
TYPE Original Research
PUBLISHED 30 October 2024
DOI 10.3389/feart.2024.1460169

OPEN ACCESS

EDITED BY

Hans-Balder Havenith,
University of Liège, Belgium

REVIEWED BY

Ming Zhang,
China University of Geosciences
Wuhan, China
Huajin Li,
Chengdu University, China

*CORRESPONDENCE

Longsheng Deng,
dlsh@chd.edu.cn

RECEIVED 05 July 2024
ACCEPTED 14 October 2024
PUBLISHED 30 October 2024

CITATION

Amini M, Deng L, Hassan W, Zidane FZ,
Zaryab A and Shahzad A (2024) Empowering
urban development: geospatial modeling and
zonation mapping in New Kabul City,
Afghanistan.
Front. Earth Sci. 12:1460169.
doi: 10.3389/feart.2024.1460169

COPYRIGHT

© 2024 Amini, Deng, Hassan, Zidane, Zaryab
and Shahzad. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Empowering urban
development: geospatial
modeling and zonation mapping
in New Kabul City, Afghanistan

Mohammad Amini1, Longsheng Deng1,2*, Waqas Hassan3,
Fatima Zahra Zidane1, Abdulhalim Zaryab4 and Arfan Shahzad5

1Department of Geological Engineering, School of Geological Engineering and Geomatics of
Chang’An University, Xi’an, China, 2Department of Geological Engineering, Mine Geological Disasters
Mechanism and Prevention Key Laboratory, Xi’an, China, 3Department of Geotechnical Engineering,
National University of Science and Technology, Islamabad, Pakistan, 4Department of Engineering
Geology and Hydrogeology, Kabul Polytechnic University, Kabul, Afghanistan, 5Department of
Sciences and Humanities, National University of Computer and Emerging Sciences (FAST-NUCES),
Islamabad, Pakistan

The main difficulties in urban development, choosing a location, and creating
preventative safety precautions are accurately characterizing and valuing
subsurface soil information from a geotechnical and geological standpoint. This
paper discusses how to define and build geotechnical subsoil soil zonationmaps
(SZMs) for the new Kabul city, Afghanistan, using traditional ArcGIS software
assessing Kriging interpolation approaches. With the city’s expansion plans,
including New Kabul City’s development, our research supports informed urban
development strategies. Subsoil data from 2,13 locations across the city were
collected from geotechnical studies, focusing on soil classification, Standard
Penetration Test (SPT-N values), undrained shear strength, and consolidation
characteristics up to 15 m depth. SPT-N and soil type were used to create SZMs,
and other parameters were used to evaluate bearing capacity and settlement.
The results revealed that SPT-N values divided the research region into three
main sections: A (8–>50), B (13–>50), and C (14–>50). The subsurface strata
consist of low-plasticity clay (CL) and clayey sand (SC) underlain by highly
plastic clay (CH) and silt (MH). Linear regression predicted SPT-N values with
depth, showing a strong R2 of 0.95. This speeds up sub-soil stiffness and
strength assessments during building project planning and feasibility studies. The
shallow Kabul foundation has an allowable bearing capacity of over 100 kPa,
making it suitable for lightly loaded buildings. Predicting SPT-N levels has an
85% correlation coefficient, while soil type has 94%. Accurate geotechnical data
on the soil’s underlying layers will help characterize the site and identify future
project risks.
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statistical interpolation, soil type, geotechnical investigation reports, SPT-N value,
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1 Introduction

Modern data management methods and technology make data
preservation and use easier to optimize new construction planning
in response to urban sprawl. To create digital geotechnical soil
maps applicable to individuals working at various levels within
the infrastructure construction industry, researchers have utilized
techniques associated with geographical information systems (GIS).
The soil maps generated can effectively depict various subsurface
engineering attributes, including stratigraphy, groundwater
table, shear strength, bearing capacity, and the identification of
problematic soils. The soil maps offer engineers practical and
valuable information to plan future projects, eliminating the need
for extensive desk and feasibility studies (Akbarimehr and Aflaki,
2019). Geotechnical engineers can better handle uncertainty by
dealing with limited data using interpolation (Dodagoudar, 2018);
a spatial geotechnical database that is easily available may facilitate
design processes and save time (Amini et al., 2024).

The theory of spatial autocorrelation, which is the foundation of
interpolation according to Tobler’s First Law of Geography (Tobler,
1970), asserts that locations that are closer together are more similar
than those that are farther apart (Arun, 2013). In otherwords, spatial
interpolation estimates attribute values in unobserved locations
within a study area that lack data (Waters, 1989;Mitas andMitasova,
1999) use interpolation methods to calculate unknown values for
geographic point data like chemical concentrations, rainfall, noise,
and elevation. Interpolation methods create a surface from points
and are used to estimate each cell in grids (Chang and Wang, 2008).
They fall into local or global categories (Burrough et al., 2015).

The difference between the two clusters is how they approximate
unspecified values with predetermined points. When using the
global approach, all of the data that is accessible inside the
initial dataset is utilized. Instead, the local technique uses only
the points nearest the grid node where the value must be
estimated (Vansarochana et al., 2009). Interpolation algorithms are
exact or approximate depending on whether they preserve sample
point values on the surface (Lam, 1983). In addition, there is
a distinct distinction between the stochastic and deterministic
approaches to approach research. Previous methods use numerical
values directly. This idea applies when adequate geographical
data is available to characterize its qualities mathematically.
Quantifying the spatial autocorrelation between sample points
and examining the spatial arrangement of observed points near
the projected location (ESRI) uses the statistical features of the
given data. Popular deterministic approaches include radial basis
functions, inverse distance weighting (IDW), and local polynomial
functions of various orders (Eberly et al., 2004). IDW weighs added
points using the inverse distance from the exclamation point
(Bhattacharjee et al., 2013). The mass of an object reduces at an
exponential rate with increasing distance (Hassan et al., 2024).
According to (Childs, 2004), interpolationwith polynomials ensures
that sample points are inserted into an even surface. This method
holds a rubber membrane via sample points and lowers surface
curvature like radial basis functions (Erdogan, 2009). An additional
category of interpolationmethods, called geostatistical interpolation
approaches, was discovered by (Ouma et al., 2012). Statistical
models that consider autocorrelation or statistical correlations
between the locations that have been recorded are the foundation

upon which these methods work. (Chiles and Delfiner, 2012).
State that ordinary and universal kriging are two widely used
stochastic methods.

A complete explanation of ordinary kriging, which was
utilized in the trials that were carried out for our research,
can be found in the “Methodology” section. There are many
interpolation approaches for geotechnical site characterization and
subsurface data modeling. Data-centric deep learning technique
IC-XGBoost3D was used to build a 3D sub-surface geological
model (Shi and Wang, 2022; Dell’Arciprete et al., 2012) Sequential
indicators, transition probability, and multiple-point simulation
replicate alluvial sediment hydrofacies. From sparse observations,
(Wang et al., 2019), used Karhunen-Loève expansion and Bayesian
compressive sampling to model linear or nonlinear spontaneous
fields without detrending. Using data-driven iterative convolution
XGBoost, (Shi and Wang, 2021a), generated 2D sub-surface
geological cross-sections. The technique extracts stratigraphic
relationships from a single image at various scales by fusing training
images with the CNN framework. In (Shi and Wang, 2021b)
study, a nonparametric, data-driven approach was proposed for
geotechnical site characterization. Based on a few observations,
this method estimates subsurface lithology using multiple-point
statistics. One of the most recent studies, which was conducted
by (Shi and Wang, 2021c), suggested a complex sampling strategy.
Multiple-point statistics and information entropy accurately identify
subsurface lithology and geotechnical drilling locations. Data-
driven methods combined prior data into a training picture using
point statistics. To measure soil and rock factor changes, (Wang and
Zhao, 2016), created a Bayesian inverse assessment model. Used
universal and conventional kriging and GIS interpolation to create
3D bathymetricmodels of Italy’s Giglio Island Seabed (Alcaras et al.,
2022; Al-Mamoori et al., 2020) made use of kriging, which is a
combination of indicator and ordinary. (Pham et al., 2019). used
regression and ordinary kriging to map soil characteristics (total
nitrogen, pH, and organic carbon) in hilly central Vietnam. Li et al.
(Li et al., 2023) proposed an innovative deep learning-based loess
landslide assessment and segmentation model. Li et al. (Li et al.,
2022) present a two-phase, image-based, data-driven model
for partitioning and discovering landslide areas employing
Satellite photos.

For mapping soil attributes, regression kriging was less accurate
than standard kriging. Chabala et al. (2017) mapped Zambian soil
organic carbon using standard kriging. Spatial and uncertainty
maps show soil organic carbon levels in the region. In the
study that (Kieft et al., 2014) conducted, Kriging was utilized in
order to generate scintillation maps of receiver-satellite connection
precisionmaps. An investigation into the differences and similarities
between regression kriging and conventional methods of analyzing
soil characteristics was carried out by (Zhu and Lin, 2010).
Regression kriging can estimate soil characteristics when values and
auxiliary variables are strongly correlated. Unless this is the case,
regular kriging is more accurate. Regression and back-propagation
networks were used to compare (Huang et al., 2019) soil electrical
conductivitymaps used standard kriging and regression.They found
that conventional kriging prevents extreme value overestimation
and underestimation in interpolation surfaces. Utilizing standard
kriging in combination with back-propagation data is a precise
approach for mapping soil salinity. Safi et al. (2020) developed a
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GIS-based model to calculate soil erosion in the Chakwal region,
Pakistan. This is due to the substantial levels of damaging dispersion
clay present in Chakwal and the nearby district of Khushab, which
presents serious obstacles to the infrastructure that is now in
place (Fatima et al., 2023; Hassan et al., 2023c; Hassan et al., 2023a;
Hassan et al., 2023b). Digital soil maps were created by (Taharin
and Roslee, 2021) in Sabah, Malaysia. Maps showed clay percentage
and cohesiveness. Researchers created these maps using kriging
and semivariogram methods. Using geotechnical maps, (Orhan
and Tosun, 2010), assessed the foundation’s residential suitability.
The authors of the study (Mohammed et al., 2012) developed a
geotechnical database beneath the surface in Baghdad usingArcGIS.
Extensive investigations have utilized GIS methods to establish
a comprehensive global database of sub-surface soil. It has been
demonstrated that geotechnical modeling has been carried out
in the following countries: Turkey (Kolat et al., 2006), Thailand
(Suwanwiwattana et al., 2001), Palestine (Jardaneh, 2007), Australia
(Al-Ani et al., 2013a), Portugal (Teves-Costa et al., 2014), Iraq (Al-
Mamoori et al., 2020), Pakistan (Khalid et al., 2021; Hassan et al.,
2022b; Hassan et al., 2023e; Hassan et al., 2024) and Canada (Chung
and Rogers, 2010).

The domain of geotechnical studies in Afghanistan has followed
a succinct historical trajectory, marked by the absence of a dedicated
department exclusively focused on this discipline within the
country’s academic institutions. Notwithstanding this institutional
gap, numerous scholars have been instrumental in advancing the
field through rigorous research endeavours. In order to carry
out a comprehensive investigation into the soil carrying capacity
inside the urban expanse of Kabul City, (Hussaini and Hozeh,
2021b), made use of zonation mapping. The scholarly work that
they have done in the past demonstrates that this is a substantial
contribution that they have made. Their scientific approach makes
use of a geographical information system (GIS) environment, and
it seamlessly combines the standard penetration test. This test has
shown to be a vital component in achieving their study objectives.
Research by (Woods et al., 2022) has improved our understanding
of Salang highway geological and geotechnical difficulties. They
discovered the complexity of the geological landscape and the
engineering challenges of this vital infrastructure. On the basis of a
distinct plan of action, Zaryab et al. (2019) investigated the intricate
engineering features of the rockmass thatwas situated at the location
of the Shah-was-Arus dam in Kabul, Afghanistan. The Chelsaton
Sedimentary Basin nearKabulwas the subject of research carried out
by both (Rasouli, 2020; Rasouli and Safi, 2021), with a specific focus
on geology, soil, and sediment within the basin. During the previous
study, the utilization of soil physical and chemical parameters in
Kabul sedimentary basins was explored and compared. (Rasouli and
Vaseashta, 2023). investigated the physicochemical characteristics
of the Qalay Abdul Ali Soil in Kabul. The pH, EC, CaCO3, and
mechanical properties of Kabul’s Qala Wahid Soil were investigated
in another study that was conducted by (Shamal and Rasouli, 2018).

Hussaini and Hozeh (Hussaini and Hozeh, 2021a) strategically
utilized data that was derived from a particular subset of boreholes.
These boreholes amounted to a significant but limited number,
and they were dispersed across a variety of sectors within Kabul
City respectively. Even though the study acknowledges the spatial
constraints that were imposed by the selectivity of the borehole
locations, it still manages to provide valuable insights into the

soil properties of the larger urban expanse. It is important to
note that utilizing a relatively smaller number of boreholes might
present limitations in offering a comprehensive evaluation of the
entire city’s bearing capacity. However, the acquired data serves
as a foundational reference point, offering initial perspectives on
the geotechnical nuances of the soil within Kabul. The strategic
placement of these boreholes enables the researchers to capture
certain key variations in soil properties, albeit within the confines
of the sampled locations. Therefore, while the findings may not be
exhaustive, they contribute significantly to the initial understanding
of the soil characteristics across diverse sectors of Kabul city, guiding
future endeavors for amore comprehensive assessment of its bearing
capacity. However, research has not been conducted explicitly on the
New Kabul City. Afghanistan’s enormous and daring construction
project, the New Kabul City, is a big step toward modernization.
Thanks to this project, the country’s capital, Kabul, will experience
less population burden. The project also intends to give its people
access to a sustainable, organized urban environment.

Moreover, the current work attempts to solve some of the major
drawbacks of previous research that has applied various interpolated
techniques to geotechnical assessments, such as utilizing the IDW
methodology for soil zonation mapping (Ahmed et al., 2020; Hussaini
and Hozeh, 2021a). However, the precision and geographic accuracy
of the simulations weren't sufficient to capture local shifts in soil
characteristics, which might compromise the reliability of their
predictions. Studies by (Arshid and Kamal, 2020; Ijaz et al., 2023)
created GIS models, although they did not thoroughly test the models’
geographical accuracy with actual data. The lack of comprehensive
validation could result in disparities in regions with diverse geologic
circumstances. Many studies (Pham et al., 2019; Sulyman et al., 2020;
Hassan et al., 2022b; Ullah et al., 2022; Daniyal et al., 2023) only
examined N-values and/or kinds of soil within a certain length. To
construct the geological map for Erzincan, Cabalar et al. (2021) used
GIS interpolation based on various index properties of soil. However,
they neglected to consider the deeper thickness or additional variables,
like evaluation of bearing capacity and settlement, which is crucial for
designing the foundation of structures. Much research (Akhter et al.,
2014; Pham et al., 2019; Khalid et al., 2021; Daniyal et al., 2022) was
carried out using scant data, such as an approximate number of 75
boreholes, raising questions concerning the prediction’s dependability.
The geotechnical variables were not correlated in most research (Al-
Ani et al., 2013b; Cabalar et al., 2021; Hussaini and Hozeh, 2021b). To
ensure the accuracy and reliability of geological subsurface depiction, it
is crucial to evaluate subsurface information’s reliability and thoroughly
verify processes. It needs to correct any prospective inconsistencies
brought on by insufficient confirmation.

Thus, the purpose of this work is to create soil zonation maps
(SZMs) for the new Kabul City, Afghanistan, utilizing kriging
interpolation methods, SPT-N values, and soil types, and to develop
bearing capacity and settlement charts for each zone, which will
be accomplished by conducting soil property analysis at depths of
up to 15 m and to examine how these results may affect Kabul’s
future construction methods and geotechnical studies. To achieve
this objective, extensive field and laboratory test data were carefully
collected. A comprehensive selection of 130 boreholes and 83 test
pits was made based on geotechnical investigation reports of the
developing terrain in the new Kabul city. This systematic integration
of diverse sources of empirical data underpins the reliability
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and robustness of the subsequent analyses and interpretations,
ensuring a comprehensive and accurate characterization of the soil
properties essential for the proposed SZM and foundation design
considerations. SPT-N values, classification, undrained cohesion,
density, compression index, and void ratio were obtained from
the reports. Developing a comprehensive subsoil database has the
potential to decrease construction expenses and timeframes greatly.
Having access to dependable geotechnical data regarding the layers
beneath the surface is essential for effectively planning future site
investigations, conducting preliminary design work, performing
desk studies, and identifying potential geotechnical risks.

The paper is organized into distinct sections: “Study Area”
provides information about the geographical context of the
study, “Methodology” explains the research procedures that were
used, and “Results and Discussion” presents geotechnical maps,
statistical analyses, and correlations in a comprehensive manner.
The concluding section, “Conclusions,” synthesizes the study’s
insights and discusses their broader implications in geotechnical
engineering. This organized format aims to provide a clear and
coherent presentation of the research.

2 Study area

TheprojectedNewKabulCity is strategically locatedbetweenKabul
and Bagram airports in the northern region, having latitudes from 34°-
33′to34°-40′andlongitudesfrom69°-14′to69°-16′. It includesessential
territories such as Karabagh, Kohdaman, Kalkan, Barik Ab, portions of
Shekardara, and the Dehsabz districts. The master plan for the future
city delineates three separate sections: an economic-agricultural zone,
SouthDehsabz,NorthDehsabz, andPaymanar.This research primarily
examines the early stage of building Kabul New City (Dehsabz South),
withaparticularemphasisonanalyzing theusageof theKabul-Jalalabad
route and the expected ring road inKabul province. Figure 1 shows that
the study area is large, covering 25,000 acres and over 80,000 housing
units. Figures 2, 3 display the annual distribution of precipitation in the
KabulRiverBasin, as determinedby (JICA, 2009) usingWORLDCLIM
data.The air temperature data in the Kabul River Basin is derived from
the same study.DistributionFlat andproductive plains primarily define
the sub-surface. It has a significant deposit of sediment, which is more
than3 m thick.The sediment consists of clays, silts, and sandswithpoor
sorting. Figure 2 illustrates the presence of scorching and arid summers
and frigid and snowy winters in Kabul. The average temperatures in
Kabul range from 4.4°C to 33.8°C, with occasional extremes of −10°C
or 37.2°C, as shown in Figure 4. Kabul’s climate, assessed using the
beach/pool score, is ideal for engaging in hot-weather activities from
mid-June to late August.The city experiences intermittent rainfall, with
therainyseason lasting for9.8 months fromJanuary19 toNovember14.
During this period, there are 31 days with precipitation over 0.5 inches.
Themostsignificantrainfall inMarchwas1.9 inches,whileinDecember,
the lowest precipitation was 0.3 inches. Kabul has fluctuating snowfall
quantities, primarily throughout thewinter, fromDecember 8 toMarch
9. Among thesemonths, February receives themost significant average
snowfall, 2.9 inches.This is thefirst comprehensive studyofDehsabzsoil
geotechnology.This is because this regionhas never been systematically
analyzed. For informed economic building planning, experts recognize
the city’s growing industrial and infrastructure growth and the need

for underground data. Consequently, this study signifies substantial
advancement in fulfilling the demands of this essentiality.

2.1 Geology setting

The Kabul Block presents a compelling geological and tectonic
landscape characterized by its intricate structure. The Ghazni Fault
zone delineates its border with the Katawaz Basin in the southeast
(Collett et al., 2015). The Altimoor Fault divides the Nuristan Block
from the Kabul Block, which is located to the east. In regional
geology and tectonics, the Kabul Block is a subject of noteworthy
significance because this geological configuration adds a layer
of complexity and interest to the overall structure. The Herat-
Panjshir Suture Zone and the Western Hindu Kush are located on
the Northern Kabul Block border (Tapponnier et al., 1981). The
Kabul Block is made even more complicated and significant in the
region due to this suture zone, which serves as a major geological
border between the Eurasian and Afghan Central Blocks. There
are a few higher-grade granulite-facies rocks among the basement
rocks of Kabul City, but the majority of the stones are migmatites,
gneisses, and schists (Collett et al., 2015). Researchers discovered
granulite-facies structures in carbonates that were felsic, mafic,
and impure.

Unaltered to mildly altered Late Paleozoic to Cenozoic volcano-
sedimentary phases distinguish the area (Fesefeldt, 1964; Abdullah
and Chmyriov, 1977; Collett et al., 2015). The Kabul Basin is largely
terrestrial or Neogenic lacustrine sediments, with loess layers being
the youngest. Local sedimentation is indicated by substantial loess
deposits on the basin’s periphery. Migmatites, gneisses, schists, and
higher-grade granulite-facies basement rocks form Kabul City’s
structure and geology. The study site is in the late Pleistocene Q3loe
Loess, distinguished by a greater abundance of loess than sand and
clay. The geological intricacy of this region has been heightened
by the buildup of shingle and debris layers, including gravel, sand,
and clay, throughout the late Pleistocene epoch, as seen in Figure 5,
compiled by (Wahl and Bohannon, 2005).

3 Methodology

Aflowchart (Figure 6) illustrates the current studymethodology,
providing a brief and explicit summary of the approach taken.
Detailed explanations for each step are presented in the following
subsections.

3.1 Data collection

Geotechnical field and laboratory data from 130 boreholes
and 83 test pits from various sites were collected with public
and private sector consent. Consultants, geotechnical contractors,
and government agencies are examples. No conflict of interest.
All private companies in Afghanistan were registered with the
Afghanistan National Standards Authority (ANSA), the Ministry of
Urban Development and Land, and the Ministry of Public Works.
The study area borehole locations is marked on the New kabul
city map and shown in Figure 7, which represents phase one of
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FIGURE 1
Study area location map.

the new Kabul city map. From the reports of geotechnical soil
investigations, the following categories of information are extracted:
the coordinates of the sites, the SPT-N values, the soil classifications
according to the unified soil classification system (USCS), the
undrained shear strength, the Atterberg limits, the soil density, the
compression index, the void ratio, the depth of the groundwater
table, and the bearing capacity values at various depths. For light-
load structures, the zoning strategy was carefully planned to include
only the top 7.0 m of soil strata. In a more detailed analysis, depths
of up to 16 m for Standard Penetration Test (SPT-N) values and
30 m for soil types were considered, as classified by the Unified Soil
Classification System (USCS).

The geological parameters collected in this study include
stratigraphy/soil classification, SPT-N values, and depth to bedrock
(if encountered). Stratigraphy was determined by drilling boreholes
at the study sites. Soil samples were then collected from these
boreholes and classified based on laboratory testing per USCS
classification system (ASTM D2487, 2017), which included grain
size analysis (gradation) per (ASTM D422, 2007) and Atterberg’s
limits tests per (ASTM D4318-17, 2010). SPT-N values were
obtained by conducting Standard Penetration Tests (SPT) at various
depth intervals within the boreholes per ASTM (ASTM D 1586,
2022). The bearing capacity and settlement analysis evaluation
included additional parameters such as undrained shear strength,
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FIGURE 2
Environmental factors in the research region.

FIGURE 3
Demonstrates Kabul River Basin annual precipitation distribution.

soil density, compression index, and void ratio. The undrained
shear strength was measured in accordance with (ASTM D 2166-
98a, 2000), while the soil density was determined from Proctor

tests following (ASTM-D698, 2021). Soil samples were collected
using a Shelby tube to obtain undisturbed samples was also used
to determine the bulk density of soil. Additionally, the compression
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FIGURE 4
Kabul river basin average air temperature distribution. The average temperatures in Kabul range from 4.4°C to 33.8°C, with occasional extremes of
−10°C or 37.2°C, as shown in Figure 4.

FIGURE 5
Geological map of the Study Area.
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FIGURE 6
Methodology flowchart.

index and void ratio were determined from consolidation tests
performed in the laboratory (ASTM D 2435-04, 2011). The
hydrological parameter collected was the depth of the groundwater
table, which was measured during borehole drilling at the study
sites. After drilling to the required depth, the boreholes were
left undisturbed for 24 h, allowing the groundwater to stabilize.
The depth of the groundwater table was then measured. The
meteorological data for the study area, including rainfall, snowfall,
and temperature, were obtained from publicly available databases
provided by national meteorological organizations.

3.2 Statistical analysis of SPT-N

The SPT-N data were analyzed statistically to validate the
data, ascertain dispersion, and measure the variation of SPT-N at
various depths. A detailed study of borehole data using descriptive

and inferential statistical methods can reveal soil variability and
geotechnical hazards. In the early stages of this significant urban
development project, an accurate and customized study of the
project’s needs is essential for informed planning and risk avoidance.
For instance, we have thoroughly analyzed a wide range of
descriptive statistical measures within the dataset to determine the
level of variation and the average value.Thiswas done to examine the
data associated with the SPT-N value. The result of a comprehensive
investigation was attained. In a numerical sequence, the mean is
the average value, the mode is the most frequently appearing, the
median is the middle value, and the standard error estimates the
difference between the sample mean and the population mean.
Quantifying the variation or dispersion of a set of values is another
purpose for which the standard deviation has been computed. As a
standardizedmethod ofmeasuring dispersion concerning themean,
the percentage coefficient of variation (%CV) is also evaluated with
this method.
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FIGURE 7
Borehole locations in Phase One are depicted on the map of New Kabul City.

To compile average SPT-N values for all the suggested sections,
one could calculate the comparative dispersion in the data for each
section using the coefficient of variation (%CV). This would be

possible if one used the methodology that found that a higher
percentage of CV values increased data dispersion and decreased
accuracy. Empirical correlations were built from linear regression
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analysis of all developed sections. In addition, kurtosis and skewness
were investigated to understand the peakedness and asymmetry
of the data distribution. Specific inferential statistical methods,
specifically the one-way Analysis of Variance (ANOVA) test, have
been utilized to validate the statistical significance of the mean
and variance observed in the dataset. The one-way ANOVA is an
ideal option for examining SPT-N values among different layers
of soil and depth ranges. This technique is especially useful for
detecting substantial discrepancies in averages between at least
three distinct groups. Before performing the ANOVA analysis, the
authors carefully evaluated the study’s assumptions, such as equality
and normality of variability, to confirm the outcomes’ robustness.
By corresponding conflict within and between groups, the one-
way ANOVA delivers a trustworthy and reasonable framework for
deciding whether the commemorated deviations in SPT-N values
are statistically influential, keeping knowledgeable interpretations of
variability in soil.

3.3 Development of soil zonation maps
(SZMs)

The mapping process used ArcMap’s advanced features (ArcGIS
version 10.5) and kriging interpolation. The utilization of this
method was based on the inclusion of SPT-N values and USCS soil
types in each geotechnical report for the study area. This ensured a
thorough and consistent approach to zoning. In light of the specific
geotechnical properties gleaned from the 130 boreholes drilled
as part of the New Kabul City project, tailoring the approach to
zonation and subsurface analysis is essential. With this extensive
data set primarily focusing on Standard Penetration Test (SPT-N)
values and soil types, we have established the foundation of our
geotechnical understanding, which is essential for directing the
initial stages of urban development in this region. The New Kabul
City project does not contain large buildings or specialist linear
constructions, but it is increasingly vital to examine and handle
accessible and relevant geotechnical challenges. This is because the
project seeks a sustainable future. Our zonation maps will precisely
represent the distinct subsurface features of the New Kabul City
project area. They will conform to the practical limitations and
potential for expansion in the region. This approach is specifically
tailored to meet the region’s requirements. In order to demonstrate
the practical application of this work, generalized soil profiles were
created using collected data. The profiles contained the settlement
and bearing capacity curves for individual footings. The depths of
the footings were 1 and 1.5 m.

3.4 Kriging interpolation technique

For the purpose of estimating the weight at a location that
has not been tested, the Kriging interpolation method, which is
described by (Krivoruchko, 2012), makes use of a geostatistical
model. The model is modified in accordance with the spatial
correlation that exists between the areas that have been tested.
This allows for the achievement of the desired result. The essential
principle that underpins the Kriging technique is that the spatial
variation of any property is too irregular to be represented by

a straightforward mathematical procedure. This thought is the
foundation of the Kriging technique. Stochastic interpolation is able
to provide this peculiar spatial fluctuation (Chiles and Delfiner,
2012), and the results are typically satisfactory overall. According to
(Salekin et al., 2018), Kriging is a method of stochastic interpolation
that is based on the idea that the connection between neighboring
sites can be characterized by a statistical relationship that does not
always represent the physical meaning of the proximity. Kriging is a
method that was developed to solve this problem. One method that
can be used for stochastic interpolation is called Kriging. Stochastic
interpolation method kriging assumes neighboring places can be
connected by a statistical relationship that does not necessarily
indicate proximity. Many fields use the accurate and straightforward
Kriging approach. It aids meteorological precipitation intensity
investigations. It is used in soil property variability research, a
significant geosciences field, and indicates the technique’s versatility
(Robinson and Metternicht, 2003).

Furthermore, the Kriging approach has been successfully
utilized in the modeling of spatial temperature, which is an
essential component in the field of climatology and environmental
research. Positive results have been achieved as a consequence
of the use of the Kriging technique. The method’s ability to
capture and analyze spatial temperature fluctuations was proved
by (Wu and Li, 2013; Alcaras et al., 2020) Parente, It's relevant to
topographical and geographical information systems because it's
used to produce DEMs. Kriging is a versatile geographical data
analysis and modeling tool that has been applied to meteorology,
geosciences, and climatology. Kriging can be used in conventional,
universal, probability, indicator, and disjunctive applications. Each
method adapts the basic kriging approach. We have chosen to
employ the standard kriging method to assess the precision of
these approaches in generating zonation maps using different
soil variables, such as SPT-N values and soil types (Wackernagel
and Wackernagel, 2003). State that conventional kriging may
estimate a value at a point in a variogram-known area using
data from the nearby. According to (Taharin and Roslee, 2021),
the premise upon which the ordinary kriging prediction is built
is Equation 1.

Z(s) = µ+ ε(s) (1)

Z(s) denotes the desired target value, µ denotes the anticipated
average or mean value, and ε(s) represents the unforeseen error that
will diminish the value discrepancy.

A semivariogram (as depicted in Figure 8) would be
generated first to determine the most accurate model for
the data. This semivariogram would then be used as a
mapping tool to trace the development of SPT-N maps as well
as soil-type maps.

The kriging method would be considered. The
semivariogram is a graph developed by (Jian et al.,
1996) that represents the semi-variance as a function
of the distance between two ends. The semi-variance is
determined using Equation 2 from the study conducted by
(Rishikeshan et al., 2014).

γ(h) = 1
2m

m

∑
i=1
(ɀ(xi) − ɀ(xi + h))

2 (2)
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FIGURE 8
A semivariogram, which consists of range, sill, and nugget.

The symbol γ(h) represents the value of semi-variance at a
particular distance. The variable h.m denotes the quantity of point
pairs that are at a distance h from each other. The point value,
denoted by ɀ, is contingent upon a parameter. The variables ɀ
(xi) and ɀ (xi + h) denote the positions of each pair of points.
Semivariogram modeling, an essential step in the process of
describing and predicting spatial data, is achieved through the
use of least-square fitting. This investigation utilizes four distinct
semivariogram models. These models are the exponential model,
the circular model, the spherical model, and the Gaussian model.
The equation can significantly impact the requirements and shapes
of these models, which can vary greatly.

3.5 Validation method

Data validation methods are essential when conducting studies
because they guarantee the precision, dependability, and universality
ofmodels and findings.The collected dataset was split into two parts:
one for model development and the other for validation. 80% of the
data (170 points) was used to develop zonation maps and empirical
models for SPT-N value prediction, bearing capacity, and settlement
charts. This more significant portion ensures that the model or map
has sufficient data to accurately capture the underlying patterns and
trends. The remaining 20% of the data (43 points) was reserved
to validate the developed models, maps and charts. By keeping
this data separate, the model’s performance on unseen data can be
tested, indicating how well the model generalizes to new situations.
This approach enables consider whether the model is overfitting or
performing as expected. Since it offers a fair balance, the 20–80 data
split is frequently suggested in the literature and used by numerous
researchers for model validation and training (Hassan J. et al.,
2022; 2022b; Nawaz et al., 2022b; 2024e; Amini et al., 2024). A
sizeable chunk of the data is used to create the model, with

enough kept aside to ensure its accuracy. Various sections
used different performance metrics to validate the model’s
performance, including the correlation coefficient, coefficient of
determination, mean, root mean square error, mean standardized
error, root mean square standardized error, and average
standard error.

4 Results and discussion

4.1 SPT-N values statistical evaluation

An assortment of statistical parameters was incorporated into
the analysis to evaluate the degree of uniformity of the test data
obtained from the study area. Table 1 presents the statistical
parameters for these parameters up to a depth of 16 m. These
parameters include the mean, mode, median, standard error,
standard deviation, and the maximum and minimum SPT-N
values. The table displays these parameters. Statistical analyses of
SPT N-Values in three sections of a study area show in Table 1
indicate unique soil resistance characteristics and significant
differences in resistance levels. Among the three sections, Section
A has the lowest average soil resistance with a mean N-value of
49.07, Section B has the highest soil resistance with 62.36, and
Section C is in the middle with 55.99. The precision of these mean
calculations is evidenced by their standard errors, with Section
B showing the highest precision. The lowest standard deviation
in Section B indicates a more uniform soil resistance. According
to the coefficient of variation (%COV), Section B displayed the
most minor relative variability, 30.68%. There are deviations
from a normal distribution in every section, as shown by the
shapes of the distributions, which are indicated by kurtosis and
skewness variables (Nawaz et al., 2023b; 2024c; 2024a; 2024d).
On the other hand, Section B demonstrates a significant negative
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TABLE 1 SPT-N-Values descriptive statistics.

Descriptive statistics analysis

Parameters Section A Section B Section C

Mean 49.067 62.359 55.994

Standard Error 1.690 1.135 1.674

Median 49 69 61

Mode 22 22 71

Standard Deviation 22.430 19.133 21.637

%COV 45.71 30.68 38.64

Kurtosis −1.181 −0.766 −1.204

Skewness −0.064 −0.738 −0.0138

Minimum 8 13 14

Maximum 100 89 100

Count 528 852 501

Inferential statistical analysis - ANOVA test

Source of Variation SS df MS F P-value F crit

Between Groups 71134.22 38 1871.953 5.577 9.08E-21 1.429

Within Groups 164793.6 491 335.628

skew, which suggests that there is a tail towards lower values.
The inferential ANOVA analysis indicates that the means of soil
resistance across the sections are statistically different, with a
significant F-value of 5.5776 and a very low P-value of 9.08E-
21. This detailed statistical analysis shows variability within and
across sections and confirms their statistical significance, allowing
informed conclusions about soil resistance in the research area
(Hassan et al., 2017; Nawaz et al., 2024e).

4.2 SZM based on SPT-N values

To generate a soil map of the study area using SPT-N values,
the SPT-N data from the top 30 m of soil are analyzed using
statistical methods. There is a higher number of data accessible
at depths up to 16 m, as indicated by the outcomes of this study.
These findings are utilized in the process of developing the soil
map. Consequently, the SPT-N value soil map is generated by
using data extending as far as 16 m below the natural surface
level by utilizing SPT-N data obtained from the uppermost 16 m,
consisting of 2080 values, as an input in ArcMap10.5, a series
of experiments were conducted to generate a comprehensive soil
representation. Four distinct semivariogram models have been
chosen for the SPT-N numerical values. Exponential, Gaussian,
spherical, and circular models are all included in this category.
These models are depicted in Figure 9 and Table 2 provides a

list of significant indices that can be utilized to evaluate the
degree of accuracy obtainable from these models. According to
(Cambardella et al., 1994), autocorrelation or spatial dependence
was high if the nugget-to-sill ratio was less than 0.25, medium if
it was 0.25–0.75, and low if it was greater than 0.75. Following the
data presented in Table 1, the autocorrelation is moderate, and the
ratio of nuggets to sills is 0.59. According to the exponential model,
this is true.

Table 2 presents statistical indices that summarize the cross-
validation results of four predictive models, namely Exponential,
Gaussian, Spherical, and Circular when applied to SPT-N values.
The Exponential model demonstrates excellent performance based
on its lowest Mean (0.091), Root Mean Square (6.798), Mean
Standardized (0.012), Root Mean Square Standardized (1.0386),
and Average Standard Error (6.556). These findings suggest that
the exponential model makes the most accurate and consistent
predictions. Gaussian, Spherical, and Circular models have similar
RMS, MS, RMSS, and ASE values with a slightly higher Mean.
These three models perform similarly but are less effective than the
Exponential model in this context. The utilization of ArcMap10.5
and the Spatial Analyst tool, along with the ordinary kriging
interpolation technique, has yielded a dependable and accurate SZM
for the uppermost 7-m layer. Figure 10 Shows the study area’s soil
zonation map based on SPT-N-values in the new Kabul city phase
one development plan.
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FIGURE 9
Displays the semivariogram model for SPN N-Values, including the exponential model (A), Gaussian model (B), spherical model (C), and circular model
(D).

TABLE 2 Indices that were utilized for cross-validating the model to forecast SPT-N values.

Model Ma RMSb MSc RMSSd ASEe

Exponential 0.091 6.798 0.012 1.038 6.556

Gaussian 0.105 6.521 0.015 0.930 7.026

Spherical 0.105 6.521 0.015 0.930 7.026

Circular 0.105 6.521 0.015 0.930 7.026

aMean.
bRoot Mean Square.
cMean Standardized.
dRoot Mean Square Standardized.
eAverage Standard Error.

The top 7-m strata were the ones through which this analysis
was carried out. Considering that the physical appearance of SZM is
the same at different depths, the authors decided to present a single
map. The SPT-N threshold was between 4 and 15 depending on the
soil consistency (Peck) that was defined, and it was between 16 and
30 and higher than 30. The various ranges of SPT-N represented
three distinct subsoil strata: firm to stiff (four to fifteen), very stiff
(16 to thirty), and hard/very hard (more than thirty). Because of the
SPT-N values, the region being investigated has been divided into
three primary sections, and the variations between these sections
are presented in Table 3. While the SPT-N value range for section
A is between 7 and 17, section B is between 7 and 23, and section
C is between 7 and 12. All these values are found within the top
7 m of strata. If we look at the 7–12 m deep strata, the SPT-N range
for zones A, B, and C is 27–43, 21–44, and 17-42, respectively.
Hussaini andHozeh (Hussaini andHozeh, 2021b) reported a similar
range of results in the study area, as they developed bearing capacity
maps utilizing SPT-N values. Amini et al. (Amini et al., 2024) also

reported similar results of SPT-N values in the study area, and both
studies validated current findings.

The attributes of each zone indicate the geological attributes
correlated to high and inferior SPT-N values. Generally, high
SPT-N denotes denser, better-compacted grounds, which possess
moderately higher unit weight, strengthened load-bearing ability,
and lessened compressibility. In contrast, more inferior values of
SPT-N denote softer/compressible soils with moderately inferior
unit weights that are prone to settlement under applied loads
(Terzaghi and Peck, 1967). Section C demonstrates low average
compressibility/settlement and bearing capacity, indicating that
soil stabilization needs to be optimized for foundation use.
Section A exhibits inferior compressibility/settlement compared
to Section C, providing adequate load-bearing ability and
needing minor stabilization for infrastructure construction.
Section B shows minor to no issues and offers superior load-
bearing capability. Recognizing these aspects is vital for advising
decisions in geotechnical engineering tasks, particularly in site
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FIGURE 10
SZM of the research area according to SPT-N values.

choice, foundation, and construction planning. Geosynthetic
reinforcement can be effectively employed in areas where low
bearing capacity, high settlement, and poor strength are concerns
(Hassan et al., 2022c; 2023d).

Together with the percentage coefficient of variance (%CV),
the SPT-N ranges of values are shown in Table 2. Measuring
the dispersion in each zone is possible by separately calculating
the percentage CV. (Hassan et al., 2022b), Suggest that the CV
percentage in Table 3 can help prioritize projects in favorable soil
conditions and reduce geotechnical hazards. This would lower
the costs associated with building foundations. Data dispersion
percentages in each area can be used to select the geotechnical
investigation scope carefully. As an illustration, in circumstances
where the rate of CV is more excellent than twenty percent,
geotechnical investigations need to be more exhaustive, and the
foundation design needs to incorporate a higher safety factor

(Hassan et al., 2023e). Table 2 shows that in each of the three
sections, the computed value exceeds 20%. This is due to the
significant differences in soil compaction within the large city area,
as indicated by the greater deviation in SPT-N values from their
mean values. Sections A, B, and C each have their unique SPT-
N profile, depicted in Figures 11A–C, respectively. Since the SPT-
N test is typically not performed in areas where rock is present,
the SPT-N profile for Section C does not include any additional
SPT-N data. This is because the SPT-N test generally is not carried
out in these areas. According to (Terzaghi et al., 1996), it should
be mentioned that there is a correlation between the depth and an
increase in the SPT-N values. This highlights the soil’s consistency
change and the transition from firm to complex. Furthermore, the
SPT-N values tend to rise as the depth of measurement increases
and agreed with the findings of (Hussaini and Hozeh, 2021a;
Amini et al., 2024).
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TABLE 3 Provides a concise overview of the ranges of SPT-N values for
the soil map.

Section Depth (m) N-Values range %COV

Section -A 1-7
7-12
12-16

7-17
27-43
43-45

41.67
22.86
2.27

Section-B 1-7
7-12
12-12

7-23
21-44
43-44

47.13
32.62
1.63

Section-C 1-7
7-12
12-16

7-12
17-42
41-42

22.32
38.14
1.71

4.3 Correlations for predicting SPT-N
values

Linear regression was utilized to develop soil map section
correlations. The statistical variation that is displayed in
Figure 12 was used to predict the SPT-N value with depth.
For map and correlation validation, 42 borehole SPT-N values
(1–15 m) were compared to predicted values at corresponding
depths. (Nawaz et al., 2022c; 2023a; 2024b). extensively discuss
GIS performance indicators like R2, RMSE, and correlation
coefficient. Table 4 shows distinct linear relationships in SPT N-
value three-section regression. Section A has moderate R-squares of
0.18132 and 0.12064, indicating a limited variance explanation.
Section B has higher R-squares, Pearson’s r, and correlation
coefficients. Section C has strong correlations with high R-squared
values of 0.734 and 0.914, indicating that the independent variable
can predict much of the dependent variable’s variability. Each
section has distinct regression line levels, trends, intercept, and
slope uncertainties. Section C has the most accurate fits, lowest
residual sums of squares, and highest adjusted R-square values.

An examination of the differences between the SPT-N values
that were predicted and those that were collected at different depths
is depicted in Figure 13. A satisfactory correlation coefficient of
0.91 was obtained by comparing the two variables. A correlation
coefficient that is greater than 0.8 indicates that there is a
strong relationship between two different sets of variables, as
stated by (Alshameri, 2020). Since 85 percent of the predicted values
are contained within a confidence interval of ±10 percent, the SZM
demonstrates a low range of error, as demonstrated by the fact that
found that the SZM has a low range of error.

4.4 SZM depending on lithology and soil
types

The research area is comprised of a variety of soil types,
including lean clay (CL), silty clay (CL-ML), silt (ML), sandy clay
(SC), fat clay (CH), and fill materials. Each of these soil types
possesses unique characteristics that determine whether they are
suitable for use in engineering and construction applications. The
2080 soil classifications were classified into five groups and entered
ArcMap along with Northing/Easting coordinates. The soil map of

FIGURE 11
Displays Standard Penetration Test-N values for various sections. (A)
Section A, (B) Section B, (C) Section C.

the study area was generated by employing the kriging method,
which involved analyzing the maximum depth of up to 30 m and
was based on the USCS soil classification. The exponential model
demonstrated superior performance after cross-validation on the
soil type-based map. The research area utilizes data from 130
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FIGURE 12
Depth statistically affects SPT-N values.

boreholes drilled to depths ranging from 1 to 30 m to examine the
materials’ engineering and geotechnical characteristics. Figure 14
contains an accurate representation of the soil map. Vertical profiles
were created for each section by conducting trials in ArcMap10.5 at
3-m depth intervals (1, 3, 5, 7, 15 m). For the upper 15 m of soil,
including the natural surface, USCS soil type distribution geospatial
representations have been carefully created. The study area has
lean clay, silty clay, and silt soils (CL, CL-ML, and ML) according
to the USCS framework. Figure 15 depicts the research region’s
soil distribution zonation maps at various depths. The upper 9 m
are loose, clayey soil. From 9 to 13 m, low to moderately flexible
cohesive silty clay soil (SC) takes over. The layers from 13 to 15 m
are silt and extremely pliable clay (CH), revealing the study area’s
complex subsurface composition. After examining the stratigraphy
of the three primary sections, a simplified average vertical profile
was created using statistical analysis, as depicted in Figure 15. A
similar kind of strata was also reported by (Rasouli, 2020); in their
study, he investigated the soil chemical and physical properties of
sedimentary basins of Kabul city. In other research, (Rasouli and
Safi, 2021), examined the soil geology and sediment of the Chelsaton
basin and agreed with the current findings. Numerous other studies
have reported similar data at shallow depths in the study region
(Shamal and Rasouli, 2018; Amin and Helmi, 2021; Rasouli and
Vaseashta, 2023; Amini et al., 2024).

In addition, the results of this investigation provide a critical new
understanding of the geological risks related to the different kinds
of soil in the subject region. This study helps to evaluate potential
hazards associated with soil settlement and integrity in construction
endeavors through the identification of particular features like
compressibility and bearing capacity. These observations are
consistent with thosemade by (Rasouli, 2020) and other researchers,

who have emphasized the significance of comprehending soil
characteristics concerning geologic potential hazards. The recurring
themes found in many studies highlight the need for in-depth
geotechnical studies in comparable areas to reduce hazards and
provide guidance for efficient construction methods.

4.5 Groundwater table

Many researchers have studied Kabul’s groundwater table
(GWT), including (Saffi, 2011; Nasir et al., 2021; Zaryab et al., 2022)
which found shallow water tables in Dehsabs district’s north
and south. According to 130 boreholes in Phase One of Kabul’s
new city, the groundwater table (GWT), often found at 30 m,
significantly affects geotechnical characteristics and foundations.
This level of discussion highlights foundation planning challenges
and considerations. It affects soil load-bearing capacity, saturation,
and earthquake liquefaction.Monitoring excavation and dewatering
are essential when the groundwater table is high. Groundwater
levels also affect soil expansion, contraction, and permeability,
affecting foundation performance. This requires careful design.
The environmental effects must also be assessed, including on
groundwater-dependent plant life and ecosystems. Underground
investigations necessitate a minimum of 30 m of groundwater table
studies. Geotechnical investigations are essential for guaranteeing
the stability and integrity of nearby construction projects, as they
provide vital information.

4.6 Settlement and load-bearing capability
assessment

Shear and settlement requirements were taken into
consideration during the ABC examination of shallow foundations,
specifically square and strip footings. According to (Li et al., 2017),
the recommended safety factor was 3.0, and the maximum amount
of settlement that could be tolerated was 25 mm. Both ultimate limit
state (ULS) and serviceability limit state (SLS) design requirements
will apply to foundation designs. ULS is the absolute maximum load
the earth can absorb without the structure collapsing. Serviceability
limit state (SLS) refers to the foundation’s ability to endure settlement
without failure. Meyerhof ’s method, which was first introduced by
(Meyerhof, 1951), is used for the purpose of determining the load-
bearing capacity of shallow foundations, with a particular emphasis
on shear needs. This calculation is expressed by Equation 3.

qult = cNcscdc + qNqsqdq + 0.5γBNγsγdγ (3)

where sc, sq, sγ Are shape factors; dc, dq, dγ Are depth factors; Nc,
Nq, Nγ are bearing capacity factors and qult is the soil’s ultimate
bearing capacity.

This method is frequently utilized because it provides more
dependable outcomes than others (Shafique and Qayyum, 2011;
Shill and Hoque, 2015; Abdul-husain, 2016; Nawaz M. M. et al.,
2022). Both (Meyerhof, 1970; 1985; Mohurd, 2012) suggest a factor
of safety (FOS) between 2 and 3, whereas the US standard (Design,
1992) recommends an FOS between 2 and four for the foundation
design of the building. As modified by (Joseph and Bowles, 1997),
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TABLE 4 Linear regression SPT-N depth correlation.

Equation: y = a +
b∗ x

Intercept Slope Residual sum of
squares

Pearson’s r R-Square (COD) Adj. R-Square

Section A
3.357 ± 2.330 2.357 ± 1.583 117.071 0.425 0.181 0.099

15.5 ± 10.053 8.000 ± 6.831 2177.0 0.347 0.120 0.032

Section B
−0.500 ± 2.733 6.000 ± 2.231 83.000 0.647 0.419 0.361

−1.70 ± 10.510 22.60 ± 8.581 1227.4 0.639 0.409 0.350

Section C
−2.000 ± 1.712 6.000 ± 1.141 38.000 0.856 0.734 0.734

−18.057 ± 4.307 29.628 ± 2.871 240.514 0.956 0.914 0.905

FIGURE 13
Predicted and actual SPT-N values with depth.

the Meyerhof method was utilized to meet settlement criteria, as
described in Equations 4, 5.

qa = 20N(1+ 0.33
D
B
) ≤ 1.2m (4)

qa = 12.5N(
B+ 1
B
)(1+ 0.33D

B
) > 1.2m (5)

The equation uses the following variables: qa For the bearing
capacity at a settlement of 25 mm, B for the width of the footing, D
for the depth of the footing, and N for the SPT resistance (SPT-N).
The SPT resistance (N) values are modified for the field procedure,
which is referred to as N60 (Skempton, 1986). This adjustment takes
place during the SLSmeasurement.The graphs in Figure 15 illustrate
how the average N60 values change with depth for each section. The
N60avg value is the numerical representation of the average value
at a specific depth for all the sites within a single section. In each

section, the N60avg values that are produced by the influence zone
are taken into consideration when making decisions. According to
the values obtained from the influence zone, the N60avg values are
considered to be contained within each section. The influence zone
is 0.5 times the foundation base above it, two times the square area,
and four times the strip below the foundation. In addition, it has
been determined that the soil layers are normally consolidated. The
maximum settlement resulting from consolidation within the clay
layers is determined for each zone using a well-established equation,
referred to as Equation 6.

(Sc) =H(
Cc

1+ eo
) log(

σ´vo +∆σ´
σ´vo
) (6)

The equation includes the following variables: Sc represents the
consolidation settlement, Cc stands for the compression index, eo
represents the void ratio, σˊvo Represents the adequate overburden
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FIGURE 14
Based on lithology, the SZM of New Kabul City.

pressure, and ∆σˊ represents the additional load or pressure caused
by the structure. The upper value of Cc and the lower value of eo
They have been chosen from the given ranges of values to calculate
the maximum consolidation settlement of clay layers. We have
assessed the impact of the additional load ∆σˊ on the settlement,
which varies between 20 and 100 kPa. The suggested dead plus live
load for lightly loaded structures in three to five-story buildings is
approximately 10 to kPa per square meter. Due to the coefficient
of variation exceeding 20% in all sections, the foundation design
is prudent, taking into account regional construction quality and

engineering assessments. The objective of this study is to ascertain
the necessary bearing capacities for designing a lightly loaded
structure utilizing spread foundations, specifically square and strip
foundations, which are suitable for small structures. The foundation
depths for each section are estimated to be 1 and 1.5 m below the
natural ground level. In overburdened soils, the calculated width
for ABC is between 1 and 2.5 m. In Afghanistan, particularly in
Kabul City, it is customary to construct a square base up to a
height of 2 m. In most instances, the square foundation’s width
typically falls within 2 to 3 m. The bearing capacity determined by
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FIGURE 15
The three Sections’ average soil profiles.

the criteria of the Ultimate Limit State (ULS) and Serviceability
Limit State (SLS) is controlled by the lower value. Our current
scenario involves determining the design value based on the bearing
capacity values concerning shear criteria. Figure 16 illustrates the
ABC and settlement curves for the spread foundation of section A,
with SPT-N values ranging from 8 to 50. At a foundation depth of
1.5 m, section A yielded maximum values of 135 kPa and 91 kPa
for square and strip footings, respectively, with a width of 1 m. The
maximum consolidation settlement under this pressure is 22 mm
and 15 mm, respectively. Figure 16A illustrates the settlement curves
for different widths of the footing, ranging from1 to 2.5 m, at various
pressure levels. Based on the information presented in Figure 16B,
Section B indicates a marginal rise in ABC values of 135 kPa and
120 kPa for square and strip footings, respectively, at a depth of
1.5 m.

Regarding the pressure in Figure 17A, the settlement values
are 22 mm and 20 mm, respectively. Figure 17B shows the bearing
capacity curves of Section B, indicating relatively higher load-
bearing capacity compared to Section A. Figures 18A, B illustrates
the ABC and settlement curves associated with section C, precisely
the SPT-N values ranging from 14 to 50. The highest recorded
values of ABC for square and strip footings are approximately
155 kPa and 120 kPa, respectively, at a depth of 1.5 m.Themaximum
consolidation settlement that can occur under this pressure is
24 mm, with a possibility of exceeding this value by 20 mm only in
rare circumstances.

In every geotechnical section of the research area,
the shallow foundation’s bearing capacity at 1.5 m depth
is greater than 100 kPa and agreed with the findings of
(Hussaini and Hozeh, 2021a).

This implies that the foundation can withstand a load of dense
structures without experiencing any failures unless unforeseen

exceptional circumstances arise. The examination of the soil
profile indicates the presence of clearly defined layers, and a
deeper groundwater table below 30 m reinforces the observation
that the soil is less prone to settling. Buildings in Kabul are
commonly constructed on foundations, which occasionally
necessitate the use of soil improvement techniques to enhance
the cost-effectiveness of the project. In order to achieve this, the
foundations are usually built. Furthermore, foundation design
engineers can adapt and refine foundation design in order to
achieve optimal results. This is accomplished by decreasing the
factor of safety (FOS) from 3 to 2.5 for buildings that do not have
significant loads.

Based on the findings mentioned earlier, it is recommended
that a shallow foundation be constructed with a depth of 1.5 m for
a structure that undergoes minimal loading in all three sections.
The study recommends using isolated footings with 1 m by 1 m or
1.5 m by 1.5 m for small-storey buildings. On the other hand, strip
footingswith a depth of 1 m are considered sufficient.With the given
bearing capacities, the anticipated settlement of clay layers will not
surpass 25 mm by the suggested dimensions for small structures.
During foundation construction, if the base of the foundation comes
across soft or weak soil and fill material, it is crucial to completely
replace the foundation with coarse material with a maximum
acceptable content of 10%. This is a limitation of the bearing
capacity curves.

The coarse fill material will be compacted to achieve aminimum
threshold of 95% of the modified Proctor maximum dry density.
Engineers and geologists possess the ability to precisely ascertain
the bearing capacity of lightly loaded structures, resulting in time
and cost savings. To verify the curves, the bearing capacity of
15 distinct sites was assessed by comparing the actual bearing
capacity with different dimensions of footings. Subsequently,
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FIGURE 16
Section A bearing capacity and settlement curves. (A) Settlement, (B) Bearing Capacity.

the obtained results were juxtaposed with the anticipated load-
bearing capacity of a footing with identical dimensions and depth.
Figure 19 depicts a comparison between the estimated and actual
bearing capacity (Alshameri, 2020). Approximately 85 percent of
the predicted bearing capacity values exhibited a significant error,
with the majority falling within a confidence interval of ±10

percent. These curves apply to structures with low-weight loads.
Nevertheless, the extensive project and heavily burdened structure
necessitate a comprehensive geotechnical investigation.The scope of
this study was restricted to sensitive projects, resulting in limitations
on including maps, soil parameters, and bearing capacity curves,
which in turn constrained the extent of soil investigation.
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FIGURE 17
Section B bearing capacity and settlement curves. (A) Settlement, (B) Bearing Capacity.

5 Conclusion

The study thoroughly examines the extensive geotechnical data
and spatial soil maps of the newly established city of Kabul. The
analysis relies on the integration of SPT-N values and lithology data.
According to the SPT-N assessment, the soil maps indicate that
the study area was divided into three sections, while the lithology

analysis identified six sub-sections. The SPT-N values for Section
A, Section B, and Section C range from 8 to greater than 50, 13 to
greater than 50, and 14 to greater than 50 for the top 15 m of soil.

The map displays lower SPT-N values to indicate the presence of
alluvialdeposits,whereashighervaluesindicatethepresenceofsandstone,
shale, and gravel.The thickness of the fill material ranged from 1 to 2 m,
with localized areas experiencing an increase of 2.5 to 3 m. After the
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FIGURE 18
Section C bearing capacity and settlement curves. (A) Settlement, (B) Bearing Capacity.

fill material, a layer below shows compositional changes. This layer is
characterized by a transition from a low to moderately flexible cohesive
silty clay soil (SC) between 9 and 13 m in depth. The layers measuring
13–15 m are composed of silt and extremely pliable clay (CH). We
have effectively established several linear relationships that can precisely
forecast the SPT-N value. The R2 value of our models is 0.99, indicating
a high level of accuracy.

Additionally, the RMSE is 5.8, which is considered low.The validity
of empirical correlation equations was verified by conducting tests

on 42 borehole SPT-N values extracted from geotechnical reports.
Approximately 91% of the estimated SPT-N values fell within the
confidence interval of ±10%. This indicates a minimal margin of error
in the projected SPT-N values. The shallow foundation in New Kabul
City was determined to have sufficient bearing capacity to support the
structure’s foundation at a depth of 1.5 m. The square footing and strip
footing exhibit a significantly high average bearing capacity, surpassing
145 and 110 kPa, respectively.This suggests that they are highly suitable
for supporting the base of structures with minimal weight, ensuring
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FIGURE 19
Comparing actual and predicted bearing capacitys.

exceptional levels of safety.The statistical analysis of the database shows
thatthisstudygeneratessoilmapsfromavarietyofuniformlydistributed
data ranges. This paper provides geotechnical maps for desk studies,
initial designs, hazard recognition, feasibility studies, and extensive
geotechnical soil investigations. Maps, soil parameters, and bearing
capacity curves limit sensitive projects’ soil investigations.

6 Limitations and recommendations
for future works

The reliability of the maps can be affected by data gaps, and
their precision is contingent upon the availability and caliber of
soil exploration data. SZMs authentication and reliability could be
enhanced by conducting additional investigations in the subject region
and gathering more subsoil data. The study’s findings are unique to
the examined area; thus, they might not immediately apply to other
placeswithdifferent geological environments andcircumstances.Other
geotechnical variables which might influence the overall evaluation
are excluded from the study, including underground water situations,
long-term soil behavior, dynamic variables, soil physio-chemical and
chemical features (i.e., pH, chloride, sulphate, EC, TDS, and organic
content), and environmental effects.

To offer a more thorough geotechnical evaluation, future research
may investigate incorporating other characteristics such as durability,
dynamic behaviors, chemical properties, aquifer situations, and
environmental consequences. It is advised to use sophisticated
interpolation techniques, such as algorithms based on machine
learning, which can improve the precision of spatial predictions

and effectively record localized fluctuations. More reliable tools
for planning might come through modeling the periodic shifts in
geotechnical characteristics caused by buildings, catastrophes, or cyclic
environmental variables. Enhancing soil data to create comprehensive
risk assessment models for landslides, flooding, and earthquakes will
increase awareness and disaster prevention.
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