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Risk assessment of goaf
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Goaf instability poses significant hazards, affecting mine safety and public
welfare. This study aims to evaluate the risk of goaf instability to enhance
safety measures in mining operations. Thirteen key indicators were identified to
construct a comprehensive evaluation index system. By integrating game theory,
we combined subjective and objective weights to develop a constant weight
model, which was subsequently improved by considering data distribution
characteristics to develop a local variable weight model. The variable weight
intervals were determined through cumulative frequency analysis of normalized
factor indices, and the Monte Carlo method was employed to define weight
adjustment parameters. Using the cloud model, we assessed the instability risk
of goafs. Our results indicate that the variable weight model provides higher
evaluation accuracy compared to the constant weight model, offering clearer
and more distinguishable membership degrees for the evaluation outcomes,
suggesting its potential for more precise risk assessments in mining operations.
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goaf, risk assessment, constant weight model, variable weight model, variable weight
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1 Introduction

With the escalation of mining operations, numerous unmanaged voids have resulted
in overlapping and concentrated void zones. If these voids experience widespread
instability, they can precipitate mine air blasts, seismic events, and surface collapse,
leading to vegetation loss, soil erosion, and landslides. These geological hazards cause
substantial economic damage and have significant societal impacts. Consequently, the
instability of mining voids is a severe threat and one of the foremost risks to mine
safety and public security. Therefore, it is imperative to assess their risk levels and
demarcate hazardous areas for mine safety management (Ma et al., 2012; Zhang et al., 2023;
Zhe et al., 2023).

The instability data concerning mining voids exhibit randomness and the classification
of instability risk levels is ambiguous, rendering the evaluation process fraught with
uncertainty (Guo D. et al., 2024; Ke et al., 2024; Wang et al., 2023). The cloud model
effectively addresses the issues of uncertainty, randomness, and ambiguity when assessing
the risk of void instability. The core challenge of this method is determining index
weights. Commonly used methods for weight determination include the analytic
hierarchy process (AHP), gray relational analysis, entropy method, coefficient of
variation, and CRiteria Importance Through Intercriteria Correlation (CRITIC) method,
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FIGURE 1
Research framework.

which encompass both subjective and objective approaches.
Subjective methods are computationally straightforward and widely
applied but are highly subjective, leading to variable results and
uncertain accuracy (Liu et al., 2020). Objective methods (gray
relational analysis, entropy method, CRITIC) avoid these issues,
but are highly data-dependent and susceptible to data fluctuations
(Esmaili and Karipour, 2024; Zhang et al., 2024; Zhang and
Shang, 2024). Consequently, scholars have employed algorithms
such as multiplicative synthesis and linear weighting to combine
the weights derived from multiple methods and enhance the
accuracy of the evaluation results (Fu et al., 2024; Wang et al., 2024;
Zheng et al., 2024).

Although the combination weighting method enhances the
accuracy of the index weights, the weights determined by this
method remain static for different mining voids. This constant
weight model only considers the relative importance of various

factors in the evaluation but overlooks the impact of internal
differences in index values on the assessment results, failing to
capture the influence of sudden changes in factor indices due to
varying evaluation criteria on void instability risks (Guo L. et al.,
2024; Yao et al., 2024). Variable weight theory improves upon
the traditional constant weight comprehensive evaluation by
adjusting the weight of each factor in response to changes in
its corresponding state index value, thereby better reflecting
the impact of factor state changes in the evaluation decision-
making system. This theory has been applied to assess land
subsidence and road construction hazards (Guo L. et al., 2024;
Han et al., 2023; Jin et al., 2024). Therefore, integrating the variable
weight theory into the evaluation of mining void instability risk is
beneficial.

This study considered the goaf area of the Baiyang mining
area at the Bainiuchang Mine in Mengzi City, Yunnan Province,
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FIGURE 2
Regional location map of the Bainiuchang mine.

TABLE 1 Survey data of mined-out area.

No X1 X2 X3/% X4/° X5/m3 X6/m2 X7 X8 X9/m X10/a X11/m3 X12 X13 Class

1480-1 4 3 68.2 32 1,837 835 22.81 0.11 544 10 84 3 3 Ⅳ

1480-2 4 4 73.7 28 4,138 1,881 24.58 0.05 534 10 282 2 4 Ⅳ

1480-3 4 4 71.0 23 3,424 1,556 17.80 0.09 526 10 249 2 3 Ⅳ

1480-4 4 4 73.5 23 1,019 424 21.63 0.17 520 10 72 2 3 Ⅳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1580-1 2 1 62.9 24 5,144 643 12.01 0.30 379 10 0 2 3 Ⅳ

1580-2 2 1 68.2 24 4,193 524 5.89 0.46 380 10 0 4 3 Ⅳ

1580-3 2 1 65.5 24 2,603 325 14.90 0.57 390 10 0 1 2 Ⅳ

1580-4 2 1 67.5 24 4,612 576 7.35 0.40 404 10 0 2 3 Ⅳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1640-1 4 3 66.7 25 1,828 366 5.49 0.46 376 13 0 2 3 Ⅱ

1640-2 2 4 64.6 25 7,827 712 7.56 0.63 396 13 0 1 2 Ⅱ

1640-3 2 2 61.7 23 4,543 649 9.58 0.28 404 13 0 1 4 Ⅱ

1640-4 3 4 64.4 25 4,654 517 6.80 0.48 404 13 0 3 3 Ⅱ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1730-10 2 2 63.8 23 1,908 273 12.89 0.44 184 18 0 3 4 Ⅳ

1730-11 4 3 66.2 21 5,586 931 11.96 0.24 187 17 0 3 2 Ⅳ

1730-12 3 2 64.7 21 3,165 528 16.94 0.21 172 17 0 2 2 Ⅳ

1730-13 2 3 64.1 21 6,124 1,021 18.30 0.21 172 17 102 2 3 Ⅱ

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1469834
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guo et al. 10.3389/feart.2024.1469834

FIGURE 3
Violin plots with different indexes: (A) Rock mass quality X3; (B) Dip angle of orebody X4; (C) Goaf volume X5; (D) Maximum exposed area X6.

TABLE 2 Mood operator, scale and fuzzy membership.

The
tone

operator

Same Slightly A
little

Somewhat Obviously Very Quite Extremely Exceedingly Exceedingly

Scale (v) 0.5 0.55 0.6 0.65 0.7 0.8 0.85 0.9 0.95 1

Fuzzy
membership

( 1−v
v
)

1 0.818 0.667 0.538 0.429 0.25 0.176 0.111 0.053 0

as an example. The subjective weights were calculated using the
importance–binary comparison analysis method, and the objective
weights were determined using the Gini coefficient weighting
method. The subjective and objective weights were combined based
on a game-theory aggregation model. Based on these combined
weights, the improved local variable weight theory and cloud model
were utilized along with the actual conditions of the goaf area to
establish a coupled model for evaluating its instability risk. This
can, in turn, guide subsequent reasonable and orderly goaf area
management.

2 Methodology

In this study, a comprehensive methodology was employed
to assess goaf instability risks. Figure 1 illustrates the research
framework. Initially, an evaluation index system tailored to the
characteristics of goafs was constructed by selecting 13 key
indicators. Data collection involved advanced techniques, such as
three-dimensional (3d) laser scanning, unmanned aerial vehicle
(UAV) surveys, and field visits. The subjective weights of the
evaluation indices were determined using the importance–binary
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FIGURE 4
Example of a method for determining variable weighting intervals based on cumula-tive frequency.

FIGURE 5
Evaluation index correlation coefficient heat map.
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TABLE 3 Importance score of evaluation index.

Evaluation indicators X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Standard deviation 0.39 0.34 0.21 0.13 0.14 0.10 0.21 0.17 0.23 0.29 0.17 0.39 0.39

Confliction 12.76 11.78 12.65 11.65 10.39 10.50 12.89 11.78 12.87 13.22 11.97 12.22 11.84

Importance score 5.03 4.03 2.61 1.48 1.45 1.04 2.68 2.06 2.97 3.78 2.07 4.81 4.67

Index ranking 1 4 8 11 12 13 7 10 6 5 9 2 3

TABLE 4 Subjective weight calculation results.

Evaluation indicators X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Scale 0.5 0.55 0.65 0.7 0.6 0.6 0.56 0.58 0.68 0.72 0.67 0.52 0.53

Membership 1 0.818 0.538 0.429 0.667 0.667 0.786 0.724 0.471 0.389 0.493 0.923 0.887

Weights 0.114 0.093 0.061 0.049 0.076 0.076 0.089 0.082 0.054 0.044 0.056 0.105 0.101

TABLE 5 The results of objective weight calculation.

Evaluation indicators X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Gini coefficient 0.019 0.037 0.006 0.005 0.040 0.050 0.041 0.028 0.066 0.053 0.052 0.002 0.004

Weights 0.047 0.092 0.015 0.013 0.099 0.124 0.101 0.069 0.164 0.132 0.129 0.005 0.010

TABLE 6 Division of evaluation indicators into weighting intervals.

Evaluation indicators Strong penalty
interval

Initial penalty interval No punishment no
incentive interval

Incentive interval

Structural types of rock mass X1 [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]

Geological structure X2 [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]

Rock mass quality X3 [0, 0.11) [0.11, 0.20) [0.20, 0.36) [0.36, 1]

Dip angle of orebody X4 [0, 0.16) [0.16, 0.27) [0.27, 0.43) [0.43, 1]

Goaf volume X5 [0, 0.49) [0.49, 0.66) [0.66, 0.83) [0.83, 1]

Maximum exposed area X6 [0, 0.45) [0.45, 0.61) [0.61, 0.8) [0.8, 1]

Pillar area ratiot X7 [0, 0.04) [0.05, 0.12) [0.12, 0.3) [0.3, 1]

Ratio of rise to span X8 [0, 0.05) [0.05, 0.11) [0.11, 0.24) [0.24, 1]

Embedding depth X9 [0, 0.25) [0.25, 0.4) [0.4, 0.63) [0.63, 1]

Exposure time of goaf X10 [0, 0.24) [0.24, 0.4) [0.4, 0.66) [0.66, 1]

Mined-out area water X11 [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]

Situation of adjacent mined-out
areas X12

[0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]

Goaf management X13 [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
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TABLE 7 Final variable weight interval classification.

Strong penalty interval Initial penalty interval No punishment no incentive interval Incentive interval

[0, 0.25) [0.25, 0.42) [0.42, 0.64) [0.64, 1]

FIGURE 6
The calculation process of weight adjustment parameters.

comparison analysis method, and the objective weights were
derived using the Gini coefficient weighting method. These weights
were then integrated using game theory to form a constant
weight model. To enhance the accuracy, we improved this model
by incorporating data distribution characteristics into a local
variable weight model. Variable weight intervals were established
by analyzing the cumulative frequency of the normalized factor
indices, and weight-adjustment parameters were determined using
the Monte Carlo method. Finally, a cloud model was employed to
evaluate the goaf instability risk, providing a robust and precise
assessment.

2.1 Data collection and analysis

2.1.1 Study area
The Bainiuchang Mine is located 42.5 km at a direction of

75° from the downtown area of Mengzi City, Yunnan Province,
China (coordinates: 103°45′ to 103°48′, 23°26′30″ to 23°29′30″).
The study area (Figure 2), the Baiyang mining area, is located
in the northwestern part of the mining area. Mining activities
began in 1994, with the peak mining period occurring between
2000 and 2010.

2.1.2 Construction of the evaluation index system
for goaf instability risk

Numerous factors contribute to the instability in mined-out
areas. Through field surveys and literature review, 13 indicators,

including rock mass structure, geological structure, rock quality,
ore body dip angle, goaf volume, maximum exposed area, pillar
area ratio, ratio of rise to span, embedding depth, exposure time
of goaf, mined-out area water, situation of adjacent mined-out
areas, and goaf management (Chen et al., 2024; He et al., 2022;
Qin et al., 2019; Ren et al., 2022). An evaluation index system for the
instability risk in mined-out areas was constructed. Based on the
relevant literature and field surveys, the risk levels were identified
as I, II, III, and IV, with the risk level classification detailed in
Supplementary Table S1 (Guo et al., 2022; Jia et al., 2016; Lang and
Chen, 2015). The corresponding standards for each evaluation
indicator are listed in Supplementary Table S2 (Hu et al., 2017; Hu,
2022; Ma, 2015; Ren Honggang, 2020; Wang, 2020).

2.1.3 Data collection
The investigation of the mined-out areas commenced in

April 2021 and concluded in October 2022. The team conducted
handheld 3D laser scanning surveys of accessible and safe mined-
out areas (field surveys and scanning results are shown in
Supplementary Figures S1A, C). For areas with high safety risks
where direct human entry was not feasible, UAV photography
equipment was used for surveying (field survey and scanning results
are shown in Supplementary Figures S1B, D). A total of 195 mined-
out areas (or groups of mined-out areas) were identified in the
Baiyang mining area. Through field surveys and interviews with
mining engineering technicians, data on 13 evaluation indicators
were collected from 195 mined-out areas in the Baiyang area, as
detailed in Table 1.
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FIGURE 7
The curve of the change of the weight parameter. (A) The variation curve of the weight adjustment parameter a1; (B) The variation curve of the weight
adjustment parameter a2; (C) The variation curve of the weight adjustment parameter a3; (D) The variation curve of the weight adjustment parameter c.

TABLE 8 The final value of the weight adjustment parameters.

Adjust weight parameters a1 a2 a3 c

Value 0.29 0.66 0.67 0.01

The integrity and distribution of data in Table 1 were assessed
using violin plots. Owing to space constraints, violin plots for only
four indicators (X3, X4, X5, and X6) are presented. Figure 3 shows
that under natural conditions, the data patterns in Table 1 generally
align with a normal distribution.

2.2 Determining constant weights

2.2.1 Importance-subjective weight analysis of
binary comparison

To reduce the subjectivity of the computational results and
simplify the calculation process, this study employs the CRITIC

method to comprehensively measure the contrast strength and
conflict of the evaluation indicators. This method objectively
quantifies the importance for ranking purposes. A preliminary
rankingwas established and then adjusted based on expert judgment
and the initial ranking. Subsequently, a binary comparison method
(Wang et al., 2014; Lu et al., 2014) was used to calculate the
subjective weights of the indicators without consistency testing.This
approach is relatively straightforward and can replace traditional
methods such as the AHP to determine the subjective weights of
indicators related to the instability risk of mined-out areas.

2.2.1.1 Calculating the importance of evaluation indicators
The dimensionless processing of evaluation indicator

values is performed using Equation 1 (Huan-ling et al., 2023;
Maneengam, 2023; Qianjun et al., 2023).

MMSx∗ij =
xij − min(xj)

max(xj) − min(xj)

NMMSx∗ij =
max(xj) − xij

max(xj) − min(xj)

(1)
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FIGURE 8
Evaluation index constant weight and variable weight comparison chart. (A) Rock mass structure X1; (B) Geological structure X2; (C) Rock quality X3;
(D) Ore body dip angle X4; (E) Goaf volume X5; (F) Maximum exposed area X6; (G) Pillar area ratio X7; (H) Ratio of rise to span X8; (I) Embedding depth
X9; (J) Expo-sure time of goaf X10; (K) Mined-out area water X11; (L) Situation of adjacent mined-out areas X12; (M) Goaf management X13.
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TABLE 9 Variable weight analysis table.

Evaluation indicators Number Average value Standard deviation Maximum Minimum Median level

Structural types of rock mass X1 195 0.078 0.064 0.265 0.004 0.093

Geological structure X2 195 0.065 0.047 0.193 0.010 0.041

Rock mass quality X3 195 0.050 0.037 0.204 0.003 0.048

Dip angle of orebody X4 195 0.034 0.034 0.155 0.004 0.024

Goaf volume X5 195 0.068 0.039 0.145 0.004 0.076

Maximum exposed area X6 195 0.060 0.037 0.138 0.004 0.063

Pillar area ratiot X7 195 0.059 0.037 0.171 0.004 0.062

Ratio of rise to span X8 195 0.064 0.035 0.185 0.004 0.067

Embedding depth X9 195 0.038 0.034 0.193 0.004 0.029

Exposure time of goaf X10 195 0.053 0.050 0.233 0.004 0.031

Mined-out area water X11 195 0.125 0.044 0.280 0.007 0.128

Situation of adjacent mined-out
areas X12

195 0.086 0.057 0.239 0.010 0.094

Goaf management X13 195 0.077 0.061 0.239 0.004 0.093

The standard deviation (Equation 3) is used to represent
the difference fluctuation of the internal values of each index
to reflect the contrast strength between the evaluation indices,
the correlation coefficient (Equation 4) is used to represent the
correlation between the indices, and the conflict between the indices
is extracted using Equation 5.

xj =
1
m

m

∑
i=1

xij (2)

Sj = √
1

m− 1

m

∑
i=1
(xij − xj) (3)

rij =
∑n

j,k=1
(xij − xj) × (xik − xk)

√∑n
j=1
(xij − xj)

2 ×∑n
k=1
(xik − xk)

2
(4)

ηj =
n

∑
i=1
(1− rij) (5)

Equations 3, 5 are multiplied to obtain the importance score of
the evaluation index.

Cj = sj × ηj (6)

2.2.1.2 Importance–binary comparison analysis method
By determining the importance ranking of evaluation

indicators using Equations 1–6, the importance of the evaluation
indicators for the instability risk of mined-out areas was
calculated, and a preliminary importance ranking was established
(Wang et al., 2014; Lu et al., 2014). Experts were consulted to make

appropriate adjustments to the initial ranking, resulting in a final,
practically reflective ranking order.

If the importance of index ui is not less than that of uj, it
is recorded as ui ≻ uj. After sorting, the influencing factors are
u∗1 ,u
∗
2 ,⋯,u

∗
n , and the relative importance of each indexu1,u2,⋯,un

satisfies the relationship is shown in Equation 7:

u∗1 ≻ u
∗
2 ≻⋯ ≻ u

∗
n (7)

2.2.1.3 Selection of scales and calculation of weight
coefficients

Based on the ranking of influencing factors, appropriate modal
operators and fuzzymembership degrees are selected for each factor
from Table 2. The relationship between the scales and membership
degrees in Table 2 can be represented by the curve shown in
Supplementary Figure S2. When the modal operator falls between
two operators in Table 2, interpolation can be used to determine the
fuzzy membership degree from Supplementary Figure S2. Finally, a
vector matrix is constructed using the fuzzy membership degrees of
each factor as weight coefficients, and normalization is applied to
obtain the weight vector B = (bij)1×n.

2.2.2 Objective weighting of Gini coefficient
weighting method

TheGini coefficient weighting method is an objective weighting
method that calculates the Gini coefficient of the evaluation index
and normalizes the Gini coefficient of each index to obtain the
weight of the evaluation index. The calculation process is as follows
(Dai et al., 2024; Zhao et al., 2024; Li, 2015; Li et al., 2014):
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TABLE 10 Characteristic parameters of each indicator cloud at different levels.

Evaluation indicators I Class II Class III Class IV Class

X1 (1, 0.425, 0.01) (2, 0.425, 0.01) (3, 0.425, 0.01) (4, 0.425, 0.01)

X2 (1, 0.425, 0.01) (2, 0.425, 0.01) (3, 0.425, 0.01) (4, 0.425, 0.01)

X3 (20, 16.987, 0.01) (45, 4.247, 0.01) (55, 4.247, 0.01) (80, 16.987, 0.01)

X4 (5, 4.274, 0.01) (20, 8.493, 0.01) (40, 8.493, 0.01) (70, 16.987, 0.01)

X5 (9, 0.807, 0.01) (5.2, 2.378, 0.01) (1.52, 0.747, 0.01) (0.32, 0.272, 0.01)

X6 (3850, 977, 0.01) (1950, 637, 0.01) (1000, 170, 0.01) (400, 340, 0.01)

X7 (2.5, 2.123, 0.01) (7.5, 2.123, 0.01) (12.5, 2.123, 0.01) (22.5, 6.37, 0.01)

X8 (0.015, 0.013, 0.01) (0.04, 0.008, 0.01) (0.075, 0.021, 0.01) (0.8, 0.595, 0.01)

X9 (700, 85, 0.01) (500, 85, 0.01) (300, 85, 0.01) (100, 85, 0.01)

X10 (30, 8.493, 0.01) (15, 4.247, 0.01) (8, 1.699, 0.01) (3, 2.548, 0.01)

X11 (7, 0.849, 0.01) (4.5, 1.274, 0.01) (3, 0.849, 0.01) (0.5, 0.425, 0.01)

X12 (1, 0.425, 0.01) (2, 0.425, 0.01) (3, 0.425, 0.01) (4, 0.425, 0.01)

X13 (1, 0.425, 0.01) (2, 0.425, 0.01) (3, 0.425, 0.01) (4, 0.425, 0.01)

Calculate the Gini coefficient value of the evaluation index:

Gk =

{{{{{
{{{{{
{

n

∑
i=1

n

∑
j=1
|Xki −Xkj|/2n2μk μk ≠ 0

n

∑
i=1

n

∑
j=1
|Xki −Xkj|/(n2 − n) μk = 0

(8)

where Gk is the Gini coefficient of the k-th index, n is the total
number of index data points, and Xki is the i-th value of the k-th
evaluation index. μk is the expected value of the k-th indicator.

Evaluation index Gini coefficient weight calculation: The Gini
coefficient weights of the different indices were obtained by
normalizing the Gini coefficient values of each evaluation index.

gk = Gk/(
m

∑
i=1

Gi) (9)

2.2.3 Combination weighting based on game
theory

The problem of determining the weight of the index
combination is solved using game-theory aggregation. Let the
weight vector of m indicators calculated by the importance-binary
comparative analysis method be W⃗T

1 , and the weight vector of m
indicators obtained by the Gini coefficient objective weighting
method be W⃗T

2 . Let W⃗
T be the linear combination of the weight

vectors W⃗T
1 and W⃗T

2 . By calculating, the deviation between W⃗T and
W⃗T

1 and W⃗
T
2 is minimized, αp can be obtained, and then normalized.

The combined weight vector is obtained as follows (Dai et al., 2024;
Zhao et al., 2024; Li, 2015; Li et al., 2014):

W⃗ =
2

∑
P=1

αPW⃗
T
P (10)

min‖
2

∑
P=1

αPW⃑
T
P − W⃗

T
l ‖ (11)

2.3 Determining variable weight

2.3.1 Local variable weight theory
The variable weight theory, introduced by Wang (1985) in the

1980s, posits that the weight of an evaluation indicator dynamically
adjusts based on changes in its corresponding state indicator value.
Subsequently, Li (1995); Li (1996) provided axiomatic definitions
and calculation formulas for three types of variable weights: penalty,
incentive, and neutral.

Let the state vector of the evaluation index xj be X =
(x1,x2,⋯,xm), and let the constant weight vector W0 =
(w0

1,w
0
2,⋯,w

0
m) be obtained using the above combination weighting

method. Variable Weight Vector W(x) = (w1(x),w2(x),⋯,wm(x)).
The variable weight calculation formula (Equation 12), S(X) =
(S1(X),S2(X),⋯,Sm(X)) is the state-variable weight function.

W(X) =
W0 • S(X)

∑m
i=1
w(0)i • Si(X)

= (
w(0)1 • S1(X)

∑m
i=1
w(0)i • Si(X)

,
w(0)2 • S2(X)

∑m
i=1
w(0)i • Si(X)

,⋯,
w(0)m • Sm(X)

∑m
i=1
w(0)i • Si(X)

)

(12)

Duan (2003) proposed a penalty-incentive segmented
coordination theorem for state variable weight functions, dividing
the penalty phase into initial penalty, strong penalty, and veto
stages. Li and Wu (2015); Wu and Li (2016) constructed a four-
segment (Equation 13) local variable weight state function based
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FIGURE 9
Evaluation grade cloud map of different indicators. (A) Evaluation grade cloud map of structural types of rock mass; (B) Evaluation grade cloud map of
rock mass quality; (C) Evaluation grade cloud map of pillar area ratio; (D) Evaluation grade cloud map of exposure time of goaf.

on the variable weight theorems proposed by Li Hongxing et al.,
further dividing the incentive interval into initial and strong
incentive segments.

Sj(x) =

{{{{{{{
{{{{{{{
{

ea1(dj1−x) + c− 1

c

ea2(x−dj2) + c− 1

ea3(x−dj3) + ea3(dj3−dj2) + c− 2

 

[0,dj1)

[dj1,dj2)

[dj2,dj3)

[dj3,1)

(13)

Among them, c, a1, a2, and a3 are the weighting adjustment
parameters, and dj1, dj2, and dj3 are the threshold values for the
variable weight intervals of the j-th factor. The variable weight
vector is calculated according to Equations 12, 13. Currently, there
is no unified method for determining variable weight intervals and
variable weight parameters. Li and Wu (2015); Wu and Li (2016)
proposed using the K-meansmethod to classify the normalized data
of the primary control factors. Then, the threshold values for the
variable weight intervals of each factor are determined based on the
classification-critical values of various indicators and the calculation

formulas. By sequentially constructing evaluation units that meet
the constraints and linking them with the constant weight weights
to form equations, four weighting adjustment parameters are
solved.

However, this method has the following shortcomings (Li and
Wu, 2015; Li et al., 2023; Wu and Li, 2016):

1. Clustering analysis results can only indicate data similarity
and aggregation degree but cannot reflect the magnitude
relationship of the factor state values. The basis for
determining interval thresholds through clustering analysis is
insufficient.

2. Using the ideal variable weight back-calculation to adjust
the parameters is relatively complex in actual calculations,
prone to errors, and can sometimes result in unsolvable
situations.

3. The state-variable weight functions for different factors are
the same; however, their interval thresholds are different,
and the factors are independent of each other during the
calculation process.
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TABLE 11 Results of the assessment of the theory of variation.

Number Comprehensive
determination degree of
instability risk of goaf

Order of
evaluation

1480-1 0.0210 0.2185 0.2217 0.4126 Ⅳ

1480-2 0.0227 0.2345 0.1142 0.5209 Ⅳ

1480-3 0.0145 0.2011 0.1411 0.4334 Ⅳ

1480-4 0.0087 0.1499 0.0819 0.5114 Ⅳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1580-11 0.0147 0.3277 0.2439 0.1444 Ⅱ

1580-12 0.0200 0.3715 0.1412 0.2768 Ⅱ

1580-13 0.1006 0.1951 0.1831 0.3962 Ⅳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1730-11 0.0219 0.2534 0.1312 0.3752 Ⅳ

1730-12 0.0259 0.3089 0.0892 0.3348 Ⅳ

1730-13 0.0347 0.3893 0.1274 0.2827 Ⅱ

2.3.2 Improved variable weighting model
Based on the characteristics of the variable weight model for

evaluating the instability risk of mined-out areas, improvements
were made to address its shortcomings.

1. For the local state function, the penalty and incentive intervals
in Equation 13 were adjusted. The state function is shown in
Equation 14 and illustrated in Supplementary Figure S3.

Sj(x) =

{{{{{{{
{{{{{{{
{

ea1(dj1−x) + ea2(dj2−dj1) + c− 2

ea2(dj2−x) + c− 1

c

ea3(x−dj3) + c− 1

 

[0,dj1)

[dj1,dj2)

[dj2,dj3)

[dj3,1)

(14)

2. For variable weight intervals, the evaluation indices were
divided into qualitative and quantitative indices. For the
quantitative indices, the variable weight intervals were
determined by analyzing the cumulative frequency of the
normalized values for each factor (the division process
is shown in Figure 4). For the qualitative indices, variable
weight intervals weremanually designated.The variable weight
intervals at each level were determined using the cumulative
frequency of the normalized values of the evaluation indices.

3. Regarding the variable weight intervals, according to the
determination method described in Step 2, each evaluation
indicator is subdivided into four variable weight interval
matrices, denoted as Vm. A variable weight matrix I is formed
by combining the variable weight intervals of m evaluation

indicators. The constant weight vector is multiplied by the
variable weight matrix to obtain a comprehensive variable
weight interval matrix D.

Vm = ([0,dj1) [dj1,dj2) [dj2,dj3) [dj3,1])(j = 1,2,⋯,m)
(15)

I =(

D1

D2

⋮
Dm

)=(

[0,d11) [d11,d12) [d12,d13) [d13,1]
[0,d21) [d21,d22) [d22,d23) [d23,1]
⋮ ⋮ ⋮ ⋮
[0,dm1) [dm1,dm2) [dm2,dm3) [dm3,1]

) (16)

V = Vm •W0 =(

D1

D2

⋮
Dm

)•(W1
0,W

2
0,⋯,W

m
0 )

=(

[0,d11) [d11,d12) [d12,d13) [d13,1]
[0,d21) [d21,d22) [d22,d23) [d23,1]
⋮ ⋮ ⋮ ⋮
[0,dm1) [dm1,dm2) [dm2,dm3) [dm3,1]

)

•(

W1
0

W2
0
⋮
Wm

0

)

T

(17)

4. Based on the determination of the threshold values for the
variable weight intervals, it is also necessary to determine the
adjustment parameters a1, a2, a3, and c in the model. These
parameters can control and adjust the effect of the weight
variable.This study attempts to use theMonte Carlomethod to
trial calculate the adjustment parameters, stipulating the value
ranges for a1, a2, a3, and c. Through multiple trial calculations,
the accuracy of the evaluation results ismaximized, simplifying
the calculation process for back-calculating the adjustment
parameters and solving the problemof unsolvable calculations.

2.4 Evaluation of cloud models based on
variable weight theory

Using Equations 12, 14, the variable weight vector W(xi) for
each goaf is calculated. The cloud model is then used to calculate
the membership degree μ(xik) of the goaf instability risk. Based on
this, the already obtained variable weight vector W(xi) is multiplied
by the membership degrees μ(xik) of the n evaluation indicators
for each goaf, resulting in the comprehensive certainty degree Dk
of the instability risk of the goaf (Equation 18). The goaf instability
risk level is determined based on the maximummembership degree
principle. In this study, a forward cloud generator was used to
evaluate the goaf instability risk. The calculation steps are shown in
Supplementary Figure S4 (Guo L. et al., 2024; Han et al., 2023).

Dk =
n

∑
i=1

μ(xik) •W(xi) (18)

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1469834
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guo et al. 10.3389/feart.2024.1469834

FIGURE 10
Comparison of results between the two models. (A) Evaluation result accuracy confusion matrix of constant weight model; (B) Evaluation result
accuracy confusion matrix of variable weight model.

TABLE 12 The difference of comprehensive determination degree of instability risk in goaf between variable weight model and constant weight model.

Number Variable weight model Constant weight model

Average value Variance Coefficient of variation Average value Variance Coefficient of variation

1480-1 0.218 0.138 0.634 0.257 0.205 0.797

1480-2 0.223 0.188 0.841 0.279 0.201 0.721

1480-3 0.198 0.152 0.769 0.261 0.194 0.744

1480-4 0.188 0.193 1.028 0.243 0.240 0.988

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1580-11 0.183 0.117 0.639 0.251 0.174 0.696

1580-12 0.202 0.133 0.659 0.241 0.152 0.628

1580-13 0.219 0.109 0.497 0.261 0.114 0.437

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1730-11 0.195 0.132 0.677 0.267 0.163 0.609

1730-12 0.190 0.134 0.708 0.245 0.165 0.675

1730-13 0.209 0.137 0.656 0.259 0.139 0.536

3 Results

3.1 Determination of constant power
weights

3.1.1 Importance-binary comparison method to
determine the subjective weight

According to Equation 1, the indicators are processed as
dimensionless. Using Equations 2, 3, the standard deviation of
the evaluation indicators for the goaf instability risk is calculated.

Using Equations 4, 5, the correlation coefficients of the evaluation
indicators are calculated, and a heat map (Figure 5) is drawn.
Using Equation 6, the importance scores of the evaluation
indicators are calculated and ranked preliminarily. The results are
summarized in Table 3.

After consulting relevant experts, the preliminary ranking
results of the 13 evaluation indicators were adjusted. The adjusted
ranking is: X1 ≻ X12 ≻ X13 ≻ X2 ≻ X7 ≻ X8 ≻ X5 = X6 ≻ X3
≻ X11 ≻ X9 ≻ X4 ≻ X10. The membership degrees of the factors
relative to each other were determined based on the ranking results,
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FIGURE 11
Histogram of variation coefficient.

FIGURE 12
Box plot of coefficient of variation.

as shown inTable 2 and Supplementary Figure S2.Theweights of the
evaluation indicators were normalized, and the calculation results
are listed in Table 4.

3.1.2 Determine the objective weight
TheGini coefficients of the 13 evaluation indices were calculated

using Equation 8 and normalized using Equation 9 to obtain
the objective weights of the indices: The calculation results
are listed in Table 5.

3.1.3 Combination weight
According to Equations 10, 11, the combination coefficients

of the subjective and objective weights were determined as α1 =
0.33,α2 = 0.79. After normalization, the weight coefficients were
reallocated, resulting in α1

∗ = 0.29,α2∗ = 0.71. The combined
weights of the 13 evaluation indices that influence the instability
risk of the mined-out areas were calculated using Equation 10: The

results are as follows: W = (0.0666, 0.0920, 0.0286, 0.0233, 0.0919,
0.1099, 0.0977, 0.0731, 0.1315, 0.1064, 0.1078, 0.0345, 0.0367).

3.2 Calculate the variable weight

3.2.1 Determine the variable weight interval
Variable weight intervals were determined using the cumulative

frequency of the normalized values of the influencing factors.
Owing to the absence of predefined thresholds for categorizing
data frequencies as “extreme” or “unique,” this study temporarily
defined the cumulative frequency thresholds for state values
at 15%, 33%, and 67%. Specifically, the normalized value
corresponding to a cumulative frequency of 15% was defined
as a strong penalty interval, 33% as an initial penalty interval,
and 67% as a neutral interval. The remaining interval was
considered the incentive interval. The threshold values for
the variable weight intervals were determined by plotting
the cumulative frequency intervals of the state values of the
main controlling factors (Supplementary Figure S5). Thresholds
for factors heavily influenced by human intervention can be
manually defined. The final interval thresholds are listed in
Table 6.

Based on Equations 14–17, the variable weight intervals of
the 13 evaluation indices listed in Table 6 were multiplied by
constant weights to obtain the comprehensive variable weight
interval matrix. The final divisions of the variable weight intervals
are listed in Table 7.

3.2.2 Trial calculations of transfer parameters
Assuming that the accuracy rate of the instability risk evaluation

results for the goaf has a function f (a1, a2, a3, c) related to
the adjustment parameters, the Monte Carlo method is used to
determine the combination of a1, a2, a3, and c within their ranges
to maximize f (a1, a2, a3, c). The specific steps are illustrated in
Figure 6.

With the aid of MATLAB software, 1,000 assignment tests
were conducted to obtain the accuracy rate f (a1, a2, a3,
c) of the evaluation results as a function of the adjustment
parameters a1, a2, a3, c. The resulting variation curve is shown in
Figure 7.

a3 adjusts the amplitude of the weight changes in the
incentive interval, a1 and a2 adjust the amplitude of the weight
changes in the punishment interval, and c controls the weight
adjustments of the entire variable weight model. From Figure 7,
it can be concluded that the adjustment parameters a1, a2, and
c are negatively correlated with the accuracy of the evaluation
results, whereas a3 is positively correlated with the evaluation
results. In addition, a1 and a2 have weaker adjustment strengths,
whereas a3 and ccc have stronger adjustment strengths. The final
adjustment parameters of the variable weight model are listed in
Table 8.

3.2.3 Variable weight determination
Based on the constructed state variable weight vector formula

and the determined variable weight interval and adjustment
parameter values, the state variable weight vector Equation 19 for
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the risk assessment of goaf instability in the Baiyang mine area was
established according to Equation 14.

Sj(x) =

{{{{{{{
{{{{{{{
{

e0.29∗(0.25−x) + e0.66∗(0.42−0.25) + 0.01− 2 [0,0.25)

e0.66∗(0.42−x) + 0.01− 1 [0.25,0.42)

0.01 [0.42,0.64)

e0.67∗(x−0.64) + 0.01− 1 [0.64,1)

(19)

According to Equation 12, the variable weight value of each
evaluation index is calculated, and the relationship between
the constant weight and variable weight was drawn (Figure 8).
The variable weight data of the 13 evaluation indices were
statistically analyzed using Origin software. The results are shown
in Table 9.

From the relationship diagram of the constant and variable
weight values of the evaluation indicators (Figure 8), it is evident
that the constructed variable weight model effectively adjusts
the weights of the evaluation indicators during the process of
assessing the goaf instability risk in the Baiyang mining area.
Specifically, the variable weight model includes the weights of
six indicators: rock mass structure (X1), geological structure
(X2), rock quality (X3), ore body dip angle (X4), condition of
adjacent goafs (X12), and management measures (X13), which
significantly increase their weight values. Conversely, the model
has “penalized” the weights of seven indicators: goaf volume (X5),
maximum exposed area (X6), pillar area ratio (X7), height-span
ratio (X8), burial depth (X9), exposure time (X10), and water
accumulation in the goaf (X11), reducing their weight values in
some goafs.

The average weight of the “neutral” interval (neither penalized
nor incentivized) is smaller than that of the other intervals. This is
because, under the weight adjustments of the variable weight model,
the weights of the factors in the “neutral” interval are compressed.
As shown in Table 9, the difference between the average variable and
constant weight was not significant. This indicates that the variable
weight model not only meets the decision-makers’ preferences
for the primary control factors under various combinations of
states but also considers the relative importance of the indicator
weights. Therefore, in terms of the weight adjustment effects, the
constructed variable weight model effectively adjusted the weights
of the 13 evaluation indicators according to the predetermined
variable weight approach, thus satisfying the expected
outcomes.

3.3 Evaluation results of the variable
weight model

According to the cloud model calculation steps shown in
Supplementary Figure S4, the cloud characteristic parameters of the
different indicator evaluation standards were calculated, and the
results are shown in Table 10. Evaluation grade cloud maps were
drawn using MATLAB. Because of space limitations, only a few
indicators are shown here in Figure 9.

Using Equation 18, the comprehensive determination degree
of the instability risk of 195 goafs in the Baiyang mine area was
calculated, and the stability grade of the goafs was determined

according to the principle of maximum membership degree. The
results are shown in Table 11.

4 Discussion

4.1 Comparison of evaluation accuracy

Using data from 195 goafs, risk levels were calculated using
both variable weight and constant weight models.These results were
compared with the actual risk levels to determine the accuracy
of the two models. According to Figure 10, the accuracy of risk
assessment using the constant weight model was 76.41%, whereas
that using the variable weight model was 90.26%. This significant
improvement indicates that the variable weight model provides a
more accurate assessment of the goaf risk levels than the constant
weight model.

4.2 Variation in comprehensive
determination of goaf instability risk

According to Equation 18, the comprehensive determination of
the risk of goaf instability Di in Baiyang Mine under both constant
weight and variable weight conditions was calculated for 195 goafs.
Di consists of numerical values of four risk levels, as shown in
Equation 20. A difference coefficient ζ was used to measure the
discrepancy in the determination of different levels of risk in the
goaf (Equation 21). This was compared with the discrepancy in
the comprehensive determination of the risk of goaf instability
between the constant weight model and the variable weight model
(calculated results are shown in Table 12). The bar chart in
Figure 11 and the box plot in Figure 12 and illustrate the direct
comparison of the distribution of the difference coefficient data for
both models.

Dk = [

[

I II III IV

d1 d2 d3 d4
]

]
(20)

ζ =

1
4
(

4

∑
k=1
(dk − dk))

dk
, dk =

4

∑
k=1

dk (21)

The analysis in Figure 11 shows that the histogram of the
variable weight model dataset is higher than that of the constant
weight model dataset (approximately 0.75) and the distribution
range is wider. The average value of the constant weight model
dataset is low and is concentrated near the average value, and the
distribution range is narrow. The analysis in Figure 12 shows that
the box plot of the variable weight model has a higher median and
wider interquartile range (IQR) than the constant weight model.
There are more potential outliers in the variable weight dataset,
indicating a wider range of values. The results show that the
variable weight model has a higher difference coefficient, indicating
a wider range of variation in the comprehensive determination.This
suggests that the variable weight model better captures the nuances
and complexities of the goaf instability risk, providing clearer
and more distinguishable membership degrees in the evaluation
results.
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4.3 Practical significance and future
research

These findings enhance the accuracy and reliability of the
variable weight model, significantly strengthen mining safety
management practices, and ensure safe mining operations. Future
research could further refine this assessment framework by
incorporating temporal factors and exploring alternative weighting
methods. Additionally, extending the application of the variable
weight model to other mining environments and geological
conditions could provide broader insights into its effectiveness and
adaptability.

5 Conclusion

This study employs a systematic approach to construct an
index system for evaluating the destabilisation risk of a mining
area. The index system is developed based on a comprehensive
analysis of the specific characteristics of the mining area in
question. In accordance with the tenets of game theory, the
subjective and objective weights are integrated and assigned to
ascertain the constant weight. Subsequently, in consideration of
the characteristics of the indicator values, the local variable
weight theory is introduced, and the threshold of the variable
weight interval is determined through the normalized cumulative
frequency method of the indicators. The Monte Carlo method
is employed to determine the adjustment parameters, with the
variable weight then applied to each indicator value via the local
variable weight state function. The cloud model is subsequently
utilised to evaluate the destabilisation risk of the air mining
area on this basis. The following main conclusions are drawn
in this paper:

1. Although fixed-weight models offer basic assessments, their
static weight approaches fail to account for variations and
abrupt changes in factor indices. In contrast, the variable
weight model dynamically adjusts the weights based on the
status values of the influencing factors to overcome this
limitation. This flexibility enhances the capability of the
model to accurately assess instability risk in mined-out areas,
making it a more reliable tool for practical mining safety
applications.

2. The variable weight model provided a greater difference in the
comprehensive certainty of the goaf instability risk, making
the membership degree of the evaluation results clearer and
easier to distinguish. This addresses the issue of ambiguity
in the results owing to the small differences in membership
degrees.

3. In conclusion, the introduction of variable weight theory
and the use of the cloud model significantly enhanced the
accuracy and reliability of goaf instability risk assessments.
Future research can improve the evaluation index system
by incorporating time factors and exploring additional
weighting methods to refine the model.
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