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The establishment of a natural gas production model under multi factor control
provides support for the formulation of planning schemes and exploration
deployment decisions, and is of great significance for the rapid development
of natural gas. Especially the growth rate and decline rate of production can
be regulated in the planning process to increase natural gas production. The
exploration and development of conventional gas in the Sichuan Basin has a long
history. Firstly, based on the development of conventional gas production, the
influencing factors of production are determined and a productionmodel under
multi factor control is established. Then, single factor analysis and sensitivity
analysis are conducted, andmulti factor analysis is conducted based on Bayesian
networks. Finally, combining the multivariate Gaussian mixture model and
production sensitivity analysis, a production planning model is established to
predict production uncertainty under the influence of multiple factors. The
results show that: 1) the production is positively correlated with the five
influencing factors, and the degree of influence is in descending order: recovery
rate, proven rate, growth rate, decline rate, and recovery degree. After being
influenced by multiple factors, the fluctuation range of production increases
and the probability of realization decreases. 2) The growth rate controls the
amplitude of the growth stage, the exploration rate and recovery rate control
the amplitude of the stable production stage, the recovery degree controls the
amplitude of the transition from the stable production stage to the decreasing
stage, and the decreasing rate controls the amplitude of the decreasing stage.
3)The article innovatively combines multiple research methods to further obtain
the probability of achieving production under the influence of multiple factors,
providing a reference for the formulation of production planning goals.

KEYWORDS

Bayesian network, multivariate Gaussian mixture model, analysis of influencing factors,
sensitivity analysis, production probability calculation, production planning model

1 Introduction

Carbon peaking and carbon neutrality are major national strategies aimed at promoting
high-quality economic and social development through the transformation of the energy
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system, and promoting the transformation of the energy system
from fossil energy to renewable energy. Natural gas belongs to
low-carbon fossil energy, with a strong development foundation
and huge development potential. Moderately leveraging the unique
advantages of clean, low-carbon, efficient, and stable natural gas is
of great significance for the high-quality development of China’s
natural gas industry and the smooth realization of carbon peak and
carbon neutrality goals (Song et al., 2023; Nuo et al., 2022; Jian et al.,
2018; Jun et al., 2024; Wang et al., 2024; Arun Kumar et al., 2020).
In addition, the development of natural gas production is highly
uncertain due to various factors such as reserve utilization efficiency,
economic factors, geological factors, and development factors
(Hongbing and Han, 2023; Haitao et al., 2021; Jianliang and Nu,
2020). Reasonable production target planning is of great significance
to the exploration and development of natural gas and can promote
the rapid development of natural gas. Therefore, establishing a
natural gas production prediction model under multi factor control
provides support for the preparation of planning schemes and
exploration deployment decisions, and is of great significance for the
rapid development of natural gas.

There has been some research on methods and models for
predicting natural gas production, and they have been well applied
both domestically and internationally. Tongfei and Yanrui, 2022
proposed a new discrete fractional nonlinear grey Bernoulli model
with power terms, which has the advantages of most grey prediction
models, such as fractional order cumulative operation and time
power terms. Then, taking the consumption and production of
natural gas in China from 2003 to 2020 as an example, the
feasibility and effectiveness of the model were verified. The results
indicate that the predictive ability of this model is superior to
other models. Chong et al., 2022 established an optimized grey
system model with weighted score accumulation, which has good
predictive performance. Then, taking the natural gas production of
Germany, Italy, and Canada as examples, the feasibility of the model
was confirmed through comparison with the competitive model,
and the model was used to study China’s natural gas production.
The results indicate that this model is very suitable for predicting
and analyzing China’s natural gas production. Yingying et al., 2022
established a semi analytical shale gas constant pressure production
capacity prediction model and verified it with actual production
data. Research has shown that this method has certain theoretical
reference value in reducing the risk of production prediction
during the production process of shale gas wells and guiding the
optimization of development plans. In addition, many scholars
have applied algorithms to predict energy sources such as natural
gas. Durmuş and Safa, 2022 proposed a new improved Artificial
bee colony (M-ABC) method, which adaptively selects the optimal
search equation to estimate energy consumption in Turkey more
accurately. The results show that the model based on M-ABC
algorithm is more successful in estimating energy demand. Durmuş
Özdemir (Özdemir et al., 2022) developed a new adaptive artificial
bee colony algorithm, which can adaptively select the appropriate
search equation to estimate the transportation energy demand
more accurately. The results show that the error of this algorithm
is lower. (Bilici et al., 2023) compared the performance of four
different meta-heuristic algorithms used to estimate gas demand
in Turkey. The results show that PSO-Quadratic model is the most
successful in predicting observed gas consumption. The research of

these scholars has brought some inspiration, and suitable models or
algorithms can be used to predict natural gas production.

Although domestic and foreign scholars have optimized
production prediction models, these methods all combine models
and historical data to predict the development trend of production,
without considering factors that affect natural gas production,
such as proven rate, recovery rate, decline rate, etc., and are not
suitable for environments with multi factor control (Marta et al.,
2020; Erick et al., 2022; Palanisamy et al., 2021). Therefore, it is
necessary to establish a production target prediction model that
considers various influencing factors. Guo et al., 2021 used Monte
Carlo probability method to obtain the probability distribution and
growth curve of various production risk factors and production of
the Carboniferous gas reservoir in eastern Sichuan. In addition,
the sensitivity analysis of risk factors was conducted using the
fuzzy comprehensive evaluation method, and the natural gas
production and realization probability under different risk factors
were obtained. Jianzhong et al., 2016 used a gas field in the Ordos
Basin as an example to construct an optimal extraction model for
natural gas resources. They analyzed the impact of factors such as
the extraction scale of the gas field, recovery rate, discount rate, and
gas well depletion period on the optimal exploration path of the
gas field. Since these studies only consider the impact of a single
factor on production, they cannot reflect the coupling effect of
multiple factors on production in actual production. Therefore, it is
necessary to combine multiple influencing factors and calculate the
multivariate probability of production realization. In view of many
factors affecting natural gas production, this paper comprehensively
considers the change rule and realization probability of production
under the influence of different factors, which makes up for the
shortcomings of current research. Due to the need to simultaneously
consider multiple factors for mixed probability calculation and
establish a multi factor prediction model, Bayesian networks and
Gaussian mixture models are needed.

Bayesian networks are developed by J Pearl was proposed
in the 1980s as a powerful tool for representing, manipulating,
and inferring beliefs about the real world. They are used to
demonstrate the probability relationships between random variables
and serve as models for the joint probability distribution of these
variables (Duygu and Derya, 2019; Yaser et al., 2021; Haoran et al.,
2022; Jiří et al., 2023; Qi et al., 2018 proposed a fuzzy probability
Bayesian network method for dynamic risk assessment. FPBN
has been established to analyze and predict the propagation of
network security risks, and an approximate dynamic inference
algorithm has been proposed for dynamic assessment of ICS
network security risks. Yang et al., 2021 proposed a system level
fatigue reliability assessment model based on Bayesian networks,
treating bridge decks as a parallel system. A fatigue probability
reliabilitymodel was derived using themain S-N curve. Kyung et al.,
2024 realized Bayesian inference of all conditional probabilities
within the network at low power and low energy consumption, and
achieved a normalized mean squared error of ∼7.5×10−4 through
division feedback logic with variational learning rate to suppress the
inherent variation of the memristor. Therefore, Bayesian networks
can be used to solve the calculation problem of mixed probabilities
of multiple factors.

Gaussian Mixture Model (GMM) is a special type of finite
mixture model that assumes that the basic distribution of data
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is composed of a mixture of multiple Gaussian distributions.
GMM has been widely applied in various scientific fields,
including computer vision, pattern recognition, and supervised
and unsupervised learning (Luca, 2023; Cangqi et al., 2020; Maruf,
2021; Joachim et al., 2024; Zhe et al., 2020 used a Gaussian mixture
model to estimate the probability density function of wave height
in the context of second-order random wave theory. Two methods
were used to construct a Gaussian mixture probability distribution,
and three sets of observation data were applied to further validate
the accuracy and effectiveness of the Gaussian mixture model;
Chunsheng et al., 2020 proposed a variational autoencoder that
optimizes Gaussian mixture model prior. This method utilizes a
Gaussian mixture model to construct a prior distribution, and
utilizes the KL distance between the posterior distribution and
the prior distribution to achieve iterative optimization of the prior
distribution based on data. (Chen et al., 2024) reconstructed the
probability density function of input random variables by using
a Gaussian mixture model, proposed a K-value criterion for the
selection of segmentation direction considering both nonlinearity
and variance, and then divided the components of input random
variables into a Gaussian mixture model, which has a small variance
along the direction determined by the k value.Therefore, a Gaussian
mixture model can be used to stack the distribution results of
multiple probability calculations to obtain a mixed model that
considers multiple factors.

Based on the development of conventional gas production in
the Sichuan Basin, this article first determines the influencing
factors of production by combining production planning models,
and establishes a production prediction model under multi factor
control. Then, based on the analysis of various factors, the
variation patterns of production and realization probability under
the influence of single factors were obtained. Combined with
sensitivity analysis, the sensitivity degree of different factors was
obtained, and the impact range of each factor was preliminarily
determined. In addition, amulti factor analysis was conducted based
on Bayesian networks, using the detection rate and recovery rate
as prior probabilities to obtain binary distribution probabilities and
implementation probabilities of other factors, as well as production
variation graphs under the influence of multiple factors. Finally,
combining the weight results of the multivariate Gaussian mixture
model and sensitivity analysis, a production planning model is
established to predict production uncertainty under the influence
of multiple factors.

2 Production uncertainty prediction
theory

2.1 Bayesian network

Bayesian networks are directional graphs that combine network
structures, covering knowledge frommultiple fields such as artificial
intelligence, probability theory, and decision theory. Bayesian
networks use directed acyclic graphs to represent the correlation
and degree of influence of each information element. Among them,
nodes are used to represent each feature attribute, directional
arrows connecting nodes represent the correlation of each feature
attribute, conditional probability represents the degree of influence

between each feature attribute, and combines prior probability with
sample information, correlation relationships, and probability tables
(Deyan et al., 2022; Li et al., 2022; Dongfeng et al., 2020; Jianliang
and Nu, 2020; David et al., 2022).

Bayesian networks have an important and commonly used
characteristic. After the preceding nodes are determined, each
subsequent node is independent of each other and directly related
to the preceding node. Therefore, the probability of the preceding
node can be used as a prior probability, and the probability
of each subsequent independent node can be calculated. The
existence of this feature also proves that Bayesian networks
can conveniently calculate joint probability distributions, using
Formula 1 to calculate multivariate non independent joint
conditional probability distributions.

P(x1,x2, ...,xn) = P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,x2, ...,xn−1)
(1)

In Formula 1, P(xn|x1,x2, ...,xn−1) represents the probability of
node xn under the probability of other nodes. In this case, other
nodes are not independent, but xn is independent.

In Bayesian networks, due to the above properties, the joint
conditional probability distribution of any combination of random
variables is shown in Formula 2, where Parents represents the joint
probability of the preceding nodes of xi.

P(x1,x2, ...,xn) =
n

∏
i=1

P(xi|Parents(xi)) (2)

In Bayesian network, there can be multiple directed paths
between nodes, meaning that there may be multiple subsequent
nodes after a preceding node, and all subsequent nodes may
be affected by the preceding node. There may be correlation
or independence between subsequent nodes. Therefore, after
determining the prior probability of the preceding node, the
corresponding probability of the subsequent nodes can be obtained,
which provides a good idea for the research of natural gas production
prediction affected by multiple factors. Some factors that are bound
to have an impact can be used as pre nodes to calculate their prior
probabilities, and then study the implementation probabilities of
other factors and their impact on production.

Based on the research approach described above, a Bayesian
network with conditional probability distribution can be established
to calculate the probability of factors affecting gas production in the
gas field. As shown in Formula 3, both A and Bi represent various
influencing factors that occur when predicting production in a
certain gas region.P(A) is a prior probability, which is the probability
of being selected as a leading node. P(Bi|A) is the probability of
other factors calculated after the prior probability is known. P(A|Bi)
is the binary probability obtained by considering both A and Bi.
To study the impact of multiple factors on natural gas production,
it is necessary to calculate the production prediction results and
realization probabilities under multiple factors. Therefore, it is
necessary to take some factors as prior probabilities and then
calculate the probabilities of other factors. Currently, it is necessary
to adopt the research method of Bayesian network.

P(A|Bi) =
P(Bi|A)P(A)

∑n
i=1

P(Bi|A)P(A)
(3)
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FIGURE 1
Univariate normal distribution function diagram.

2.2 Multivariate Gaussian mixture model

The Gaussian mixture model can be seen as a model composed
of multiple Gaussian models, which are hidden variables of
the mixture model. A mixed model can use any probability
distribution, and the Gaussianmixedmodel is used here because the
Gaussian distribution has good mathematical properties and good
computational performance, which can better analyze the trend
of data changes. There is interference between different Gaussian
models that changes the distribution shape of the mixed model, and
the combined model is affected by the shape of other sub models
(Andreas, 2021; Adriana and Martha, 2021; Julie and Agnes, 2020).
Below is a detailed explanation of this.

The Gaussian distribution can be regarded as a normal
distribution, and the distribution function of a single Gaussian
model is shown in Formula 4. Figure 1 shows the univariate normal
distribution function.

f(x) = 1
√2πσ

e−
(x−μ)2

2σ2 (4)

Among them, μ is the mean, σ is the standard deviation.
When considering two Gaussian models simultaneously,

the combined bivariate Gaussian model distribution function is
shown in Formula 5, and Figure 2 shows the bivariate normal
distribution function.

f(x1,x2) =
1

2πσ1σ2√1− p2
exp (− 1

2(1− p2)
(
(x1 − μ1)

2

σ21

+
(x2 − μ2)

2

σ22
−
2p(x1 − μ1)(x2 − μ2)

σ1σ2
)) (5)

Among them, x1 satisfies the normal distribution N(μ1,σ
2
1),

x2 satisfies the normal distribution N(μ2,σ
2
2), p is the correlation

coefficient, p = C12
σ1σ2

, C12 is the covariance, C12 = E− μ1μ2, and E is
the expected value of the binary Gaussian model.

FIGURE 2
Binary normal distribution function diagram.

The distribution function of the multivariate Gaussian model is
derived analogously, as shown in Formula 6.

f(x1,x2, ...,xn) =
1

√(2π)n|Σ|1/2
exp (−1

2
(x− μ)TΣ−1(x− μ)) (6)

Among them, Σ is the covariance matrix, T is the transposed
symbol, μ is the mean.

After analyzing the influencing factors of natural gas production,
this article uses a multivariate Gaussian mixture model to establish
a production planning model. Firstly, establish a single Gaussian
model based on each factor, and thenuse the superposition approach
to combine the five Gaussian models together to form a production
planning model under multi factor control.

2.3 Production uncertainty prediction
model

From the historical production of natural gas, the development
of production will go through multiple cycles, with each cycle
showing three stages of growth, stability, and decline. Currently,
natural gas in the Sichuan Basin is undergoing the fourth production
cycle of development. According to the requirements of production
planning, under a certain ultimate recoverable reserve URR, the
production goes through a growth period, a stable production
period, and a decreasing period, with a stable production period
of 20 years. Finally, a production planning chart is generated.
As shown in Figure 3, based on the historical production data of
conventional gas in the Sichuan Basin, boundary conditions are set
to predict the development trend of production. From the figure,
using the data from 1953 to 2023 as historical data, predictions
will be made after 2023, with a production growth period from
2023 to 2032, a stable production period from 2032 to 2051, and a
production decline period after 2051. The area of the entire curve is
equal to the ultimate recoverable reserve URR.

When planning production, it is necessary to consider factors
that may affect changes in production. To reasonably screen the
influencing factors of production, combined with the production
planning chart, starting from different stages of production
development, determine the influencing factors. Firstly, during
the production growth stage, the production will show different
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FIGURE 3
Historical development and production planning curve of conventional gas in Sichuan Basin.

growth rates with changes in the growth rate. Secondly, during the
stable production stage, the degree of extraction will also affect
the production during the stable production period. Finally, in
the stage of production decline, production will show different
degrees of decline with changes in the decline rate. In addition,
the development of the entire production is also controlled by the
ultimate recoverable reserve URR, which is also influenced by the
proven rate and recovery rate. In summary, the factors that affect
the development of production include the proven rate, recovery
rate, growth rate, degree of recovery at the end of stable production
period, and decline rate.

By constraining the production and time during the stable
production period through these five influencing factors, multiple
equations are established, as shown below.

[Qls + (Q+Q0) ∗
tm − t0

2
] + t ∗ Q ∗ cc + dj ∗ Q = URR (7)

Q−Q0

tm − t0
= k ∗ Q0 (8)

dj =
n

∑
i=1
(e−m)i (9)

URR = Qr ∗ tml ∗ csl (10)

Among them, Q is the production during the stable production
period, and tm is the time to enter the stable production period.
These two variables need to be determined.

Qls is the historical cumulative production, Q0 is the initial
production (predicted from 2024, production in 2023 is Q0), t0

is the time corresponding to the initial production, t is the stable
production period years (stable production period of 20 years, t
is 20), i is the decreasing period years (decreasing by 50 years,
i is 50), Qr is the resource quantity, all of which are known
quantities.

Among them, tml is the proven rate, csl is the recovery rate, cc
is the recovery degree control coefficient, k is the growth rate, and
m is the decline rate. These five variables, as risk factors, have an
impact on the stable production period Q and the time to enter
the stable production period tm in the production planning model.
The final production uncertainty prediction model obtained is as
follows.

Q(t) =
{{{{
{{{{
{

Q0 ∗ (1+ k)(
t−t0) (t0 ≤ t ≤ tm)

Q(tm ≤ t ≤ tm + 19)

Q ∗ (e−m)t−tm−19 (t ≥tm+19)

(11)

∑Q(t) +Qls = URR (12)

Formula 11 is a production prediction model, where Q(t) is the
production prediction result, t is the prediction time, t0 is the last
year of historical production, tm is the time of entering the stable
production period, Q0 is the production of the last year of historical
data, Q is the stable production period production, k is the growth
rate, andm is the decreasing rate.

Formula 12 is the model boundary condition, ∑Q(t) is the
cumulative value of production prediction results, and URR is
the ultimate recoverable reserves.
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3 Analysis of factors affecting
production prediction

3.1 Single factor analysis

Based on the historical production data and exploration and
development parameters of conventional gas in the Sichuan Basin,
an analysis is conducted on five influencing factors: proven rate,
recovery rate, growth rate, stable production end recovery degree,
and decline rate.The quantitative analysis of production influencing
factors requires objective and accurate evaluation of different factors,
and requires the generation and calculation of a large amount
of factor data. Therefore, the Monte Carlo method is suitable for
quantitative research of production influencing factors.

When estimating production probability based on the principle
of Monte Carlo method, the problem to be solved must first be
transformed into the expected value of a certain probability model.
Then, the model is randomly sampled and simulated on a computer
to extract sufficient randomnumbers andperform statistical analysis
on the problem to be solved (Li et al., 2022; Simone et al., 2023).

Assuming the distribution density of the known random
variable f(x) is ψ(x). The mathematical expectation of
variable f(x) is:

E = ∫
x1

x0
f(x)ψ(x)dx (13)

In the formula, E is the expectation, [x0, x1] is the interval of
random sampling, and f(x) is the random variable, ψ(x)The density
function of a random variable.

According to the distribution density function ψ(x) Randomly
select N sample points xi, and use the arithmetic mean of the
function value f(xi) corresponding to the sample points as the
integral estimation value.

EN =
1
N

N

∑
i=1

f(xi) (14)

In the formula, EN is the estimated integral value, xi is the
extracted sample, f(xi) is the function value of the extracted sample,
and N is the number of samples.

Randomly extract variable values based on the probability
distribution density function of the variables. After many
independent simulations of the variable values, the probability
density distribution of the objective function can be obtained.Monte
Carlo simulation can achieve the calculation process of variable
random sampling.

In subsequent research, it is necessary to calculate the
prediction results and implementation probability of production
under different factors, which requires random sampling. Taking
the exploration rate as an example, the range of exploration rates is
obtained based on actual production, and then a random sampling
that conforms to a normal distribution is carried out within the
range. 1,000 exploration rates are selected, and the remaining four
factors are kept as the average to calculate the production and
probability of achievement.

Firstly, the exploration rate and recovery rate are analyzed,
both of which directly affect the ultimate recoverable reserve
URR of natural gas, thereby affecting the overall amplitude of the
production planning model, as shown in Figure 4. As shown in the

FIGURE 4
Prediction curves of conventional gas production under different URR
conditions.

figure, when other conditions are constant, the larger the ultimate
recoverable reserve URR, the greater the production during the
stable production period, and the later the time to reach the stable
production period. As can be seen from Formulas 7–12, URR is
the boundary condition for production prediction, and the result
is controlled. Therefore, URR should first be used to study the
influence of proved rate and recovery efficiency, and then take them
as prior conditions to study other factors by using Bayesian network,
to obtain the production prediction results under multi-factor
control. In addition, the distribution probability density is calculated
by Formulas 13, 14, as shown in the orange bar chart in Figure 5.

The proven rate of conventional gas in the Sichuan Basin is
40%–60%, and the recovery rate is 40%–50%. Under the separate
influence of these two factors, the variation of stable production
period production with factors and the probability of achievement
are shown in Figure 5. From the figure, the production during the
stable production period increases with the increase of the proven
rate (or recovery rate), but the increase amplitude is inconsistent.
The change in production shows a relatively gentle trend in the
middle and a sharp change at both ends. This is because after using
a normal distribution for Monte Carlo random sampling, within the
range of proven rates (or recovery rates), the probability of sampling
in the middle is high, while the probability of sampling at both ends
is low, resulting in a denser production result in the middle and a
looser production result on both sides.

Among them, under the influence of the proven rate, the range
of stable production period production is 360–440 × 108m3, and
the production is concentrated in 380–420 × 108m3. Under the
influence of recovery rate, the range of stable production period
production is 355–455 × 108m3, and the production is concentrated
in 390–430 × 108m3.

Then analyze the three factors of growth rate, stable production
at the end of the period, and decline rate. The trend of changes
in the production planning curve and production development
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FIGURE 5
Production probability plots at different proved rates and recovery rates.

probability curve under the separate influence of three factors
is shown in Figure 6.

From Figures 6A1, B1, as the growth rate increases, the
increase in production before entering the stable production period
increases, and the productionwill enter the stable production period
earlier, and the production during the stable production period is
larger. The growth rate of conventional gas is between 5%–15%, and
a normal distribution is used for random sampling with a mean of
10%. The range of stable production period production is 380–440
× 108m3, and the production is concentrated in 400–430 × 108m3.

From Figures 6A2, B2, as the degree of recovery at the end of the
stable production period increases, the cumulative production at the
end of the stable production period is greater, and the production
will enter the stable production period later, and the production
during the stable production period is greater. The recovery rate
at the end of the stable production period is between 60%–70%,
and a normal distribution is used for random sampling, with a
mean of 65%.The range of production during the stable production
period is 385–430 × 108m3, and the production is concentrated in
395–420 × 108m3.

From Figures 6A3, B3, as the decline rate increases, the decrease
in production after entering the decline period is greater. Therefore,
under other conditions that remain unchanged, the cumulative
production before entering the decline period is greater, and
the production will enter the stable production period later, and
the production during the stable production period is greater.
The conventional gas decline rate is around 5%–20%, and a
normal distribution is used for random sampling, with an average
of 12.5%. The range of stable production period production
is 380–430 × 108m3, and the production is concentrated in
390–420 × 108m3.

3.2 Single factor sensitivity analysis

From the content of Section 3.1, different factors have varying
degrees of impact on production.Therefore, in subsequent research,
it is necessary to first determine the degree of impact of each

factor, which requires sensitivity analysis to study the degree of
impact of each factor on the production prediction results during
the stable production period (Endong et al., 2023; Shuai-hua and
Huang, 2020).

Anton Sysoev (Anton, 2023) proposed an alternative method
based on finite fluctuation analysis, which obtained a set of
sensitivity measures for each input through sensitivity analysis.
And the described method was compared with the Sobol index
calculation method, proving the consistency of the proposed
method. This is a very good sensitivity analysis method, but
this article adopts different perspectives for research. This article
analyzes the factors that affect production and needs to combine
with actual production conditions to study the probability of
achieving predicted production. Therefore, the article takes the
probability of achieving production as the boundary and studies the
maximum and minimum values that can be achieved by a single
factor in the range of 0%–100%. The larger the fluctuation range
of production, the greater the amplitude and possibility of changes
in the actual production process, indicating that production is most
sensitive to this factor.

In this section, sensitivity analysis of production prediction
results under single factor is carried out, and the research results
are as follows. The stable production period production and
probability of achievement under different influencing factors
are shown in Figure 7. From the perspective of fluctuation range,
the proven rate and recovery rate have the greatest impact on the
production during the stable production period. The curve changes
in the figure show a trend of flat in the middle and steep at both
ends, which is also because all factors are randomly sampled using a
normal distribution, resulting in concentrated values in the middle
and scattered values at both ends.

Sensitivity analysis is conducted based on the production
probability graph results of five factors. Since the range of probability
of realization is all 0%–100%, the maximum and minimum values
of probability are taken to obtain the minimum and maximum
production under each influencing factor. Subtraction results in
production fluctuations.The larger the fluctuation value, the greater
the impact of this factor and the greater its weight. Finally, normalize
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FIGURE 6
Production prediction curve and Production probability graph under different factors. (A1) Production prediction with different growth rates. (A2)
Production prediction with different extraction degree. (A3) Production prediction with different decline rates. (B1) Production probability of growth
rate. (B2) Production probability of extraction degree. (B3) Production probability of decline rate.

the production fluctuation value, calculate the weight value, and
convert it into a percentage, which is the sensitivity level of the
influencing factors, as shown in Table 1.

The sensitivity level of influencing factors is shown in Figure 8.
From the figure, the factors that have a significant impact on the
stable production period production are the proven rate, recovery
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FIGURE 7
Production probability diagram under different factors.

rate, and growth rate, while the factors that have a smaller impact
are the extraction degree and decline rate.The sensitivity and weight
values of the influencing factors will serve as the basis for subsequent
calculations.

Based on the analysis of production planning, the target for
stable production period production planning of conventional gas
is 390 × 108m3. By benchmarking the planned production to the
production probability diagram, the predicted range of achievement
probability is obtained, as shown in Figure 9. As shown in the figure,
the probability range for achieving a stable production period of 390
× 108m3 under five factors is 70%–98%, with a probability greater
than 70%, indicating a high possibility of achieving the production
planning goal.

3.3 Multifactor analysis

After completing the single factor analysis of production, amulti
factor analysis of production is carried out by combining Bayesian
networks and binary Gaussian models. The specific research ideas
are as follows. When conducting multi factor analysis, it is not
possible to simultaneously consider the data calculation and graphic
drawing of the five factors, therefore, the ultimate recoverable
reserve URR is used as the entry point. Firstly, study the impact of
the binary probability of proven rate and recovery rate on ultimate
recoverable reserve URR and production. Further study the impact
of the binary probability generated by the proven rate and recovery
rate on production based on the remaining three factors.

In the actual production process, there are many factors that
affect natural gas, so it is necessary to study the probability of
achieving production during different stable production periods
when considering multiple factors at the same time, and develop
extraction plans based on the relationship between production and
probability. For example, first determine the impact and probability
of exploration rate and recovery rate on production, and then
combine Bayesian networks to calculate the impact and probability

of growth rate, exploration rate and recovery rate on production
under the combined effect. Based on the results, determine the
appropriate range of growth rate in actual production.

The conventional gas exploration rate in the Sichuan Basin is
between 40%–60%, and the recovery rate is between 40%–50%.
Due to the normal distribution used for random sampling, the
combination of proven rate and recovery rate is also a normal
distribution value, with a range of 16%–30%, which means the
average is 23%. The conventional gas resource quantity Qr =
122300× 108m3, the range of ultimate recoverable reserve URR is
calculated using Formula 9, and the trend of production during
stable production period is predicted based on ultimate recoverable
reserve URR. The results are shown in Figure 10.

From Figure 10A, ultimate recoverable reserve URR increases
with the increase of proven rate and recovery rate, and the
amplitude of change in proven rate has a more significant impact
on ultimate recoverable reserve URR. The ultimate recoverable
reserve URR range of conventional gas is 19568− 36690×
108m3. From Figure 10B, the production shows a curved trend
with the increase of proved rate and recovery rate, and the overall
trend also increases with the increase of proved rate and recovery
rate. Under the influence of proven rate and recovery rate, the range
of stable production period production is 339–502 × 108m3.

The probability of determining the distribution of proven rate
and recovery rate is a normal distribution, with a mean of 23%
and a value range of 16%–30%. Using it as a prior probability and
other influencing factors as subsequent nodes, establish a Bayesian
network anduse a binaryGaussianmodel to calculate the probability
of influencing factors.

Take the growth rate as an example to illustrate.The distribution
probability of the growth rate is a normal distribution with a
mean of 10% and a value range of 5%–15%. As these variables all
follow a normal distribution, the Bayesian distribution probability
of the growth rate follows a binary normal distribution. Then, the
distribution probability is converted into a cumulative probability
to obtain the Bayesian implementation probability diagram of the
growth rate, as shown in Figure 11. From the figure, when the growth
rate, proven rate, and recovery rate are small, the probability of
realization is relatively high. As the influencing factors increase,
the probability of realization gradually decreases. The probability
map of implementation under Bayesian networks will also serve as
the basis for the subsequent establishment of multivariate Gaussian
mixture models.

Maintain the other influencing factors unchanged, and use
Formula 6 to calculate the trend of production changes during the
stable production period under the mixed influence of three factors,
as shown in Figure 12. From Figure 12A, the trend of production
change is an irregular surface graph, and production does not
completely increase with the increase of growth rate. It is only a
monotonic increasing relationship between production and growth
rate within a specific range of proven rate and recovery rate. This
pattern can be clearly seen from Figure 12B. Compared with the
red and blue lines, when the exploration rate and recovery rate are
high, even if the growth rate is low, the stable production period
production is relatively high. This is because the production is
influenced by a mixture of three factors. In actual production, the
range of each factor should be determined based on the production
situation, to reasonably control the production. Under the influence
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TABLE 1 Influencing factors sensitivity analysis results table.

Achievable
probability

(%)

Production
(108m3)

Proven rate Recovery rate Growth rate Extraction
degree

Decline rate

100 Minimum
production

359.96 356.43 378.74 384.1 379.05

0 Maximum
production

441.55 454.18 439.14 428.33 429.65

Production fluctuation value 81.59 97.75 60.4 44.23 50.6

Sensitivity level 24.39% 29.22% 18.05% 13.22% 15.12%

FIGURE 8
Sensitivity degree diagram of influencing factors.

FIGURE 9
Production probability diagram under different factors.

of proven rate, recovery rate, and growth rate, the range of stable
production period production is 352–500 × 108m3.

Project the three-dimensional production map on the
production growth rate surface and combine it with the calculation
results of the implementation probability to obtain the production
probability map under the Bayesian network. From Figure 12B, the
results are shown in the blue curve at the lowest proved recovery
rate and the red curve at the highest recovery rate. In the figure,
when the stable production period production is about 390 ×
108m3, the corresponding probability of achievement is about 70%,
while in single factor analysis, the corresponding probability of
achievement is 90%.This is because the prior probabilities of proven
rate and recovery rate are considered. Currently, under the Bayesian
network, the impact of growth rate on production changes, and the
probability of achievement decreases, reducing the likelihood of
achieving production planning goals.

Similarly, the analysis of extraction degree and decline rate
is consistent with the analysis process of growth rate. Using the
proven rate and recovery rate as known probabilities, calculate the
binary distribution probability of the recovery degree, and then
obtain the probability of achieving the recovery degree, as shown
in Figure 13A. Finally, combine Formula 6 to calculate the trend
of production with the recovery degree, as shown in Figure 13B.
The trend of change is an irregular surface graph, which shows that
the production does not increase completely with the increase of
recovery degree, but only shows amonotonic increasing relationship
between production and recovery degree in a specific proved rate
recovery rate interval. Under the influence of proven rate, recovery
rate, and recovery degree, the range of stable production period
production is 376–490 × 108m3.

Using the proven rate and recovery rate as known probabilities,
calculate the binary distribution probability of the decline rate, and
then obtain the probability of achieving the decline rate, as shown
in Figure 14A. Finally, combine Formula 6 to calculate the trend of
production change with the decline rate, as shown in Figure 14B.
The trend of change is an irregular surface graph, which shows that
production does not increase completely with the increase of decline
rate, but only shows a monotonic increasing relationship between
production and decline rate in a specific proved rate recovery
interval. Under the influence of proven rate, recovery rate, and
decline rate, the range of stable production period production is
374–483 × 108m3.
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FIGURE 10
URR and production change trend chart. (A) URR variation with proven rate and recovery rate. (B) Production variation with proven rate and
recovery rate.

FIGURE 11
Binary probability plot of growth rate. (A) Distribution probability of growth rate. (B) Achievable probability of growth rate.

3.4 Summary of factor analysis

By conducting a single factor analysis of production, the
fluctuation range of influencing factors was determined, and it
was clarified that under the influence of a single factor, the
stable production period production increased with the increase of
influencing factor values. Under the influence of the proven rate,
the range of stable production period production is 359.96–441.55

× 108m3; Under the influence of recovery rate, the range of stable
production during the production period is 356.43–454.18 × 108m3;
Under the influence of growth rate, the range of stable production
period production is 378.74–439.14 × 108m3; Under the influence of
extraction degree, the range of stable production period production
is 384.1–428.33 × 108m3; Under the influence of the decline rate,
the range of stable production period production is 379.05–429.65 ×
108m3. As shown in Table 2, the recovery rate has the greatest impact
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FIGURE 12
Calculation results under the influence of growth rate. (A) Production variation with growth rate. (B) Projected production probability graph.

FIGURE 13
Calculation results under the influence of extraction degree. (A) Achievable probability of extraction degree. (B) Production variation with
extraction degree.

on the production, and the degree of recovery has the least impact
on the production.

By conducting sensitivity analysis on the factors affecting
production, the sensitivity levels of five factors were obtained and
converted into weight values for the establishment of subsequent
multi factor production planning models. When the production
planning target is determined to be 390 × 108m3, the probability
of achieving it under the influence of a single factor will

exceed 70%, indicating a high possibility of achieving the target
production.

By conducting a multifactor analysis of production, the
distribution probability of the proven rate and recovery rate was
used as a prior probability. The binary distribution probability
and implementation probability of the other three factors were
calculated, and the trend of stable production period production
under the mixed action of multiple factors was predicted. The
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FIGURE 14
Calculation results under the influence of decline rate. (A) Achievable probability of decline rate. (B) Production variation with decline rate.

TABLE 2 Production prediction results table under different factors.

Influencing factor Proven rate Recovery rate Growth rate Extraction degree Decline rate

Minimum production (108m3) 359.96 356.43 378.74 384.1 379.05

Maximum production (108m3) 441.55 454.18 439.14 428.33 429.65

Production fluctuation value (108m3) 81.59 97.75 60.4 44.23 50.6

production during the stable production period does not increase
entirely with the increase of influencing factor values, and only
within a certain range can this law be met. In addition, taking
the production probability projection diagram of growth rate as
an example, the variation of stable production period production
and its corresponding realization probability under the mixed
effects of multiple factors was analyzed. The results showed that
compared to the influence of single factors, the probability of
achieving production targets under multiple factors decreased. In
actual planning, it is necessary to consider the combined effects of
multiple factors to more accurately carry out production planning.

4 Establishment of production
planning model

Through the previous calculations, the influence law and
sensitivity level of a single factor, as well as the probability of
achieving mixed effects of multiple factors and the trend of
production changes were obtained. Then, based on the sensitivity

of a single factor, weight values are assigned to obtain a single
factor production planning model. The impact of each factor
on production planning is preliminarily analyzed. Finally, a
multivariate Gaussian model is used to overlay and combine the
single factor production model to obtain a multi factor production
planning model.

When establishing a production planningmodel, it is considered
that the greater the impact of a certain factor on production, the
higher the proportion of that factor in the model. Therefore, the
results of the sensitivity analysis in the previous section are used
as weights in the production planning model. According to the
sensitivity analysis results in Section 3.2, the sensitivity degree of the
influencing factors is converted into weight, and the weight matrix
of the five factors, namely, the proven rate, recovery rate, growth rate,
recovery degree, and decline rate, is R= [0.25,0.29,0.18,0.13,0.15].
Based on historical data of conventional gas production, allocation
is made according to weights, and production planning models
are established based on different factors to obtain production
prediction curves with different proportions, as shown in
Figure 15.
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FIGURE 15
Production prediction curves for different factors.

The black curve in the figure represents the conventional gas
production prediction curve, which is composed of five other curves
stacked together. The remaining curves represent the production
planning model after assigning weights to each of the five factors
individually. As shown in the figure, the production curve of growth
rate is concentrated in the growth period, the production curve
of proven rate and recovery rate is concentrated in the stable
production period, and the production curve of recovery degree and
decline rate is concentrated in the decline period.

From this, the growth rate affects the trend of production
changes during the growth period by controlling the amplitude of
growth, and the proven rate and recovery rate affect the overall size
of the production prediction curve by controlling the size of ultimate
recoverable reserve URR, thereby affecting the trend of production
changes throughout the entire life cycle.Themost significant impact
is the size of production during the stable production period, and the
degree of recovery affects the trend of production changes before and
after the decline period by controlling the cumulative production
at the end of the stable production period, The decline rate affects
the trend of production during the decline period by controlling the
magnitude of the decline.

Figure 16 shows the trend of production changes under the
mixed influence of five factors since 2020, namely, the multi factor
production planning chart.The influencing factors of the coordinate
axis represent five different factors, from 1 to 5, which are the proven
rate, recovery rate, growth rate, extraction degree, and decline rate.
As the value of the coordinate axis increases, the factors also overlap
and have an impact on the production prediction results. As shown
in the figure, the production prediction curve gradually becomes
complete with the superposition of influencing factors, and finally
forms a production planning curve that includes growth period,
stable production period, and decreasing period.

From the graph, it can be seen that various factors have an
impact on the production planning model.The growth rate controls
the amplitude of the production growth stage, the proven rate and
recovery rate control the amplitude of the stable production stage,

the extraction degree controls the amplitude of the transition from
the stable production stage to the decreasing stage, and the decline
rate controls the amplitude of the decreasing production stage.
Under the combined influence of five factors, the production will
reach a peak of 423 × 108m3 in 2045, with a stable production
period of 2038–2051. The production planning model can study
the forecast results of the production change over time under the
influence of different factors, and obtain the influence of each factor
on the production at different stages, to better adjust the factors
according to the demand in the actual production and achieve the
production target.

5 Conclusion

This article establishes a production uncertainty prediction
model under multi factor control based on the development of
conventional gas production in the Sichuan Basin. By analyzing the
factors affecting production, the variation patterns of production
and probability of achievement under the influence of single factors
were obtained, and the sensitivity levels of different factors were
obtained through sensitivity analysis. In addition, a multi factor
analysis was conducted based on Bayesian networks, using the
detection rate and recovery rate as prior probabilities to obtain
binary distribution probabilities and implementation probabilities
of other factors, as well as production variation graphs under the
influence of multiple factors. A production planning model was
established by combining the weight results of the multivariate
Gaussian mixture model and sensitivity analysis. The conclusion is
as follows.

1) The established production uncertainty model can effectively
predict the development trend of production under the control
of multiple factors. From the prediction results, production
is positively correlated with the five influencing factors of
proven rate, recovery rate, growth rate, extraction degree, and
decline rate. During the stable production period, production
will increase with the increase of the value of the influencing
factors, and the degree of influence of the factors from large to
small is: recovery rate, recovery rate, growth rate, decline rate,
and extraction degree.When the impact of production changes
from single factor to multiple factors, the fluctuation range of
stable production increases, and the probability of achieving
the target production decreases.

2) Based on the weight values of the degree of influence of factors,
establish single factor and multi factor production planning
models. From the perspective of production development
trends, the growth rate controls the amplitude of the
production growth stage, the proven rate and recovery rate
control the amplitude of the stable production stage, the
extraction degree controls the amplitude of the transition
from the stable production stage to the decreasing stage,
and the decline rate controls the amplitude of the decreasing
production stage. These conclusions provide reference for the
formulation of production planning goals.

3) Unlike conventional research that considers the impact of
a single factor on production, this article comprehensively
considers multiple influencing factors, studies the changes in
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FIGURE 16
Production planning model under the influence of multiple factors. (A) side view. (B) front view.

natural gas production, calculates the probability of achieving
production, and provides a reference for the formulation of
production planning goals. In addition, the article establishes
an uncertainty prediction model (Formulas 11, 12), which
can effectively combine multiple factors to predict natural gas
production.

4) The article analyzes the five main influencing factors of
natural gas production, and comprehensive research has
certain innovation. However, the influencing factors involved
in the research are all those involved in the exploration and
development process, and there are also some economic factors
(such as investment and cost) that have not been considered.
Therefore, more factors can be further considered to analyze
the trend of production changes, to develop more suitable
production planning schemes.
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