarily involve traditional
hydrological models and neural network models under
the drive of big data. Benefiting from local government
regulations and monitoring, the availability of more hydrological
information enables numerous researchers to conduct neural
network research.

In this research work, it is noteworthy that although the
neural network has five input and output elements, due to the
limited training dataset, we introduced the PCA-CIWOA algorithm
to meet the multi-input and multi-output requirements of the
BP neural network. Other algorithms with similar capabilities
include particle swarm optimization (Marini and Walczak,
2015), grey wolf optimization (Emary et al., 2016), and seagull
optimization (Dhiman et al., 2021), each with some differences.
For example, the whale optimization algorithm exhibits excellent
global search capability and rapid convergence; particle swarm
optimization involves information sharing and collaboration among
individuals, making it suitable for continuous space optimization
problems; the grey wolf algorithm combines competitive and
cooperative characteristics, possessing good global search capability
and convergence speed, applicable to continuous space optimization
and multi-objective optimization problems. These algorithms
require further comparative analysis, particularly for simulating
and predicting groundwater levels in practical engineering
applications.

Additionally, the interpolation methods can be used to generate
images in regions with abundant water systems, and graph neural
networks can be employed to achieve training and prediction
results. Such as Bai and Tahmasebi (2023) represented each well
as a node in a graph using a graph neural network (GNN) and
utilized convolutional networks to obtain temporal features of
sequences.The findings indicated that the model could achieve high
simulation accuracy, even when spatial dependency relationships
were completely unknown, through learning from the data.
Nevertheless, the image interpolation methods are extremely
important. The study employed the inverse distance interpolation
method to generate groundwater level contour maps for the
study area based on data from 12 monitoring wells. Xiao et al.
(2016) examined seven interpolation methods, including inverse
distance weighted interpolation, global polynomial interpolation,
local polynomial interpolation, tension spline interpolation,
ordinary Kriging interpolation, simple Kriging interpolation, and

universal Kriging interpolation, to assess trends in groundwater
level fluctuations in the study area. The effectiveness of these
interpolation methods still needs to be further compared with
actual engineering in future research work to determine their
applicability.

Recently, deep learning algorithms have attracted significant
attention in the field of water resources engineering. Although
they are widely applicable, machine learning algorithms that rely
on feature extraction still hold certain application value when
the number of data samples is limited. However, when dealing
with more complex multi-input and multi-output problems, the
number of training samples required by deep learning algorithms
far exceeds that of machine learning algorithms. Particularly in
small-scale areas that urgently need remediation and have limited
data samples, machine learning algorithms represented in this
paper often demonstrate higher applicability than deep learning
algorithms.

7 Conclusion

By reducing data dimensionality and incorporating
optimization algorithms, the aim is to enhance the accuracy and
stability of groundwater level simulations. The empirical research
yields the following conclusions.

1. The resulting principal components (rainfall station r1, water
consumption FN and QY, monitoring wells #11 and #12) still
effectively represent the overall hydrological conditions in the
study area, thus reducing the training complexity of the BP
neural network.

2. In situations where the training samples are limited and
there are multiple inputs and outputs, the BP neural network
exhibits overall poor accuracy in simulating and predicting
groundwater levels. The annual trend of water level changes
in the simulation results may even be contrary to the actual
situation.

3. The coupling of chaotic mapping and adaptive weight-based
WOA significantly enhances the computational accuracy of
groundwater level simulation in the BP neural network.
The RMSE for monitoring wells #11 and #12 is 0.22 and
0.31, respectively, and the MAPE is 5.06% and 2.77%,
respectively.
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