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A study of 3D axis anisotropic
response of MT

Xiao Liu and Qi-Ji Sun*

School of Hydraulic and Electric-Power, Heilongjiang University, Harbin, China

Electrical anisotropy has a significant impact on the observation data of the
magnetotelluric (MT) method; therefore, it is necessary to develop forward and
inverse methods in electrical anisotropic media. Based on the axis anisotropic
electric field control equations, forming a large linear equation through
staggered finite difference approximation, adding boundary conditions, and
using the quasi-minimum residual method to solve the equation, this study
obtainedMT forwardmodeling results in axis anisotropicmedia. The correctness
of the algorithmwas verified by comparing it with the 2D quasi-analytic solution.
By designing several sets of axis anisotropic 3Dmodels, the characteristics of the
apparent resistivity tensor and tipper were analyzed. The results indicated that
the ρaxy, ρ

a
yy and Tzy are sensitive to changes in resistivity in the X direction of the

anomalous body, whereas the ρayx, ρ
a
xx and Tzx are sensitive to changes in resistivity

in the Y direction. The apparent resistivity tensor and tipper are insensitive to
changes in resistivity in the Z direction of the anomalous body. For exploration
of anisotropic media, the apparent resistivity tensor and tipper of MT can identify
the changes in resistivity in two horizontal axes directions and the boundaries of
the anomalous body, which has the advantages for exploration.

KEYWORDS

MT, axis anisotropy, response characteristic, finite difference method, forward-
backward algorithm

1 Introduction

Anisotropy is commonly present in the crust and upper mantle. Fractures and
rock bedding in certain specific directions, as well as the stacking combination of
uniform thin layers with different properties, can cause electrical anisotropy in the
lithospheric structure (Postma, 1955; Wannamaker, 2005). The practice and research of
geophysical exploration have shown that electrical anisotropy has a significant impact
on electromagnetic observation data and that directly using isotropic models to fit data
containing electrical anisotropy can result in significant errors (Yin and Weidelt, 1999;
Liu and Zheng, 2024). Therefore, to improve the accuracy of electromagnetic inversion
results, including magnetotelluric methods, and the level of understanding of underground
structures, it is necessary to develop electromagnetic data processing and inversionmethods
based on anisotropic models (Liu Y. H. et al., 2018).

Research on magnetotelluric anisotropy has been increasing (Qin et al., 2022).
Based on 2D numerical forward modeling techniques (Pek and Verner, 1997; Li,
2002), 3D forward modeling research results, especially the finite volume method
(Han et al., 2018), the finite element method (Cao et al., 2018; Xiao et al., 2018;
Liu Y. et al, 2018; Guo et al., 2020; Ye et al., 2021; Zhou et al., 2021) and the finite
difference method (Yu et al., 2018; Kong, 2021), continue to emerge. The finite
element method has strong simulation ability for complex shapes and terrains, and it
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FIGURE 1
Sketch of the 2D axis anisotropic model.

establishes variational equations through the Galerkin method.
A weighted posterior error estimation method was constructed
using the continuity condition of current density, which has been
used to calculate the magnetotelluric (MT) response of arbitrary
anisotropic media (Cao et al., 2018). The finite difference method
ensures that the distribution of the electromagnetic field satisfies the
law of energy conservation and also simplifies the derivation of the
equations.

Because of the complexity of numerical simulation for arbitrary
anisotropy, this study considers the case of axis anisotropy. Axis
anisotropy can be understood as the difference in conductivity in the
three directions of the medium caused by factors such as mineral
orientation. The conductivity tensor of arbitrary anisotropy can
be obtained by three Euler rotations of the axis anisotropy. Kong
(2021) used direct discretization of Maxwell’s equations to achieve
MT anisotropic forward modeling. In this study, the electric field
control equation is solved to achieve MT axis anisotropic forward
modeling. The algorithm is implemented by Fortran program.
The response characteristics of the axis anisotropic target body
are analyzed through three numerical examples, providing a basis
for conducting MT forward and reverse modeling research with
arbitrary anisotropy.

2 MT 3D forword modeling method

2.1 Finite difference method for calculating
MT fields

For isotropic media, ignoring displacement current, the
frequency domain control equation of the magnetotelluric
method is

∇×E = iωμ0H (1)

∇×H = σE (2)

where∇ represents theNabla operator,E represents the electric field,
i represents an imaginary unit, ω represents the angular frequency,
μ0 represents the vacuum magnetic permeability, H represents the
magnetic field, and σ represents the conductivity.

After organizing Equations 1, 2, the following electric field
control equation is obtained:

∇×∇×E = iωμ0σE (3)

For 3D axis anisotropic medial, the tensor conductivity is

σ =(
σx 0 0
0 σy 0
0 0 σz

) (4)

By substituting Equation 4 into Equation 3 and organizing, the
following equations can be obtained:

∂
∂y
[
∂Ey
∂x
−
∂Ex
∂y
]− ∂
∂z
[
∂Ex
∂z
−
∂Ez
∂x
] = ωμ0σxEx (5)

∂
∂z
[
∂Ez
∂y
−
∂Ey
∂z
]− ∂
∂x
[
∂Ey
∂x
−
∂Ex
∂y
] = iωμ0σyEy (6)

∂
∂x
[
∂Ex
∂z
−
∂Ey
∂x
]− ∂
∂y
[
∂Ez
∂y
−
∂Ey
∂z
] = iωμ0σzEz (7)

Using the staggered finite difference approximation
Equations 5–7, the following equation is obtained
after sorting (Siripunvaraporna et al., 2005):

AX = b (8)

where A is a symmetric large sparse coefficient matrix, X is a
vector composed of three components of the electric field at the
sampling point, and b is a vector composed of boundary electric field
components.

When a sufficiently thick air layer is added, the influence
of anomalous bodies on the top boundary of the air layer can
be ignored. The four lateral boundaries can be regarded as 2D
geoelectric interfaces, solved using 2D MT anisotropic finite
difference codes (Kong, 2021). After introducing the boundary
conditions, the three component values of the electric field in the
partitioned space are obtained by solvingEquation 8 using the quasi-
minimum residual (QMR) method, with a preconditioner formed
by an incomplete LU decomposition (Siripunvaraporna et al., 2002).
To accelerate the convergence of QMR iteration, divergence
correction (Smith, 1996) is also applied to the solution of the
electric field. The electric and magnetic field components of each
measurement point on the surface are obtained through electric field
interpolation.

2.2 Calculating tensor impedance and
tipper

Calculate the magnetotelluric response using TE and TM
polarization simulations, denoted as Ex1, Ey1, Hx1, Hy1 and Hz1, Ex2,
Ey2, Hx2, Hy2 and Hz2. So the expressions for the magnetotelluric
impedance component and tipper component are obtained:

Zxx =
Ex1Hy2 −Ex2Hy1

Hx1Hy2 −Hx2Hy1
, Zxy =

Ex2Hy1 −Ex1Hx2

Hx1Hy2 −Hx2Hy1

Zyx =
Ey1Hy2 −Ey2Hy1

Hx1Hy2 −Hx2Hy1
, Zyy =

Ey2Hx1 −Ey1Hx2

Hx1Hy2 −Hx2Hy1

(9)
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FIGURE 2
Comparison of the results of 3D forward modeling and 2D quasi-analytic solution (A–D) and curve of relative residual error of the QMR iteration (E).

FIGURE 3
Sketch of the 3D axis anisotropic low-resistance model.

Tzx =
Hz1Hy2 −Hz2Hy1

Hx1Hy2 −Hx2Hy1
, Tzy =

Hz2Hx1 −Hz1Hx2

Hx1Hy2 −Hx2Hy1
(10)

The corresponding apparent resistivity tensor and apparent
phase tensor are:

ρaij =
1

ωμ0
|Zij|

2

ϕij = tan
−1(Im(Zij)/Re(Zij))

(11)

where i = x,y, j = x,y. In the following text, the axial
anisotropy response of MT is calculated by
Equations 9–11.
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FIGURE 4
Contour maps of the response of the different low-resistivity models in the X direction: (A–C) ρaxy; (D–F) ρ

a
yx; (G–I) ρ

a
xx; (J–L) ρ

a
yy; (M–O) |Tzx|; (P–R) |Tzy|.

2.3 Algorithm validation

To verify the correctness of the algorithm, we compared
it with the quasi-analytic solution of Qin et al. (2013), who
established a 2D axis anisotropic upright fault model (Figure 1).

The left side of the fault is an axis anisotropic block, with
resistivity values of 10, 100, and 10 Ω ·m in the X, Y, and Z
directions, respectively. The right side of the fault is an isotropic
block, with resistivity values of 1,000 Ω ·m. A frequency of
0.1 Hz is used.
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FIGURE 5
Contour maps of the response of the different low-resistivity models in the Y direction: (A–C) ρaxy; (D–F) ρ

a
yx; (G–I) ρ

a
xx; (J–L) ρ

a
yy; (M–O) |Tzx|; (P–R) |Tzy|.

In TM mode, the comparison results of apparent resistivity
and apparent phase and curve of relative residual error of
the QMR iteration are shown in Figure 2. The 3D finite
difference results and 2D quasi-analytic solution fit well,

with only a slight error at the fault interface (Figures 2A–D),
indicating that the calculation results of the forward program
are correct. The QMR iteration converges stably to the given
tolerance (Figure 2E).
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FIGURE 6
Contour maps of the response of the different low-resistivity models in the Z direction: (A–C) ρaxy; (D–F) ρ

a
yx; (G–I) ρ

a
xx; (J–L) ρ

a
yy; (M–O) |Tzx|; (P–R) |Tzy|.

3 3D axis anisotropic forward
modeling case of MT

3.1 Response of 3D axis anisotropic
low-resistance prism

The 3D prismmodel is shown in Figure 3.The top surface of the
prism is buried at a depth of 100 m, and the prism has a size of 8 km

× 8 km× 5 km.Thebackground resistivity is 100Ω ·m, and themesh
size is 28 × 28 × 28, which includes 7 air layers.The frequency of the
MT used is 10 Hz.

To study the impact of the axis anisotropy of low-resistance
bodies on MT forward modeling, we designed several sets of
examples.We first fix the resistivity of the low-resistance body in the
Y and Z directions (ρy = 30Ω ⋅m and ρz = 60Ω ⋅m), with resistivity
in the X-direction of 10, 30, and 90 Ω ·m, respectively, and apply
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FIGURE 7
Pseudo-contour maps of the apparent resistivity of the low-resistivity body.

the algorithm proposed in this study for forward modeling. The
resulting surface contour map is shown in Figure 4. Next, we fix
the resistivity of the low-resistance body in the X and Z directions
(ρx = 30Ω ⋅m and ρz = 60Ω ⋅m), with resistivity in the Y-direction
of 10, 30, and 90 Ω ·m, respectively.These forward results are shown
in Figure 5. Finally, we fix the resistivity of the low-resistance body
in the X and Y directions (ρx = 30Ω ⋅m and ρy = 60Ω ⋅m), with the
resistivity in the Z-direction of 10, 30, and 90Ω ·m, respectively.The
forward results for this example are shown in Figure 6.

The apparent resistivity ρaxy and ρayx reflects the horizontal
position of the low-resistance body, and the apparent resistivity ρaxx,
ρayy, and the tipper Tzx, Tzy clearly reflect the horizontal boundary
of the low-resistance body (Figure 4). The amplitudes of ρayy and
ρayx are much greater than those of ρaxx and ρayy (Figures 4A–L).
ρaxy, ρ

a
yy, and Tzy are sensitive to changes in resistivity in the X

direction (ρx) of the low-resistance body. When the resistivity
of the low-resistance body is lower, the anomalies it produces
are more obvious (Figures 4A–C, J–L, P–R). ρayx, ρ

a
xx, and Tzx are

insensitive to changes in resistivity in the X direction of the low-
resistance body (Figures 4D–I, M–O), and are less affected by the
resistivity in the X-direction.

ρaxy, ρ
a
yy, and Tzy are insensitive to changes in resistivity in the

Y direction (ρy) of the low-resistance body, and are less affected

by the resistivity in the Y direction (Figures 5A–C, J–L, P–R). ρayx,
ρaxx, and Tzx are sensitive to changes in resistivity in the Y-
direction of the low-resistance body. As the resistivity of the low-
resistance body becomes lower, the anomalies it produces become
more obvious (Figures 5D–I, M–O).

The impacts of resistivity changes in the X and Y directions of
the low-resistance body on response results are different.

The apparent resistivity tensor and tipper are not sensitive to
changes in resistivity in the Z direction of the low resistivity body
(Figures 6A–R), indicating that ρz has a weak contribution to the
surface response. For MT, in TE mode, the polarization direction
of the electric field is mainly in the X direction, therefore it is
sensitive to changes in resistivity in the X direction; in TM mode,
the polarization direction of the electric field is mainly in the Y
direction, therefore it is sensitive to changes in resistivity in the Y
direction (Wang et al., 2017).

A contour map of apparent resistivity based on the
relationship between apparent resistivity and frequency is shown
in Figure 7. The low-value anomaly areas of apparent resistivity
ρaxy and ρayx are not closed. As the detection depth of MT
increases with decreasing frequency, the relatively low-value
anomaly areas are equivalent to extending deeper underground
(Figure 7).
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FIGURE 8
Contour maps of response of the different high-resistivity models in the X direction: (A–C) ρaxy; (D–F) ρ

a
yx; (G–I) ρ

a
xx; (J–L) ρ

a
yy; (M–O) |Tzx|; (P–R) |Tzy|.

3.2 Response of 3D axis anisotropic
high-resistance prism

The 3D prismmodel is the same as 3.1, except that the resistivity
is set to high-resistance. The frequency of the MT used is 10 Hz.

We first fix ρy = 500Ω ⋅m, ρz = 200Ω ⋅m, with ρx of
200, 500, and 1,000 Ω ·m, respectively. The forward

results are shown in Figure 8. Next, we fix ρx = 200Ω ⋅
m, ρz = 500Ω ⋅m, with ρy of 200, 500, and 1,000 Ω ·
m, respectively. The forward results are shown in
Figure 9.

The apparent resistivity ρaxy and ρayx reflects the horizontal
position of the high-resistance body, and the apparent
resistivity ρaxx, ρayy, and the tipper Tzx, Tzy reflect the
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FIGURE 9
Contour maps of the response of different high-resistivity models in the Y direction: (A–C) ρaxy; (D–F) ρ

a
yx; (G–I) ρ

a
xx; (J–L) ρ

a
yy; (M–O) |Tzx|; (P–R) |Tzy|.

horizontal boundary of the high-resistance body (Figure 8).
ρaxy, ρayy, and Tzy are sensitive to changes of ρx of high-
resistance body. When the resistivity of the high-resistance
body is higher, the anomalies it produces are more obvious
(Figures 8A–C, J–L, P–R). ρayx, ρ

a
xx, and Tzx are less affected by the ρx

(Figures 8D–I, M–O).

The apparent resistivity ρaxy, ρ
a
yy, and the tipper Tzy are less

affected by the ρy of high-resistance body (Figures 9A–C, J–L, P–R).
ρayx, ρaxx, and Tzx are sensitive to changes of ρy of the high-
resistance body and are greatly affected by it (Figures 9D–I, M–O).
The apparent resistivity tensor and tipper are not sensitive to changes
of ρz of the high-resistivity body.
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FIGURE 10
Plan view of the 3D complex model.

3.3 Response of 3D complex axis
anisotropic prism

The plan view of the 3D complex prism model is shown
in Figure 10. The top surface of the model is buried at a
depth of 100 m, the size of the prisms on both sides is 5 km
× 22 km × 5 km, and the main axis resistivity in the X, Y,
and Z direction is 10, 1,000, and 100 Ω ⋅m, respectively. The
total length and width of the middle prism are both 12 km,
and the height is 5 km. The main axis resistivity in the X,
Y, and Z direction is 30, 500, and 100 Ω ⋅m, respectively.
The background resistivity is 100 Ω ⋅m, and the frequency

of MT is 10 Hz. The forward modeling results are shown
in Figure 11.

Based on the previous analysis, according to Figure 11, the
low-resistivity body in the X direction of the complex model
caused the low value apparent resistivity anomaly zone of ρaxy, and
this anomaly zone reflects the boundary of the Y direction of
the combination (Figure 11A). The high-resistivity anomaly zone
of ρayx is caused by the high resistivity body in the Y direction
of the composite, and this anomaly zone clearly reflects the
boundary of the composite in the X direction (Figure 11B). The
anomalous regions of Tzx and Tzy respectively reflect the boundaries
of the combination in the X and Y directions, respectively
(Figures 11C, D).

4 Conclusion

This study applies the finite difference method to achieve 3D
MT forward modeling in axis anisotropic media and verifies the
correctness of the algorithm by comparing it with 2D quasi-analytic
solution. The examples show that ρaxy, ρ

a
yy, and Tzy are sensitive to

changes of ρx of the anomalous body and are greatly affected by
it, but insensitive to changes of ρy. ρ

a
yx, ρ

a
xx, and Tzx are sensitive

to changes of ρy of the anomalous body and are greatly affected by
it, but insensitive to changes of ρx. The apparent resistivity tensor
and tipper are not sensitive to changes of ρz of the anomalous body.
ρz has a weak contribution to the surface response of MT. For the
exploration of anisotropic media, the apparent resistivity tensor and
tipper can identify the changes in resistivity in two horizontal axes
directions and the boundaries of the anomalous body, which has the

FIGURE 11
Contour maps of response of the 3D complex model.
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advantage for exploration.The study provides a basis for conducting
the forward modeling and inversion research of MT with arbitrary
anisotropy.
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