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The warming and drying trend accompanying climate change challenges
global ecosystem stability. Vegetation phenology, which can serve as a
sensitive indicator of climate change, is crucial in understanding ecosystem
carbon cycling and climate-carbon cycle feedback. Therefore, assessing the
phenological responses to drought is essential for addressing climate change.
In this study, vegetation phenology data [including the start and end of season
(SOS, EOS) and length of growing season (LOS)] and the Palmer drought
severity index (PDSI) were employed to analyze the impacts of drought on
plant phenology in China by maximum Pearson correlation coefficients and
partial least squares regression. The findings showed that drought significantly
affected the timing of phenology, delaying senescence in approximately 62%
of China and extending the growing season in about 53% of the country,
indicating the critical role of water availability in vegetation biomass. Preseason
nocturnal warming was found to advance SOS, delay EOS, and extend LOS
across China, with significant effects observed in approximately 60% of the
country. Meanwhile, daytime warming delayed SOS, delayed EOS and extended
LOS in 50∼60% of the regions. Moreover, preseason precipitation is conducive
to advanced SOS, delayed EOS and extended LOS in northern China and
areas susceptible to drought. It is suggested that vegetation management
should be strengthened to mitigate the impact of climate change in temperate
and drought-prone regions in China since climate warming will lead to
frequent droughts.
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1 Introduction

Global temperature has been experiencing an unprecedented
increase since the 20th century (IPCC, 2014). Climate warming
has increased the frequency of extreme weather events, particularly
floods and droughts (Cook et al., 2018; Li et al., 2020). Drought, as
a complex and recurring natural disaster, has historically plagued
civilizations (Heim, 2002). It can have adverse consequences
on ecosystems, natural habitats, and the global socioeconomy
(Heim, 2002), including exacerbated land degradation (Vicente-
Serrano et al., 2015), noteworthy vegetation loss (Wang et al., 2014),
and even increased social violence (Detges, 2016). As global climate
change continues to intensify, the impact of drought on civilization
has become increasingly severe. In this context, it is becoming
urgent to integrate remote sensing technologies with advanced
experimental andmodeling analyses in order to fully understand the
effects of climate change on vegetation and other natural resources,
and to develop effective response strategies (Crimaldi and Lama,
2021; Lama and Crimaldi, 2021; Lama et al., 2021; Lense et al., 2023;
Piao et al., 2019).

Vegetation phenology, as a sensitive indicator of climate change,
plays a crucial role in the carbon and nutrient cycles of terrestrial
ecosystems (Piao et al., 2019). With climate warming, vegetation
phenology has significantly shifted globally (Richardson et al.,
2013). The timing of spring phenology has notably advanced
over decades, particularly in temperate and cold regions sensitive
to temperature, such as the Tibetan Plateau (Shen et al., 2014;
Zhang et al., 2018). On the other hand, autumn phenology
has exhibited delays in certain regions due to global warming
(Liu et al., 2016). However, recent studies have highlighted the
increasing influence of extreme weather events, especially droughts,
as striking factors disrupting vegetation growth (Cui et al., 2017;
Kang et al., 2018; Shen et al., 2014).Therefore, it is crucial to quantify
the response of vegetation phenology to droughts for effective
vegetation management.

Droughts have notable impacts on vegetation, including
stunted growth, decreased greenness, reduced biomass, and even
plant mortality, leading to profound consequences for ecosystem
functions and the carbon cycle (Zhang et al., 2017). Previous studies
have primarily examined the spatial and temporal relationships
between drought indices and the normalized difference vegetation
index (NDVI) derived from satellite data (Klisch and Atzberger,
2016; Son et al., 2012). However, NDVI alone cannot capture specific
vegetation physiological indicators, making it a less comprehensive
measure for studying the effects of droughts on vegetation dynamics.
In contrast, utilizing direct proxies of vegetation indicators, such
as phenological metrics such as the start and end of the growing
season (SOS and EOS) and net primary productivity derived from
remote sensing data, may offer superior insights into understanding
the impacts of droughts on vegetation (Cui et al., 2017;
Kang et al., 2018).

With the third-largest land area and the largest agricultural area
globally, China has been plagued by frequent and severe droughts
for decades, attributed to the interaction between the monsoon
climate and complex geographical landscapes (Wang Z. et al.,
2017; Xu et al., 2015). These droughts occurred not only in the
dry northern regions but also in the relatively humid southern
areas of China (Wang et al., 2014; Zhang et al., 2019). The

detrimental consequences of these frequent and severe droughts
on economic and social development in China were substantial.
Numerous studies have examined the impacts of drought on
vegetation phenology in China, highlighting complex and varied
responses (Qiao et al., 2024; Wu et al., 2022; Yuan et al., 2020).
These studies demonstrated that drought can affect the SOS and
EOS, with effects ranging from delayed senescence to advanced
or delayed onset of spring phenology, depending on the region
and ecosystem type. Building on this foundation, our study
specifically focused on the use of phenological metrics (SOS,
EOS, and LOS) combined with the Palmer Drought Severity
Index (PDSI) to analyze the impacts of drought on vegetation
across different regions of China and identify the driving factors
(Busico et al., 2020).

Hence, this study aimed to quantify the responses of vegetation
phenology to droughts and identify the driving factors using the
Palmer drought severity index (PDSI) with different timescales and
phenological metrics from 2001 to 2018. The specific objectives
of this study were as follows: (1) to analyze the spatiotemporal
characteristics of drought and vegetation phenology; (2) to explore
the patterns of phenological responses to droughts at different
timescales across China; and (3) to understand the influence of
climate factors on vegetation phenology.

2 Datasets and methods

2.1 Study area

China, in the Northern Hemisphere, encompasses a vast
territory and spans multiple climatic zones. The topography
of China exhibits a high-to-low elevational gradient from west
to east, dividing the country into three distinct regions. As
a result, China showcases a diverse range of vegetation types.
The eastern part of the country and the Chengdu Plain are
predominantly characterized by forest, while grass dominates the
western and northern regions. Forest, on the other hand, are
extensively distributed across southern and northeastern China.
Large unused land areas are notably prevalent in northwestern
China (Figure 1).

2.2 Dataset

Phenological metrics obtained from the Moderate Resolution
Imaging Spectroradiometer (MCD12 Q2) with 500 m spatial
resolution were used to analyze the spatiotemporal variations in
vegetation phenology and the relationships between vegetation
phenology and drought index. The dataset was provided by
the National Aeronautics and Space Administration and has
been widely employed for studying global change (Meng et al.,
2020; Zhang et al., 2004). The vegetation phenology product
was derived from the enhanced vegetation index (EVI) time
series, containing seven vegetation growth stages (Gray et al.,
2019). The two commonly used phenological metrics, greenup
(indicating the start of season, SOS) and senescence (indicating
the end of season, EOS), were selected to examine the variations
in vegetation phenology. Additionally, the growing season
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FIGURE 1
Vegetation distribution in China, modified from the Land use and Land cover dataset of 2015 provided by the Resources and Environment Science and
Data Center (http://www.resdc.cn/).

(LOS) length was calculated based on the timing of greenup
and senescence.

The PDSI, a widely used meteorological drought index, was
employed to evaluate moisture supply and demand based on
temperature and precipitation data (Palmer, 1965). The PDSI was
selected as the drought index to assess drought risk and vegetation
drought resistance across China. The PDSI dataset used in this
study was obtained from Abatzoglou et al. (2018) and has a spatial
resolution of 4 km. The dataset covers the period from 2001 to
2018 and was acquired from the Climatology Lab (http://www.
climatologylab.org/terraclimate.html). The PDSI was calculated for
various timescales, including 1, 3, 6, 9, 12, 18, and 24 months to
examine vegetation responses to droughts of different durations.

Monthly meteorological data, including maximum air
temperature (i.e., daytime temperature, Tmax), minimum air
temperature (i.e., nocturnal temperature, Tmin) and precipitation
upscaled from the Climate Research Unit dataset (CRU Ts4.0) at
the University of East Anglia by Abatzoglou et al. (2018), were
also utilized to determine the responses of vegetation phenology to
climate change.Thesemetrological datasets, from2001 to 2018, were
also downloaded from the Climatology Lab with a spatial resolution
of 1/24° (∼4 km).

2.3 Methods

2.3.1 Trend analysis
In this study, long-term trends of vegetation phenology,

including SOS, EOS and LOS, as well as the PDSI, were determined
using a linear regression model based on the least square method
(Mao et al., 2012). The expression (Equation 1) is as follows:
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where n is the research time, x is the ith year of vegetation
phenology or drought index, and S is the variation trend. A positive
S means an increasing variable, whereas a negative S indicates a
decreasing variable (Luo et al., 2018). In addition, a t-test was used
to verify the significance of trends.

2.3.2 Maximum Pearson correlation coefficients
The maximum Pearson correlation coefficients (MCC) between

vegetation phenology and PDSI with multiple timescales were
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FIGURE 2
Temporospatial characteristics of droughts across China. (A) Temporal variation, and (B) long-term trend of PDSI across China from 2001 to 2018.

utilized to analyze the drought resistance of vegetation across China
(Zhang et al., 2017). The expressions (Equations 2, 3) is:

Ri,j = corr(x,yi,j) (2)

Rmax = max1≤i≤12,j(|Ri,j|) (3)

where x is the annual vegetation phenology; i is the ith month
(ranging from 1 to 12), j is the timescale of PDSI; yi,j is the ith

month of PDSI with a timescale of j months; Ri,j is the correlation
coefficient between phenological metrics and the yi,j of PDSI;
and Rmax is the MCC. Generally, vegetation phenological events
are primarily determined by the climate conditions preceding
the events (Shen et al., 2014). Therefore, preseason PDSI with
multiple vegetation phenology timescales were used in this study to
calculate the MCC between phenological metrics and PDSI.

2.3.3 Partial least squares regression
In this study, we assumed that the time and intensity of climate

factors are equally essential to reveal the temporal changes in
vegetation phenology. Hence, partial least squares regression (PLSR)
was applied to analyze the temporal and spatial effects of preseason
climate factors on the phenology of different vegetation types. The
PLSR method integrates the characteristics of principal component
analysis and multiple linear regression, allowing correlations to be
established between numerous independent factors and one ormore
dependent variables (Geladi and Kowalski, 1986). This approach
was widely used to develop predictive models and project potential
structures in various research fields (Guo et al., 2021; Li et al.,
2020). There are two primary outputs of PLSR, i.e., the variable
importance projection (VIP) and standard model coefficients (MC)
(Guo et al., 2017). VIP is obtained byweighted calculation of the sum
of squares loaded by PLS for each independent variable, reflecting
the importance of all independent variables in explaining the change
in the dependent variable. The VIP threshold was often set as 0.8
in previous studies (Guo et al., 2017; Luedeling et al., 2013). The
standard MC represents the intensity and direction of the influence
of each variable in the PLS model.

3 Results

3.1 Spatiotemporal characteristics of
droughts and phenology

Conditionsduringthefirst18yearsofthe21stcenturywerequitedry
in China (Figure 2A). Generally, most of each month experienced dry
conditions (PDSI≤−0.5). In addition, a severedroughtoccurredduring
2009–2010 across China, especially in southwestern and northeastern
China, resulting in tremendous agricultural and economic losses
(Barriopedro et al., 2012). As depicted by the spatial trends of PDSI,
during the study period, the Greater Khingan Mountains, Qinghai, the
Sichuan Basin and the southeastern coastal areas gradually became
wetter, while the southern Tibetan Plateau, Yunnan and North China
Plain became progressively drier (Figure 2B).

During the study period, the SOSwas significantly advanced across
China, with an advancement rate of 0.29 days/yr (p < 0.05). Affected by
theintensedroughtepisode, theSOSdisplayedanoticeabledelayin2010
(Figure 3A).LiketheSOS,theEOSalsoshowedsignificantadvancement
during the studyperiod,with a rate of 0.17days/yr (p<0.05).Due to the
synchronous variations in the SOS and EOS, the LOS in China was not
significantly extended,witha rateof0.12days/yr (p=0.23). Spatially, the
SOS was advanced in most regions of China, with significant advances
in the Tibetan Plateau, northern Loess Plateau, and southwestern and
northeastern China (Figure 3B). In addition, phenology was delayed
in a small number of plants scattered in the Loess Plateau, the Yungui
Plateau and the North China Plain.

Corresponding to the temporal characteristics of autumn
phenology (Figure 3A), vegetation in most regions of China
exhibited an advanced EOS during the study period (Figure 3C).
Significantly advanced EOSs were mainly distributed in the Tibetan
Plateau, central China and the Greater Khingan Mountains. In
addition, a small amount of vegetation showed delayed autumn
phenology (Figure 3E), which was scattered in the Yungui Plateau,
south of the Loess Plateau and the margin of the North China
Plain. Significant variations in LOS were identified in eastern China,
with substantial extension in northern and southwestern China and
significant shortening in central and southern China (Figure 3D).
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FIGURE 3
Temporal (A) and spatial (B–D) variations in vegetation phenology across China, (B) spring phenology (SOS), (C) autumn phenology (EOS) and (D) length
of growing season (LOS) in vegetation from 2001 to 2018. In addition, (E) displays the proportion of ranges in phenology trends during the study period.

3.2 Relationships between phenology and
drought index

The impacts of drought on vegetation phenology were
explored by MCC, examining the relationship between vegetation
phenology and PDSI with multiple timescales (Figure 4). A
negative MCC between PDSI and SOS was found in most
regions of China, occupying approximately 62% of the country.
In contrast, positive MCC between PDSI and SOS were mainly
distributed in the Tibetan Plateau, the North China Plain,
central China, and the Changbai Mountains, which dominated

only approximately 38% of grid cells (Figures 4A, D). The
results demonstrated that droughts delayed spring phenology
in most regions of China, especially in the Loess Plateau and
southwest China. Nevertheless, the positive MCC between the
SOS and PDSI indicated that wet weather might obstruct spring
phenology in the Tibetan Plateau, the North China Plain, and the
Changbai Mountains.

The MCC between the EOS and PDSI (Figure 4B) exhibited
similar spatial characteristics to Figure 4A. Most of the positive
MCC values weremainly distributed in the Tibetan Plateau, central
China, the North China Plain and the Changbai Mountains, which
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FIGURE 4
Maximum Pearson correlation coefficients (MCC) between vegetation phenology and PDSI at multiple timescales. MCC between (A) spring phenology
(SOS), (B) autumn phenology (EOS) and (C) length of the growing season (LOS) and PDSI. (D) Displays the proportional area dominated by different
ranges of MCC.

occupied approximately 44%of grid cells. A negativeMCCbetween
the EOS and PDSI was found to be distributed in the Loess Plateau,
the Northeast China Plain, the Yungui Plateau, and the southeast
coastal regions. The MCC values of most vegetation in northeast
ChinaandtheLoessPlateauwerepositive (approximately53%of the
whole country), indicating thatdroughts shortened the lengthof the
growingseasonofvegetationintheseregions,asshowninFigure 4C.
In addition, thenegativeMCCvaluesweredistributed in theYungui
Plateau and the ChangbaiMountains, demonstrating that droughts
contributed to the extension of LOS.

3.3 Attribution of shifts in vegetation
phenology to climatic factors

The critical impacts of three climate factors (Tmin, Tmax and
precipitation) on the SOS based on the PLSR VIP are depicted

in Figure 5. Approximately 57% of the pixels displayed greater-
than-0.8 VIP scores and negative MC, mainly spread over China
(Figure 5A), indicating that nocturnal warming promotes advanced
SOS. Conversely, pixels with greater-than-0.8 VIP and negative
MC were primarily distributed in northeast and southwest China,
demonstrating that nocturnal warming inhibits advanced SOS.
For Tmax, both positive MC and greater-than-0.8 VIP scores
dominated approximately 41.6% of the study area, mainly spread
in Southwest and North China (Figure 5B). In addition, pixels
with negative MC and greater-than-0.8 VIP occupied 50% of the
study region, mainly distributed in the central to the southeast
coast of China, the Greater Khingan Mountains and Changbai
Mountains. Pixels with greater-than-0.8 VIP and positive MC
for precipitation were approximately 37.1%, mainly spread over
the south coast of China, the Greater Khingan Mountains and
Changbai Mountains. In addition, about 43.7% of the study
region was dominated by negative MC and greater-than-0.8
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FIGURE 5
Spatial distributions of the partial least squares regression (PLSR) and variable importance projection (VIP) scores of monthly (A) minimum temperature
(Tmin), (B) maximum temperature (Tmax) and (C) precipitation on the SOS. (D) Is the proportion of different VIP scores for various climate factors
impacting the SOS.

VIP, distributed in southwest and northeast China and parts of
the Tibetan Plateau.

The effects of climate factors on the EOS were significantly
different from those on the SOS (Figure 6). Figure 6A shows that
approximately 61.3% of pixels displayed both positive MC and
VIP values greater than 0.8, indicating positive effects of nocturnal
warming on the delayed EOS. In addition, pixels with both negative
MC and greater-than-0.8 VIP represented approximately 32.4% and
were mainly distributed in the Greater Khingan Mountains and the
Tibetan Plateau, demonstrating the inhibitory effect of nocturnal
warming on delayed EOS. Pixels with both positiveMC and greater-
than-0.8 VIP for Tmax represented approximately 60.6% (Figure 6B)
and were mainly distributed in the Loess Plateau and northeast
China, whereas the proportion with both negative MC and greater-
than-0.8 VIP was approximately 35.5%. For precipitation, about
56.8% of pixels showed greater than 0.8 VIP scores. For these
pixels, approximately 33.1% displayed a negative MC, while 66.9%
exhibited a positive MC. In addition, pixels with positive MCs were
mainly distributed in the Loess Plateau, the Tibetan Plateau, the
North China Plain and Southwest China.

Similar to the effects of Tmin on EOS (Figure 6A), approximately
60% of the study area displayed both positive MC and greater-
than-0.8 VIP for Tmin on LOS (Figure 7A), indicating that
nocturnal warming promotes extended LOS. In addition, pixels
of both negative MC and greater-than-0.8 VIP were mainly
distributed in the Northeast China Plain and the Tibetan Plateau,
demonstrating that nocturnal warming inhibits extended LOS.
Pixels with both positive MC and greater-than-0.8 VIP for Tmax
occupied approximately 60.6% of the country, spread over most
of China except the Tibetan Plateau (Figure 7B). Pixels with both
negativeMC and greater-than-0.8 VIP in Figure 7B demonstrate the
inhibitory effect of daytime warming on LOS in the Tibetan Plateau.
Approximately 61.8% of the study area showed greater-than-0.8
VIP scores which were distributed over most of China except for
southeast China, illustrating the essential role of rain on LOS. For
these pixels, 50.2% displayed negative MC, occurring mainly in
northeast China and the Tibetan Plateau. In addition, approximately
49.8% of these pixels showed positive MC, distributed in the
Loess Plateau and the Yungui Plateau, demonstrating the impact of
increased precipitation on extending the LOS (Figures 7C, D).
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FIGURE 6
Spatial distributions of the partial least squares regression (PLSR) and variable importance projection (VIP) scores of monthly (A) minimum temperature
(Tmin), (B) maximum temperature (Tmax) and (C) precipitation on the EOS. (D) Is the proportion of different VIP scores for various climate factors
impacting the EOS.

4 Discussion

The variability in precipitation and temperature induced by
climate change has been proven to be the primary regulator
of vegetation phenology in the Northern Hemisphere ecosystem
(An et al., 2020; Li et al., 2018; Liu et al., 2016). Although much
work has been carried out to explore the impacts of climatic factors
on phenological shifts (Li et al., 2018; Shen et al., 2011), less
attention has been given to the effect of warming-induced drought
on phenology and the driving factors.Therefore, in this study, spatial
responses of vegetation phenology to droughts were investigated
using MCC between phenological metrics and preseason PDSI with
multiple timescales. In addition, particular attention was devoted
to the effects of preseason climatic factors on phenology using the
PLSR method.

SOS was significantly advanced from 2001 to 2018 despite the
overall dry conditions in China, especially in temperate China and
the Tibetan Plateau, which was consistent with previous studies
(Wang et al., 2017a; Wang et al., 2017b). Due to the strong

interaction between spring and autumn phenology (Appendix
A, Supplementary Figure S1; Liu et al., 2016), the overall EOS
trend in China from 2001 to 2018 was significant advancement
instead of delay.

4.1 Responses of phenology to drought

Dry conditions inhibited the onset of spring phenology in
most areas of China, especially in semiarid and arid regions
such as the Loess Plateau and Inner Mongolia. In contrast, the
Changbai Mountains and the Qinling Mountains are dominated
by massive forests, which are tolerant to dry conditions, thus
resulting in low sensitivity of spring phenology to drought
(Zhang et al., 2017). In addition, the lower reaches of the
Yellow River are important wheat planting areas in China, where
artificial irrigation is common. Moreover, mountains in the Yungui
Plateau and Tibetan Plateau are mainly covered by snowpack
and frozen soil, which can supply soil moisture (Zhang et al.,
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FIGURE 7
Spatial distributions of the partial least squares regression (PLSR) and variable importance projection (VIP) scores of monthly (A) minimum temperature
(Tmin), (B) maximum temperature (Tmax) and (C) precipitation on LOS. (D) Is the proportion of different VIP scores for various climate factors
impacting the LOS.

2017). Hence, plant phenology in these regions is
insensitive to droughts.

Preseason nocturnal warming (Tmin) contributes to the increase
in growing degree days (GDDs), thus triggering an advancement
in spring phenology in most regions of China (Shen et al., 2018).
Consistent with previous studies (Piao et al., 2015; Shen et al., 2018),
increased preseason Tmax contributes to leaf onset in most parts of
the country. Nevertheless, in semiarid and arid areas, the increase in
preseason Tmax may cause droughts due to insufficient precipitation,
leading to delayed spring phenology (Wang et al., 2019). In addition,
the increase in daytime temperature contributes more to GDD than
the increase in nocturnal temperature (Piao et al., 2015). Therefore,
the interaction between lower preseason Tmin with higher Tmax in
northeast and southwest China resulted in an advanced SOS, leading
to both negative model coefficients and greater-than-0.8 VIP scores
for Tmin in these regions. Preseason precipitation is an essential
driving factor for advanced SOS in most parts of China, especially
for temperate grass, alpine plants, and vegetation in drought-prone
areas (e.g., the Yungui Plateau). Conversely, as explained above,
the type of vegetation in parts of the northeast, tropical China

and the Tibetan Plateau has high tolerance to droughts because
of the massive forest or snowpack cover and frozen soil. Hence,
lower preseason precipitation combined with higher preseason Tmax
during the study period still triggered advanced SOS, resulting in
both negativemodel coefficients and greater-than-0.8 VIP scores for
precipitation in these regions.

Preseason water scarcity induced by droughts can accelerate
leaf senescence, thereby advancing the EOS, especially in arid
regions and areas that are susceptible to drought. Change in
leaf color is mainly induced by nocturnal chilling (Tang et al.,
2016). In addition, nocturnal warming can reduce frost damage
to plants (Todisco and Vergni, 2008). Thus, the higher preseason
nocturnal temperature contributed to the extension of the EOS in
most regions of China. An increase in Tmax accelerates vegetation
photosynthesis as the temperature in autumn drops, thus resulting
in a positive correlation between EOS and Tmax (Wang et al., 2019),
especially in northeastern China. In contrast, for grass or areas
where autumn temperature drops slowly, the increase in daytime
temperature may increase drought stress on vegetation, leading to
an advanced EOS.
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The overall trend of the LOS exhibited a nonsignificant change
from2001 to 2018 because of the strong interaction between the SOS
and EOS. Similarly, the increases in preseasonTmin andTmax inmost
regions of China both contributed to the extended LOS. Preseason
precipitation in arid areas can extend the LOS, yet the vegetation in
the Tibetan Plateau or forests still exhibited extended LOS despite
the lack of rainfall because of the forest vegetation’s insensitivity to
water scarcity or because of the external water supply available from
frozen soil or snow.

4.2 Uncertainties and limitations

Diverse responses of vegetation phenology to droughts in China
showed prominent spatial heterogeneity, consistent with previous
studies (Ding et al., 2020; Zhang et al., 2017). Hence, the findings
of this study are essential for mitigating droughts induced by
climate change and improving ecosystem management. However,
uncertainties remain in this study. First, several uncertainties
may come from the satellite-derived phenological dataset due
to several factors, such as sensors, viewing geometries, retrieval
algorithms, length of time series, and vegetation types (White et al.,
2009). In particular, the quality of detected NDVI values may be
affected by massive snow cover in the Tibetan Plateau, leading
to inaccurate results of vegetation phenology. In addition, as
reported by Gray et al. (2019), there were limitations in the
MCD12Q2 product that was applied in this study, such as early/late
SOS in some high-latitude areas and low EVI variations in semiarid
regions, which may also lead to uncertainties in this study.

Additionally, in this study, we only analyzed the impacts of
droughts and three climatic factors (Tmin, Tmax and precipitation)
on vegetation phenology. Nevertheless, there are other important
factors that play roles in regulating vegetation phenology,
such as photoperiod, CO2 fertilization, N deposition, human
activities (e.g., farming, fertilization, grazing), other natural
disasters (e.g., freeze‒thaw processes), and their combined effects
(Bao et al., 2019; Li et al., 2018). Hence, further work is needed to
quantitatively evaluate their effects on plant phenology, as well as
the internal mechanisms.

5 Conclusion

In this study, the spatial responses of plant phenology to
drought as well as their driving factors were evaluated across
China. Noteworthy advancement was observed in the SOS and EOS
across China, while spatially heterogeneous trends were detected
in the LOS. Droughts inhibited earlier onset or delayed senescence
in most regions of China. Droughts shortened the LOS in areas
where vegetation is sensitive to drought because of the strong
interaction between the SOS and EOS, particularly in temperate
China. Preseason nocturnal warming induced earlier onset and
delayed senescence and extended LOS across China. In addition,
the increase in preseason Tmax contributed to an advanced SOS and
extended LOS in most regions of China, whereas it accounted for a
delayed EOS in temperate China. Moreover, preseason precipitation
promoted an advanced SOS, delayed EOS and extended LOS in
northern China and areas susceptible to drought.
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