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Fractures play a crucial role in tight sandstone gas reservoirs with low
permeability and low effective porosity. If open, they not only significantly
increase the permeability of the reservoir but also serve as channels connecting
the storage space. Among numerous fracture identification methods, seismic
data provide unique advantages for fracture identification owing to the provision
of three-dimensional information between wells. How to accurately identify
the development of fractures in geological bodies between wells using seismic
data is a major challenge. In this study, a tight sandstone gas reservoir in the
Kuga Basin (China) was used as an example for identifying reservoir fractures
using deep-learning-based method. First, a feasibility analysis is necessary.
Intersection analysis between the fracture density and seismic attributes (the
characteristics of frequency, amplitude, phase, and other aspects of seismic
signals) indicates that there is a correlation between the two when the
fracture density exceeds a certain degree. The development of fractures is
closely related to the lithology and structure, indirectly affecting differences
in seismic attributes. This indicates that the use of seismic attributes for
fracture identification is feasible and reasonable. Subsequently, the effective
fracture density data obtained from imaging logging were used as label data,
and the optimized seismic attribute near the well data were used as feature
data to construct a fracture identification sample dataset. Based on a feed-
forward neural network algorithm combined with natural fracture density and
effectiveness control factor constraints, a trained identification model was
obtained. The identification model was applied to seismic multi-attribute data
for the entire work area. Finally, the accuracy of the results from the training,
testing, and validation datasets were used to determine the effectiveness of
the method. The relationship between the fracture identification results and
the location of the fractures in the target reservoir was used to determine
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the reasonableness of the results. The results indicate that there is a certain
relationship between multiple seismic attributes and fracture development,
which can be established using deep learning models. Furthermore, the deep-
learning-based seismic data fracture identification method can effectively
identify fractures in the three-dimensional space of reservoirs.

KEYWORDS

fractures, deep learning, tight sandstone, Kuga basin, identification model, seismic
multi-attribute, gas reservoir

1 Introduction

With the continuous consumption of conventional oil and gas
resources, unconventional tight sandstone oil and gas has gradually
increased (Schmoker, 1996). Oil and gas resources in tight sandstone
reservoirs exhibit enormous development potential, and many
countries have made their development a key component of their
national energy strategies (Nelson, 1985). Natural fractures play a
significant role in tight sandstone gas reservoirs (Olson et al., 2009).
Most of the fractures will be fully or partly sealed by mineral cement.
When opening and filled.

Fractures are combined, with high fracture density there are
probably significant numbers of open fractures, but nonetheless,
the degree of mineral fill is an extremely important parameter
(Laubach et al., 2019). It is especially important in deep sandstone
reservoirs where high temperatures facilitate quartz cementation,
both in the host rock and in fractures. Where open, they
not only significantly increase the permeability of the reservoir
but also facilitate the flow and migration of fluids (Ding et al.,
2012). Moreover, due to the low permeability of tight sandstones,
natural fractures become channels connecting the storage space
(Gong et al.,, 2019), forming effective storage that helps gas escape
from the reservoir more easily. In certain cases, e.g., the ultra-deep
tight sandstone, due to the very low matrix porosity, the fracture
porosity is much greater than that of grain pores, resulting in natural
fractures becoming the main storage space for oil and gas (Zeng
and Li, 2009; Zeng and Liu, 2009).

Recent oil and gas exploration practices have shown that the
degree of nature fracture development is the key to determining
whether tight sandstone reservoirs can achieve efficient and stable
production (Deng et al., 2013; Ding et al., 2015a). The development
characteristics of natural fractures in tight sandstone gas reservoirs
are complex, including fracture types, geometric shapes, formation,
evolution, and distribution patterns, which differ from those of
conventional reservoirs. This imposes higher requirements for
works on natural fracture identification, quantitative evaluation, and
distribution identification. To evaluate and identify natural fractures
more accurately, researchers have comprehensively applied various
technical methods, such as geological descriptions (Gale et al.,
2014; Lyuetal, 2022), core logging (Deng etal., 2024), seismic
interpretation (Shoaib etal., 2022) and geochemistry analysis
(Davalos, 2022), to quantitatively characterize the development
status, formation mechanisms, and main controlling factors of
different natural fractures in tight sandstone reservoirs (e.g.,
Ding et al., 2015b).

How to accurately identify the development of fractures
in geological bodies between wells is a major challenge. The
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identification of natural fractures has undergone a qualitative,
semiquantitative, and quantitative processes, and a preliminary
technical system for identifying reservoir fractures has been
formed (Liuetal, 2019; Zhangetal., 2021; Guoetal., 2022a;
Hu, 2022; Yasin et al., 2022). However, in nature fracture research
and identification, there are still two main issues: first, a single
method is difficult to be applied universally owing to its inherent
limitations. For example, seismic curvature (one of the seismic
attributes) can only indirectly identify the development of natural
fractures related to tectonic deformation of the strata and these
fractures should be large scale. Second, the identification accuracy
in practical applications must be improved. Therefore, identification
research of fractured oil and gas reservoirs is still in the exploratory
stage. Various identification technologies need to be further
integrated and innovated to improve the identification accuracy to
better guide the exploration and development of tight sandstone gas
reservoirs.

Reservoir fractures can be identified using logging, core, and
field data (Qietal, 2024; Dingetal, 2013). Logging data are
often used to identify natural fractures because of their high
vertical resolution in a single well (Aghlietal, 2016). Logging
methods for identifying natural fractures use conventional logging
data and special logging data (e.g., full-waveform logging and
wellbore imagers from Ezhov and Dubinya (2017) to identify and
interpret natural fractures (Yong and Zhang, 2007). By analyzing the
conventional logging data of oil and gas wells, a series of abnormal
responses caused by fracture development can be observed, as
reflected in the porosity, permeability, and electrical properties.
Wellbore imaging technology uses two-dimensional images to
visually display fracture information, which is helpful for identifying
natural fractures (Hao, 2016). However, this technology relies
primarily on resistivity scanning imaging, which limits its ability to
identify natural fractures in three-dimensional zone between wells.
Furthermore, this technology is dominated by manual analysis,
relying on experience and multiple identification criteria, which are
affected by the professional knowledge level of technicians, resulting
in low identification efficiency.

The analysis of field data included the observation of
outcrops and the study of geological structures. In the field, the
outcrop fractures are formed by geological processes; however,
traditional outcrop fracture research relies on manual delineation
and traditional image processing algorithms, which not only
consume considerable manpower but also introduce human errors,
affecting the accuracy of geological research. Although modern
image-processing technology can assist in simplifying fracture
processing, it needs good quality input image data (Tian et al., 2018).
Macroscopic and microscopic observations of natural fractures in
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field outcrops and rock cores can yield various natural fracture
parameters, providing valuable basic data for fracture feature
research and serving as a verification tool for other identification
methods (Gale etal,, 2014). A continuous underground fracture
network model can be constructed by directly observing the natural
fracture morphology in field outcrops, rock cores, and other samples
combined with a small amount of drilling data (Bisdom et al., 2014).
This model can detail the characteristics of natural fractures, such
as type, occurrence, direction, density, length, opening degree,
and filling degree, and quantitatively characterize the degree of
natural fracture development at different scales in tight sandstone
reservoirs (Ding et al., 2015b; Peacock and Sanderson, 2018). In
addition, this model needs to be validated through the interpretation
results of conventional logging or imaging logging. The data or
model generated by the methods has low stability. Meanwhile, these
methods are time-consuming and the results are data-dependent.
The location, amount, and measurement method of data collected
in the field can all affect the results.

Seismic data are typically used to interpret faults and indirectly
identify natural fractures; however, it is difficult to identify small
faults that are closely related to natural fracture development.
Furthermore, many natural fractures are not related to faults at all.
Seismic response characteristics indicate that when seismic events
exhibit reflection and diffraction characteristics, such as complex
waves, distortion, disorder, and discontinuity, they may indicate
the presence of natural fractures in the reservoir. Natural fracture
identification methods based on seismic data can be divided into
two main types: anisotropic seismic fracture identification and
seismic attribute analysis. Anisotropy is based on the principle that
natural fractures enhance the anisotropy of geological structures and
produce significant responses to seismic waves (Sun et al.,, 2014).
The commonly used methods of this theory include shear wave
splitting analysis (Ramos-Martinez et al., 2000; Bansal and Sen,
2008; Yang etal., 2022; Yang K. et al., 2024; Yang et al., 2024), P-
wave anisotropy analysis (Jia et al., 2013), and multi-wave and multi-
component methods (Wu et al., 2006). Post-stack seismic attribute
analysis refers to the processing and analysis of seismic data on a
profile using seismic attributes after the seismic data interpretation
is completed to identify natural fractures and evaluate the degree
of natural fracture development. This method can extract fracture-
related information by calculating various attributes of the seismic
data, such as amplitude, frequency, and phase (Baytok and Pranter,
2013). For example, the presence of natural fractures can lead to a
decrease in seismic wave velocity and an increase in amplitude; thus,
fractures can be identified by calculating the changes in seismic wave
velocity and amplitude. In addition, natural fracture identification
algorithms and models in seismic attribute analysis software (e.g.,
Petrel from Schlumberger) can be utilized to identify and classify
fractures automatically. Currently, the application of curvature and
coherence attributes to fracture identification methods is becoming
increasingly widespread (Babasafari et al., 2022; de Oliveira et al.,
2023). Coherent volume analysis technology and the curvature
method are used to identify large-scale fractures to achieve a more
accurate identification and identification of natural fractures in the
study area.

However, for more complex geological conditions, relying
solely on a single seismic attribute is no longer sufficient to
meet identification requirements. Therefore, combining multiple
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attribute analyses may improve the accuracy of natural-fracture
identifications. The combination and validation of multiple
attributes can reduce the multiplicity of identification results and
improve their reliability. The resolution of seismic data cannot
identify individual fractures. However, seismic data attributes have
a certain response to major faults, geological deformation, and
lithological conditions. And these kinds of information are strongly
related to the development of fractures. Therefore, using seismic
data can indirectly identify areas with high-density development of
fractures. Neural network technology based on deep learning has
demonstrated a strong anti-interference ability and fault tolerance in
oil and gas reservoir identification (Alizadeh et al., 2022; Tian et al.,
2023; Li et al, 2023a; Li et al.,, 2023b; Kohzadvand et al., 2024).
Artificial intelligence models are applied to identify fractures using
logging data (Zerrouki et al., 2014; Tabasi et al., 2022; Ismail et al.,
2024). However, the fractures between wells affect the deployment
of well locations and engineering applications, which requires that
seismic data should be utilized to identify fractures. To improve
the accuracy of natural fracture identification and identify the
development of natural fractures in the three-dimensional space
between wells, this study proposed a deep-learning-based natural
fracture identification technology workflow. In this workflow, at
different depths in the well, the fracture densities obtained from
the interpretation of image logging were used as the label data
points, and multiple seismic attributes near the well were used
as feature data points to construct a dataset. Using feedforward
neural networks to obtain identification models, we identified the
development of natural fractures in three-dimensional space using
various seismic attributes. Comparative analysis of the verification
wells showed that the results were highly accurate. The use of
multiple seismic attributes for natural fracture identification based
on deep learning is worthy of further promotion and application.

2 Geological setting

The Tarim Basin, located in the Xinjiang Uyghur Autonomous
Region, is the largest petroliferous basin in China (Li J. et al., 2023).
In the northern region, the Kuqa Depression is an important
structural unit with abundant oil and gas resources (Li et al., 2024).
Currently, medium-to-large natural gas fields, such as Kela 2,
Keshen, Dabei, and Bozi, have been discovered (Liu et al., 2021;
Liu et al., 2023). The Kelasu Tectonic Belt is the second row of
tectonic belts in front of the Tianshan Mountains, and its formation
was influenced by the Late Himalayan orogeny, particularly by the
intense uplift of the South Tianshan Mountains (Guo et al., 2016).
During the southward thrust process, it was obstructed by the
Wensu-Xiqiu ancient uplift, resulting in large-scale compression and
fragmentation of the western section and the formation of anticline
structural traps of thrust faults and fault-related folds (Yang K. et al.,
2024). Since the Yanshan period, this tectonic belt has formed
four northward-dipping thrust faults with basement involvement.
These are the Bozi-Kela, Kelasu, Keshen, and Baicheng faults, with
gradually decreasing fault distances from north to south. They
control the formation of four rows of fault structural zones, namely,
the Bozi-Kela, Keshen, Baicheng, and southern Baicheng fault
structural zones, as shown in Figure 1A and b (Tian et al., 2020).
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FIGURE 1
Regional location (Xu et al., 2022) (A) and structural outline map (Wang et al
Dabei region.

., 2023) (B) of the Krasu Structural Belt. (C) The structural map of the Bozi

The Kuga Depression was an intracontinental depression
basin in the Late Yanshan period (96.6-65Ma) with uniform
stratigraphic thickness and no significant thickening. During the
Cretaceous—Jurassic, no significant uplift occurred in the strata
of the area. In the Early Himalayan period (65-23 Ma), during
the sedimentary period of the Kumglimu-Kangcun Formation,
gypsum salt rocks were deposited in the basin, forming separated
salt lakes. After co-sedimentation, the salt-rock layers began to
flow, but no large-scale thrust structures appeared. In the Mid-
to-Late Himalayan period (23-0.7 Ma), the Kuqa Depression was
influenced by the uplift of the South Tianshan Mountains and
evolved into an intracontinental foreland basin with an increase
in the structural deformation styles (Luo et al., 2020; Wang et al.,
2022; Yang K. et al., 2024). At this stage, the Central Kelasu fold-
thrust belt (Zheng et al., 2020) is revived and the salt layer flows to
form various salt structures. The above- and below-salt structural
layers underwent layered deformation. In the Late Himalayan period
(2.6-0.7 Ma), the Indian and Eurasian plates rapidly converged, and
the Qinghai Tibet Plateau and Tianshan Mountains rapidly uplifted.
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The main stress direction in the Kelasu structural belt tends to be
N-S or NW-SE.

The Bozi Dabei region is located in the western part of the
Kelasu tectonic belt, is distributed in the NEE direction, and exhibits
north-south zoning and east-west segmentation (as shown in
Figure 1C). The region was vertically divided into three structural
units: above salt, below salt, and basement (Fan etal., 2008).
There are two types of construction styles: above and below salt.
Typical synsedimentary structures developed in the salt structural
unit include growth anticlines and faults. This characteristic
is deformation during sedimentation, and the difference in
sedimentary thickness reflects the process of structural deformation.
The below-salt structural unit formed owing to the strong thrust of
the South Tianshan Mountains, characterized by imbricated tectonic
zones, with the development of northward-dipping and locally
southward-dipping thrust faults. The structural styles are mainly
fault-related folds, with both basement involvement and cover
detachment structures bounded by the Bozi-Kela Fault. On this
horizon, the area north of the Keshen Fault is mainly characterized
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FIGURE 2
Classification of fracture types based on genesis. Different types of fracture formation. (A) Regional tectonic fracture (Squeeze stress field); (B) Regional
tectonic fracture Shear stress field; (C) Deformation-related fractures; (D) Fault co-derived fractures (Zhou, 1998).

by imbalanced fault anticlines, whereas the area south of the Keshen
Fault is characterized by gentle folds. The central and southern
regions of the Keshen section commonly have gentle back-thrust
and counter-thrust gentle folds.

The study area has developed three types of natural fractures
related to regional tectonic stress, faults, and tectonic deformation
respectively. (Zhou, 1998) (as shown in Figure 2). Based on the
filling properties of fractures in the core and the relationship
between fractures, it can be determined that there are mainly
three periods of fractures (Figure 3A). Mid-period full-filled
fractures cut early full-filled fractures, while late-period fractures
are mainly half-filled or unfilled. The cathode luminescence
photo of the fracture filling material indicates that there is a
significant difference in the cathode luminescence color of calcite.
The photo shows two periods of calcite-filling characteristics
(Figure 3B). The homogenization temperature analysis of the
calcite in the fracture filling material of the core showed two
obvious peak ranges: 100°C-120°C and 130°C-160°C. The
uniform temperature of a small amount of inclusions is between
170 and~180°C (Figure 3C). The C-O isotope results of the
fracture filling material indicate that the filled and half-filled
fractures are mainly developed in three periods. Unfilled fractures
mainly formed during the late Himalayan period to the present
(Figure 3D).

3 Database

The seismic data coverage area of the study area is 1,200 km?,
including the Bozi and Dabei areas. A typical seismic profile
of the study area is shown in Figure 4A (the section location
is Line A in Figure 1). The seismic profile shows that the strata
in the region are vertically divided into three structural units: salt
above the structural unit, salt below the structural unit, and the
basement structural unit. The target layer (Cretaceous Bashijigike
(K,bs) and Baxigai (K,bx) Formation) of this study area is nearly
200-300 m thick. Therefore, most of the wells in this work area
have only reached around 300 m, starting from the top of the
Cretaceous strata.

The surface of the Kuga Basin includes two landforms, the
Gobi and mountainous areas; thus, seismic data are easily affected
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by the surface during seismic acquisition. The Gobi Desert forms
a low-velocity zone near the surface, causing attenuation of the
energy generated by seismic sources and further attenuation
of the energy when reflection waves propagate upward to the
ground. In contrast, the target layer was located under the gypsum
salt layer at a greater depth, and the inaccurate velocity of
the gypsum salt layer made it difficult to image the subsurface
structures. A thick salt layer significantly affects imaging quality.
The seismic sections passing through Z101-2, Z2, Z302, and
7102 are shown in Figure 4B (the section locations are Line
1, Line2, Line3, and Line4 in Figure 1C, respectively), and the
seismic profiles passing through the Z105, Z1302, B901, and
B12 wells are shown in Figure 4C (the section locations are
Line 5, Line6, Line7, and Line8 in Figure 1C, respectively). The
thicknesses of the gypsum salt layers in the two sets of wells
were less than 100 m and greater than 200 m, respectively. A
comparison between the two sets of seismic sections indicates
that the quality of the seismic data is better when the gypsum
salt layer is thinner. Therefore, the quality of the seismic data
can be judged based on the thickness of the gypsum salt layer.
Regions with higher seismic data quality had higher reliability
in obtaining the identified results. The thickness of the gypsum
salt layer obtained from the logging data was interpolated on
a plane, and the results are shown in Figure 5. The thickness
of the gypsum salt layer within the region delineated by the
white dashed line in the Figure5 was relatively small (less
than 100 m). The quality of seismic data in this region was
less affected by the gypsum salt layer, and logging data were
more suitable for natural fracture identification than data outside
the region.

The study area has abundant imaging logging and core data.
Fracture information recorded by imaging logging and rock
cores is the basis and inspection standard for characterizing and
identifying natural fractures using seismic data (Wilson etal.,
2015). Based on the core and image logging data, we can
interpret the development characteristics of natural fractures
in the study area. Imaging logging data provide reliable image
data for evaluating fractures and their characteristic parameters.
These images clearly display the characteristics of the wellbore
fractures. The high-density sampling, high resolution, and
high wellbore coverage of imaging logging enable not only
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the identification of natural fractures, classification of fracture
types, and determination of fracture development intervals, but
also the quantitative analysis of fractures and calculation of
fracture parameters.

Fractures can be classified into unfilled, half-filled, full-filled,
and closed according to their filling properties. Based on thin section
identification, core observation, and imaging logging data, these
types of fractures can be identified. We define unfilled and half-filled
fractures as effective fractures. Full-filled and closed fractures are
defined as ineffective fractures. Different types of features are shown
in Figure 6A. The main filling materials are calcite, quartz, and
dolomite. Based on the measured gamma-ray intensity of the core,
the corresponding gamma curve of the rock core is matched with
that of the logging data to achieve the conversion from the core depth
to the logging depth. The statistical results of fracture widths indicate
they are mainly concentrated between 0.2 and 0.6 mm (as shown in
Figure 6B).
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4 Workflow
4.1 Data preparation

The first step in natural fracture identification based on deep-
learning method is establishing a training sample set. The sample
data consisted of well-known fracture developments and their
corresponding seismic attributes. The seismic attributes are the
characteristic data of the sample set. Currently, the seismic attributes
commonly used for natural fracture identification can be classified
into three categories: waveform similarity (Chengetal., 2022),
geometric features (Lvetal, 2024), and absorption attenuation
(Guo et al,, 2022b). Waveform similarity classes include coherent
bodies, edge detection, and variance bodies. Geometric feature
classes include curvature and inclination attributes. The absorption
attenuation category includes amplitude, frequency, and spectral
attributes. The development of natural fractures is related to the
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the left is significantly better than that in the four sections on the right.

(A) Typical seismic section in the Bozi-Dabei region. The lithology between the K top and E;_,km top is a gypsum salt layer. The upper and lower layers
of the gypsum salt layer exhibit two distinct structural features. Seismic data under gypsum salt at different well locations in the Bozi-Dabei area (B)
Wells with thinner salt layers (less than 100 m); (C) Wells with thicker salt layers (greater than 200 m). The blue lines represent the top of the
Cretaceous, the red diagonal lines represent the faults, and the red vertical lines represent the wells. The continuity of the events in the four sections on

lithology, faults, and deformation of the strata; the lithology,
faults, and other responses to deformation affect the seismic
attributes. In particular, the lithology affects the wave impedance
of the seismic. Fault characteristics affect the coherence and
ant tracking (Gaietal, 2022) properties of seismic data. The
deformation of the strata affects the curvature and dip angle
properties. Therefore, after extracting the seismic attributes based
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on the above categories, they can be used as feature data of the
sample set.

The label data in the sample set represent the development
of fractures. In this method, we used the fracture density (the
number of the fractures per meter) as the label data. While fracture
size is typically a key component of a fracture intensity measure
(Ortega et al., 2006) in our study there is not much variation in
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Salt layer thickness of Bozi-Dabei area. The thicknesses of the gypsum salt layers in the areas near wells Z10, Z24, and B901 are relatively thin.

the widths of fractures in a given same well (Figure 6). The core
and imaging log data from the well do not allow the height of the
fractures to be measured (except for a few vertical fractures), because
we cannot determine the location of the fracture terminations that
lie beyond the core or wellbore. The target layers we studied are
Cretaceous Bashijiqike and Baxigai Formation, with a thickness
between 100 and 300 m and mostly comprise a single lithology. Our
current method is insufficient to identify the opening degree and
height of fractures.

Using image-logging data, the location of natural fractures in
the wellbore can be intuitively obtained, including their occurrence,
degree of opening, and extension along the wellbore direction.
From imaging logging data, natural fractures and induced fractures
can be identified and distinguished. The induced fractures in the
logging image appear as feather-shaped and symmetrically arranged.
This type of fracture does not belong to natural fractures, so we
did not consider this type when establishing the labeled dataset.
Natural fractures can be further divided into effective and ineffective
fractures. The opened fractures appear as dark sinusoidal stripes
on the image and are manually selected to obtain characteristic
information such as the inclination, dip angle, and orientation of
each fracture at different depths. As shown in Figure 6, the fracture
development identified by image logging was converted into fracture
density results as well as seismic attribute curves near the well.

In this case study, the sample interval for seismic data as feature
data is 8 m. The image-logging data, which serves as label data,
clearly has higher accuracy in identifying fractures than seismic
data. In order to unify the label data with the feature data, we
calculated the fracture density of one sampling point per 8 m,
as shown in Figure 7. The fracture development identified by image
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logging was converted into fracture density results as well as seismic
attribute curves near the well.

4.2 Response analysis of natural fractures
with multiple seismic attributes

The credibility of the seismic data was determined by analyzing
the correlation between the fracture density and seismic-related
attributes. When seismic waves propagate through fractures, they
are scattered and cause energy attenuation. In addition, under
regional stress conditions, different lithologies of the strata can
affect the development of fractures (Nemati and Pezeshk, 2005).
The lithology of the strata is related to the wave impedance
attribute in seismic properties (Jin et al., 2023). Therefore, there
is a connection between wave impedance properties and regional
structural fractures. For structural deformation-related fractures,
the stronger the degree of deformation, the more developed the
fractures, and the greater the curvature (Patra, 2019). Therefore, the
deformation-related fractures are related to curvature. For fault co-
derived fractures, the development degree of fractures near the fault
is high, and the corresponding coherence and ant tracking properties
have abnormal responses. Therefore, this type of fracture is related to
properties such as coherence and tracking properties. In summary,
there is a certain relationship between seismic attributes and fracture
development, but this relationship is not a simple linear relationship,
so it is necessary to use neural network models to establish this
relationship. Therefore, the presence of fractures can indirectly affect
the attribute characteristics of the seismic data.

To test the correlation between seismic attributes and fracture
density, an intersection map was created using the fracture
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(A) Classification of fracture types based on filling characteristics. The first and second columns: thin section photos; the third column: core photos;
the fourth column: imaging logging and core images. The yellow dashed ellipses in the images indicate the fractures. (Modified from Wang et al.,
2023). (B) The percentage of fractures with different widths.

density in the wellbore and the corresponding seismic attributes ~ with the wave impedance attribute, a linear or exponential positive
at the corresponding locations, as shown in Figure 8A. The  correlation with the three-dimensional curvature attribute, and
intersection analysis results indicated a linear negative correlation  a linear positive correlation with the instantaneous Q value
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(attenuation) attribute when the fracture density was greater than  development and indicates the feasibility of using seismic attributes
0.1-0.5 (number/m). This indicates that the seismic attributes  to identify fractures during subsequent steps. Meanwhile, this
have a certain degree of correlation with the density of fracture  also indicates that only when the density of the fractures

Frontiers in Earth Science 10 frontiersin.org


https://doi.org/10.3389/feart.2024.1468997
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Tang et al.

reaches a certain degree can they cause a response to seismic
attributes.

The seismic responses of effective and ineffective fractures
are different. We analyzed the relationship between seismic
attributes and fracture density in two situations: all fractures and
effective fractures. The results indicate a better correlation between
effective all fractures and seismic attributes than all fractures,
as shown in Figure 8B. Therefore, in this study, we focused on the
effective fractures.

A correlation between the density of the fractures in the wells
shown in Figures 4B, C with the seismic attributes was made, and
the results are shown in Figures 9A, B, respectively. The events
of the seismic data near the wells with a significant correlation
between the effective fracture development density and seismic
attributes were relatively continuous, with clear structures and a
thin overlying gypsum salt layer. The seismic data near the well,
with no clear correlation, showed discontinuous events (likely small
faults) and thick salt layers. The quality of the seismic data of the
Cretaceous strata is relatively poor. Statistical results show that the
correlation between seismic attributes such as coherence, curvature,
and fracture density can reflect the quality of the seismic data
(as shown in Figure 9).

4.3 Sample set

Different geological and mechanical environments in different
well areas result in different relationships between fracture
development and structure or lithology. Therefore, when
establishing the sample set, all the selected data were from the
same well area. Most of the wells were selected as training data, and
the remaining few wells did not participate in training to verify the
identification results.

Owing to the differences in amplitude and physical meaning
between different attributes, the first step is to normalize the selected

attributes with a value range of [0,1] using Equation 1.

A - min(A)

A= | nax(@) — min(A) W

where, A is the value of seismic attribute, min () and max () are
the maximum and minimum functions, respectively. Then, in a
particular location in the well, statistical parameters were calculated,
such as the variance and mean of different attributes near the well
for different radii. To unify the seismic attribute and fracture density
information into the same spatial sampling grid, the fracture density
information must be gridded. Fracture interpretation results from
image logging were generated as equidistant data points based on
the seismic resolution (8 m). The fracture-density data obtained
from image logging were discrete and could undergo drastic changes
at certain positions. Therefore, to improve the degree of matching
between the fracture density and seismic attributes, we smoothed
the fracture density curve using Equation 2.

n
Y Bij

=

2n+1

B. =

1

2)

To quantitatively analyze the relationship between different
seismic attributes and fracture density, we used neighborhood
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component analysis (NCA) to calculate the sample similarity
between different attributes and fracture density using Equation 3.

p e(*”":‘*"j”;) p 0 3)
L ze(—ux,—xkné)’ "
k+#i

where P; represents the similarity between the i-th seismic
attribute (x;) and fracture density curves (xj). We calculated
the correlation between different attributes and fracture density
curves for the training wells in the study area. The ranking
results are shown in Figure 10. The correlation coefficients between
attributes with different radii and fracture densities were also
calculated. When the correlation coefficient was high, the radius
was used as the statistical radius for the subsequent steps. Then,
n attributes with the highest correlation rankings were selected to
participate in training the fracture identification model.

4.4 Constructing the neural network
structure for fracture identification

In order to ensure that the training data covers the study area,
we randomly divided the dataset. The fracture density curve and
seismic attribute data obtained from image logging were randomly
divided into training, testing, and validation sets by well location.
Generally, around 80% of the samples are selected for training,
10% are used for validation, and the remaining 10% are used for
testing. The fracture density curve in the training set was used as
the label data and the filtered seismic attribute data were used as
the feature data. The deep learning network structure used was U-
net, which segments the input data based on its features, extracts
the feature information from the segmented data to form a new
image grid, and then uses this new image grid as the input for
subsequent iterations. This process continues until the smallest
data unit that accurately reflects the original input features is
obtained. The number of nodes in the input layer, middle layer,
and output layer were 29, 10, and 1, respectively. The maximum
number of iterations was set to 2,000, and the minimum mean
square error for regression was 107, A trained identification model
based on the feedforward neural network algorithm was obtained
(Figures 11A, B). Finally, based on the identification model, the
development of fractures was identified using seismic attribute
information. A comparison between the identified results of the
training, test, and validation sets and the actual results is shown
in Figure 12, and a comparison of the results of the training and
validation wells is shown in Figure 13. The training wells were
the input wells that participated in the neural network training,
and the validation wells were the wells that did not participate in
the training. The identified results for the training and validation
wells exhibited a high degree of agreement with the actual fracture
densities obtained in the image logging. These results confirm
the accuracy of the identification results. Through this verification
process, the method could accurately identify the development of
natural fractures.

To ensure the accuracy of the identification model during
the training process, the following measures were taken: a)
select long well segment data to participate in the training and
reduce the randomness of the sample wells; b) smooth fracture
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1:Relative Acoustic Impedance-RMS-R(20.0,20.0)
2:Most Positive Curvature-RMS-R(20.0,20.0)
3:Maximum Curvature Gaussian-Flitered-RMS-R(20.0,20.0)

4:Instantaneous Q-RMS-R(20.0,20.0)
5:Response Phase-RMS-R(20.0,20.0)

6:Most Negative Curvature-RMS-R(20.0,20.0)
7:Eigenstructure Coherence-RMS-R(20.0,20.0)

8:First Derivative-RMS-R(20.0,20.0)

9:Maximum Curvature-RMS-R(20.0,20.0)

10:kls3-psdm-stk-gain-RMS-R(20.0,20.0)
11:Thin Bed Indicator-RMS-R(20.0,20.0)

12:Instantaneous Frequency-RMS-R(20.0,20.0)
13:Poststack Amplitude(Resample-spline)-RMS-R(20.0,20.0)

14:Semblance-RMS-R(20.0,20.0)

15:Response Frequency-RMS-R(20.0,20.0)

16:Volume Dip-RMS-R(20.0,20.0)

17:Instantaneous Acceleration-RMS-R(20.0,20.0)
18:Waveform Difference-RMS-R(20.0,20.0)
19:Volume Dip-Azimuth-RMS-R(20.0,20.0)

20:Semblance-RMS-R(20.0,20.0)

21:Lambertian Reflectance-RMS-R(20.0,20.0)

22:Second Derivative-RMS-R(20.0,20.0)

23:Instantaneous Amplitude-RMS-R(20.0,20.0)

24:Anisotropic Diffusion Flitered Volume(Structure Oriented)-RMS-R(20.0,20.0)
25:Instantaneous phase-RMS-R(20.0,20.0)

26:Cosine of Instantaneous phase-RMS-R(20.0,20.0)

Ranking of correlation between different seismic attributes and fracture density. RMS means root mean square, and R (a, b) represents the range of
values for inline a and crossline b attributes. The “Importance” value has no quantitative meaning, indicating the contribution of this attribute to the
network model. The larger this value, the greater the impact and sensitivity of these attributes on the results.

density data to reduce the impact of outliers; and c¢) use as
many attributes as possible, explore the effective information
of seismic signals and identify the development of fractures
using a total of 26 attributes (as shown in Figure 10) from
four types of seismic attributes.
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5 Application results and evaluation

The fracture identification results for the Z101 and Z102 fault

blocks are shown in Figure 14. The identified fracture development
has a matching relationship with faults and local deformation,
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layers: input, middle, and output layers.
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Intersection diagram between identified and actual results. (A—D) are the results for the training set, validation set, test set, and all data scenarios,
respectively. Generally, around 80% of the samples are selected for training, 10% are used for validation, and the remaining 10% are used for testing.

indicating that certain fractures are fault-related and others are
related to formation deformation.

Based on the location of the target layer, the three-dimensional
data volume of the fracture identification results was extracted
along the layer and displayed in three-dimensional space, as shown
in Figure 15A. The area covered in pink in Figure 15A is the
high fracture development area. The position of the Z102 fault
block is marked in Figure 15A with a black dashed line. The
results indicate that the fracture density of the Z102 fault block
is relatively high compared to that of the other fault blocks, and
it has a certain resource potential. Based on the thickness of the
Cretaceous strata, the fracture density data volume was layered
to extract the fracture density results. The identified fractures in
the different sublayers of the Cretaceous strata in the Z1 well area
are shown in Figures 15B-D. The identification results indicate that
the effective fracture densities in the central and eastern parts of the
7104, 7102, and Z105 blocks, as well as in the western part of Z1,
were relatively high (>0.3 number/m).

6 Discussion

We tried to consider the correlation between seismic attributes
and fractures as much as possible. Based on this rationality, we used
seismic attributes for identification, instead of randomly selecting
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a large number of attributes for purposeless training. The well
logs can be used to develop a fracture signature function equation
for determining natural fractures, which requires no special
image logto identify natural fractures. However, this machine
learning models did not identify the fracture and non-fracture
zones with acceptable accuracy (Ismail et al., 2024). Therefore,
the development of fractures in the three-dimensional space
between wells needs to be constrained using seismic data with
deterministic information. Conventional attribute-based methods
can be used to identify the fractures. However, the fractures
identified by these methods are of single genesis. In general,
multiple genesis fractures exist simultaneously, making it difficult
to fuse the results of fracture identification based on multiple
attributes. The relationship between seismic attributes and natural
fractures is indeed complex and difficult to establish with an
accurate formula. Therefore, this article adopts a neural network
model to establish the relationship between these two parts.
This relationship can effectively fuse the identification results of
fractures with different genesis. Furthermore, if some attributes
with poor performance were used in training, it would almost
not affect the final identification results. Because the weights of
these attributes with poor performance in the training model are
relatively low. If we only selected the few attributes with the highest
correlation coeflicients with fracture density, the results would
be unstable.
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The results of identified fractures in the Cretaceous strata. (A) Three-dimensional map of identified fractures in the Cretaceous strata. Distribution map
of fracture identification results for different layers: Cretaceous Bashijigike (B) second and (C) third sections and Baxigai (D) first and (E) second sections.

Different types of seismic attributes characterize different
geological features such as stratigraphic continuity, degree
of stratigraphic ~deformation, and fluid-related
characteristics (Guo et al., 2022a; Cheng et al., 2022; Lv et al., 2024).
The correlation between the seismic attributes and natural fractures

lithology,

can be obtained through neural network analysis. Based on the
current analysis results, the wave impedance and attenuation
Q attributes are strongly correlated with the density of natural
fractures. Therefore, the results of the neural network analysis and
their geological significance can be obtained, and the properties
related to the lithology (wave impedance and Q attenuation)
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and deformation degree (curvature) of the strata control the
development of fractures.

The fracture density curves in the training set were used as
the label data and the filtered seismic attribute data were used as
the feature data. The resolution difference between imaging logging
data and seismic data is very significant. To unify the resolution
of these two types of data, we have taken the following measures:
setting the sampling rate of the fracture density curve to 8 m, which
enables the resolution of label data and feature data to match. On the
other hand, seismic data samples are not selected from individual
sampling points near the wellbore but rather averaged within a
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certain range around the wellbore because the response of seismic
signals is determined by the characteristics of the rock medium
within a certain range around the well.

Pre-stack seismic data can reflect mechanical parameters,
such as the Young’s modulus and Poissons ratio. In addition,
relying solely on post-stack data includes only wave impedance
and seismic attribute information. Rock mechanics parameters
affect the stress state of rock media and directly affect fracture
development (Mejia et al., 2020). For example, the fracture density
peaks when the dynamic Young’s modulus is in the range
of 45-48.5GPa and the dynamic Poisson’s ratio is negatively
correlated with the fracture density (Liuetal., 2022). Therefore,
further utilization of pre-stack data to obtain rock mechanics
parameters can more accurately identify the development of
fractures. In subsequent research, if pre-stack seismic data
can be effectively applied or more information obtained from
wide-angle seismic data can be introduced into the training
model, the effectiveness of fracture identification will be
further improved.

Fracture information can be obtained through different
methods. The value of nuanced interpretation of what little data
we do have from cores, logs, and outcrop work is essential.
Natural fracture systems are complex, multiscale, 3D entities,
whose properties vary depending on a large number of factors.
The orientation (strike) is a key fracture attribute and can
be guided by the orientations of the microfractures in the
samples of the core. The orientations of the fractures are the
important parameters (Laubach etal., 2019), but our workflow
is currently unable to identify this parameter. Burial history and
fracture diagenesis influence fracture attributes and may provide
more information for fracture identification than is commonly
appreciated (Galeetal,, 2014) and need to be further utilized
to identify the fractures. Deep learning methods can combine
multiple factors for fracture identification. Therefore, in our future
research, in order for a machine learning approach to be useful these
factors need to be understood in a general way and included in
the training.

The size and opening degree of fractures are important
parameters. The pore volume of fractured foundation rock
depends on the fracture porosity and on the widths and sizes
of fractures. These properties can be calculated from water-
pressure tests if the intergranular permeability is minimal compared
to the fracture permeability. Taking into account them, the
volume ratio of fractures can be calculated more accurately.
Our current method makes it difficult to identify the widths
and heights of fractures. We will consider identifying them
in the future study. Fractures can be divided into structural-,
fault-, and deformation-related fractures based on their genesis.
To a certain extent, these fractures were related to different
geological characteristics. For example, the distance from the fault
determines the degree of development of the fault co-derived
fractures (Valencia, 2020). As the tectonic deformation of the
strata, the development of fractures varies at different locations
of the strata (Xu etal., 2021). The development characteristics of
the fractures related to regional tectonic stress vary in different
lithology under the same tectonic stress environment (Yasin et al.,
2022). Therefore, different types of fractures affect seismic
attributes. If different types of fractures are identified based on
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seismic data, more reliable results can be obtained. Meanwhile,
although there are differences in the characteristics of fractures
generated in different periods, our current methods still struggle
to identify fractures in different periods. We will study the
methods identifying the fractures at different periods in our
future research.

The advantage of identifying natural fractures based on
logging data and rock cores is that they have high vertical
resolution in single wells (Dongetal, 2020). The method of
identifying fractures in field outcrops using local sampling
does not directly identify the development of fractures in the
target layer (Zeeb etal, 2013). Our method first establishes the
relationship between seismic information and fractures in the
well. Based on this relationship, the fractures between wells can
be identified. This method effectively utilizes the high-resolution
advantage of wellbore fractures and identifies fractures in three-
dimensional space.

In summary, the fractures in three-dimensional space between
wells are important for the characterization of oil and gas reservoirs,
understanding geological processes, and estimating mechanical
environments. Seismic are effective signals for detecting fractures
in three-dimensional space. By using deep learning methods to
establish relationships based on known samples, the geological
features in the three-dimensional space between wells can be
quantitatively detected.

7 Conclusion

This study conducted methodological research on the
identification of reservoir fractures in tight sandstone gas reservoirs.
The feasibility of identifying fractures using seismic attributes was
determined by analyzing the response of natural fractures with
multiple seismic attributes. The analysis results of the seismic data
indicated that when the thickness of the gypsum salt was low,
the quality of the seismic data improved. Therefore, the quality
of seismic data can be determined based on the thickness of the
gypsum salt layer.

The high-density sampling, high resolution, and high wellbore
coverage of imaging logging enable its use for the quantitative
analysis of fractures as label data. The intersection analysis of
fracture density and seismic attributes showed that there is a
correlation between fracture density and seismic attributes when
it is higher than a certain degree, indicating the feasibility
of using seismic attributes to identify fractures in subsequent
steps. The correlation ranking results of the seismic attributes
indicate that the lithology of the strata (wave impedance and
Q attenuation) and the degree of strata deformation (curvature)
of the reflecting strata control the development of fractures in
this area. However, it is currently uncertain whether only these
parameters controlled the development of fractures in this area.
To determine all the controlling factors of these fractures, further
research is needed based on the development characteristics of
the fractures.

The identification results for the training and validation wells
showed a high degree of agreement with the actual image-
logging fracture density. This confirms the accuracy of the
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identification results. The identified results of fractures have a
matching relationship with faults and local deformation, indicating
that certain fractures are co-derived from faults, and others
are local deformation fractures. There is a certain relationship
between multiple attributes and fracture development, which can
be established using deep learning models. Furthermore, the deep-
learning-based seismic data fracture identification method can
effectively identify fractures in the three-dimensional space between
wells. Deep-learning-based techniques provide a feasible solution
for geological features that cannot be directly measured. A single
source of information cannot fully describe a geological body, and
we need to integrate multiple sources of information to understand
geological features more accurately.
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