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Meteorological characteristics and freeze-thaw processes are crucial indicators
guiding regional economic development and practical production. The Da
Xing’anling Mountains, serving as a transitional zone between continuous
permafrost and seasonal frozen ground in northeastern China’s high latitudes,
understanding the meteorological parameters and freeze-thaw development
patterns in this region can significantly enhance the accuracy of permafrost
zoning maps and validate climate simulation models. Based on meteorological
and ground temperature monitoring data from 2022–2023, this study analyzed
the meteorological characteristics and seasonal freeze-thaw processes of
Jagdaqi (southern Da Xing’anling Mountains), which is located at the boundary
between permafrost and seasonally frozen soil. The results indicate: (1) At
a height of 5 m, the annual average temperature is 1.04°C. The air-freezing
index and air-thawing index are −2318.95°Cd and 2698.52°Cd, respectively,
categorizing it as a severe cold region. (2) The total annual precipitation is
397.1 mm, with summer rainfall accounting for 77.4% and winter rainfall only
11.3%. (3) The prevailing wind direction is from the northwest, accounting for
approximately 47% of the total annual wind direction frequency. Annual wind
speeds range from 0.045 to 10.33 m/s, with an average speed of 1.51 m/s.
(4) At heights of 5 m and 10 m, the annual average relative humidity is
63.49% and 62.1%, respectively, reaching its lowest in May at 44.58% and
43.38%. (5) The study area is located in a seasonal frozen ground region,
with maximum frost depths occurring in early to mid-March, ranging between
1.93–1.99 m, classified asmiddle-thick seasonally frozen ground. These findings
hold valuable implications for ecological conservation, resource management,
and engineering construction, enhancing the accuracy and applicability of
models and permafrost zoning maps in this region.
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1 Introduction

The Da Xing’anling Mountains, as an important geographical
and climatic boundary in Northeast China, lies at the junction of
temperate and cold zones, serving as a transitional zone between
high-latitude permafrost and seasonal frozen ground. This unique
location has shaped distinctive climate and ecological environments
(Luo et al., 2014; Yasmeen et al., 2019). The region is significant
for forestry and mineral resources, as well as vital for ecological
conservation, boasting rich forest resources and unique ecosystems
(Chen and Zhou, 2023; Tian et al., 2009). With global climate
change intensifying, the Da Xing’anling Mountains faces increased
frequency and intensity of climate extremes such as meteorological
droughts, floods, and snowstorms (Chen et al., 2014; Guo and
Li, 1981). Research into the meteorological characteristics of
this region can effectively support the development of climate
adaptation strategies and risk management measures (Liu et al.,
2024; Jiang et al., 2024). This, in turn, reduces disaster losses and
ensures sustainable socio-economic development (Wang et al.,
2014). Additionally, such research provides scientific basis for the
rational utilization and management of forests, water resources,
etc. (Gao et al., 2018), aiding in finding a balance between
resource exploitation and ecological protection (Gao et al., 2020).
The Da Xing’anling Mountains exhibits significant seasonal
and interannual variability, making it an ideal demonstration
area and representative region for studying climate change
(Wei et al., 2011). Studying its climate change patterns helps

better understand the interactions of various complex factors
within the global climate system and their impacts on regional
climates (Fan et al., 2023). Seasonal freeze-thaw processes directly
impact regional plant growth and soil nutrient cycling, water
resource availability, and flood formation. Simultaneously, they
serve as crucial guiding parameters for engineering projects and
resource utilization in cold regions (Song et al., 2022). Therefore,
research on seasonal freeze-thaw characteristics not only aids in
deepening our understanding of natural geographical processes and
ecosystem response mechanisms but also provides vital scientific
basis and decision support for climate change monitoring, water
resource management, engineering construction, and resource
utilization (Zhu et al., 2024). Furthermore, the monitoring
site was located in Jagdaqi (southern part of Da Xing’anling
Mountains), situated in the transitional zone between high-latitude
permafrost and seasonal frozen ground. The region’s climate
characteristics and freeze-thaw cycles, as evidenced by observational
data, provide reliable verification conditions for climate models
and permafrost mapping, thereby enhancing their accuracy
and applicability.

In meteorological research for the Da Xing’anling region,
Zhang et al. (2018) analyzed trends in precipitation and temperature
changes across the area up to 2014 using field data. Xu et al.
(2022) focused on the characteristics of extreme cold weather in the
region.Wan et al. (2014) examined themeteorological features of the
Jagdaqi area, exploring the relationships between local temperature,

FIGURE 1
Location of experimental site.
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FIGURE 2
Variation of daily average temperature from November 2022 to November 2023.

ground temperature, precipitation, and evaporation. Zhang et al.
(2010) discussed long-term climate change patterns in Jagdaqi based
on data from 1967 to 2005. It is evident that research on the
climate of Jagdaqi in the Da Xing’anling Mountains is relatively
sparse, with existing studies relying on older data and no recent
reports on meteorological characteristics from the past decade.
The absence of up-to-date data introduces significant uncertainty
in assessing Jagdaqi’s capacity to adapt to climate change and in
developing future climate prediction models. The lack of recent
data impedes the accurate simulation of changes in temperature,
precipitation, and their impacts on permafrost and ecosystems.
Additionally, research on frozen soil in the Da Xing’anling area has
predominantly concentrated on permafrost distribution (Wei et al.,
2011; Ran et al., 2012), degradation processes and responses to
climate change (He et al., 2009; Jin et al., 2007; Wei et al., 2008;
Chang et al., 2013), and the impacts of engineering activities
(Cao et al., 2023; Cao et al., 2024; Jin et al., 2010). There is a
notable absence of objective reports on the development of seasonal
freeze depth and the quantification of maximum freezing depth in
this region.

Given this, this study is based on in-situ monitoring data, with
a focus on describing the patterns of temperature, precipitation,
humidity, and wind in the Jagdaqi area from 2022 to 2023. It

also involves a quantitative analysis of the seasonal freezing and
thawing development process of the soil and the distribution
characteristics of maximum freezing depth in this region. The
research results can directly support the drawing of regional maps,
validate simulation models, guide regional ecological protection,
resource management, and engineering construction, and provide a
scientific basis for government formulation of regional development
plans and policies.

2 Materials and methods

2.1 Study area

The research area is located in Jagdaqi District, Da Xing’anling,
Heilongjiang Province, China. It is situated on the southeast slope
of the Da Xing’anling Mountains at an elevation of approximately
387 m. The coordinates of the area are 50°22′29″N, 124°6′27″E,
as shown in Figure 1. The terrain is generally flat with gentle
undulations, characteristic of a low mountain and hilly region. The
vegetation in the Jagdaqi District belongs to the cold temperate
coniferous forest zone of the Da Xing’anling Mountains (Tian et al.,
2009). Due to the climatic conditions, the region has a relatively
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FIGURE 3
Precipitation from October 2022 to September 2023.

sparse variety of plant species, predominantly of the Dahurian flora
(Jia et al., 2021). The research area is located in the permafrost and
seasonal frost transition zone and experiences a winter season from
September to May of the following year (Jin et al., 2007). The frost-
free period ranges from 85 to 130 days, and the climate is classified
as a cold temperate continental monsoon climate with distinct
seasons, characterized by long, cold winters and short summers.
The stratum within a depth range of 2 m consists of loamy soil,
clay, and gravel.

2.2 Data and methods

Field monitoring parameters include air temperature, humidity,
wind speed and direction, precipitation, soil moisture and
temperature. A 10-meter-high meteorological tower was installed at
the monitoring site, with sensors for air temperature, humidity,
wind speed, and direction placed at heights of 5 m and 10 m,
respectively. The air temperature and humidity are measured
using the HMP155A sensor, which is equipped with a radiation
shield for outdoor installation. Wind direction and speed are
monitored using the WindSonic sensor, while precipitation is
measured with a T-200 series precipitation gauge. Soil temperature

and volumetric water content (VWC) at depths of 0.2, 0.4, 0.6,
0.8, 1, 1.5, and 2 m in the active layer are measured using CS655
sensors. The data is collected by a CR1000X data logger at a 10-
minute sampling interval. The data acquisition system is powered
by solar panels and batteries, with data collection conducted through
remote transmission.

3 Result and analysis

3.1 Meteorological characteristics

Figure 2 shows the variation of daily average temperature
from November 2022 to November 2023. The average annual
temperatures at heights of 5 m and 10 m are 1.04°C and 1.36°C,
respectively, with the highest annual temperatures reaching 25.93°C
and 26.09°C, and the lowest annual temperatures dropping
to −36.35°C and −34.95°C. Compared to the average annual
temperature during 2001–2005 (0.15°C–0.6°C) (Zhang et al., 2010),
the temperature in this region has significantly increased over
the past 17 years. January is the coldest month, with an average
temperature of −24.25°C, while July is the warmest month, with
an average temperature of 20.64°C. There are 189 days with
temperatures equal to or lower than 5°C. Therefore, the study area
belongs to a severe cold region (Qin et al., 2016). The warm months
(with temperatures exceeding 10°C) are from May to September,
with average temperatures of 3.18°C in April and 4.38°C in October.
The air-freezing index and air-thawing index are the cumulative
sums of degree-days below and above 0°C, respectively, over the
course of a year. In this region, the air-freezing index is −2318.95
°Cd, and the air-thawing index is 2698.52°Cd. The results of air
temperature monitoring can offer valuable insights for assessing
climate change, planning agricultural production, and guiding
infrastructure development.

Figure 3 shows the precipitation from October 2022 to
September 2023. The total precipitation from October 2022 to
September 2023 is 397.1 mm. The distribution of precipitation
shows that the highest rainfall occurs in July, with 109.8 mm, and the
total rainfall from June to September is 307.5 mm, accounting for
approximately 77.4% of the annual precipitation. Winter has lower
precipitation, with a total of 44.9 mm from November to March,
accounting for 11.3% of the annual rainfall, with only 1.2 mm
in February. In the months of frequent temperature fluctuations,
October and April, the precipitation is 8.9 mm and 23.6 mm,
respectively.On the other hand, the annual rainfall days are 106, with
a total of 57 days from June to September, accounting for 53.77%
of the annual rainfall days (Figure 4). In addition, the maximum
rainfall days in June is 18, while both December and February have
the least rainfall days of 3. In terms of rainfall levels, there are only 3
days throughout the year with heavy rainfall, 6 days with moderate
rainfall, and the rest are light rainfall. The maximum single-day
rainfall occurred on July 10th, with a 24-hour cumulative rainfall
of 46.1 mm. The above monitoring results can provide guidance
for local water resource utilization, flood prevention, and disaster
mitigation.

Figure 5 shows the wind speed and wind direction from
October 2022 to September 2023. The northwest wind direction
was the prevailing wind direction, and this wind direction
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FIGURE 4
Number of rainy days from October 2022 to September 2023.

frequency accounts for approximately 47% of the total annual
wind direction frequency. The annual wind speed ranges from
0.045 to 10.33 m/s, with an average speed of 1.51 m/s, falling
into the low wind speed category. Most of the time, the wind
speed is between 0 and 4 m/s, accounting for 95% of the time.
In terms of wind speed distribution, the average wind speed
is highest in May at 2.18 m/s, and lowest in January at only
1.12 m/s. In terms of the trend, the average wind speed gradually
increases from January to May. From June to September, the
wind speed remains relatively stable, averaging between 1.3 and
1.42 m/s. The results of wind speed and wind direction monitoring
can guide energy development and air quality assessment
in the region.

Figure 6 illustrates the relative humidity (RH) variations from
October 2022 to September 2023. During this period, the average
relative humidity at 5 m and 10 m heights was 63.49% and
62.1%, respectively. Notably, the average RH between June and
September was higher, fluctuating between 71.54% and 76.6%.
It is important to highlight that from January to May, there
was a clear negative correlation between relative humidity and
wind speed, with RH progressively decreasing as wind speed
increased. The lowest RH values at both heights were recorded
in May, with 44.58% at 5 m and 43.38% at 10 m. This could
be attributed to the low precipitation levels, dominated by solid-
state precipitation, along with a significant decrease in vegetation
transpiration during this period. Under such conditions, the
increase in wind speed likely enhanced air convection and
mixing, facilitating the quicker diffusion and evaporation of
water vapor, thereby reducing the relative humidity. Additionally,
in October, during frequent temperature fluctuations, the RH
at 5 m and 10 m was 56.41% and 54.57%, respectively. These
monitoring results can offer valuable guidance for agricultural
production and improving the freeze-thaw durability of buildings in
cold regions.

3.2 Freeze-thaw process

The research area is located in a seasonally frozen
ground zone, and Figure 7 illustrates the seasonal freeze-thaw
process within a 2-meter depth range. Firstly, it can be observed
that the maximum seasonal freezing depth during the monitoring
period was 1.93–1.99 m, signified bymiddle-thick seasonally frozen
ground. In terms of the development of the freezing depth, as
winter progressed, the freezing of the 0.2-meter layer began on
November 5th, and the freezing depth gradually increased, reaching
its maximum in early March, and then gradually decreased. From
the 0°C isotherm line, it can be seen that the seasonally frozen
ground starts to thaw from both the top and bottom directions, and
completely melts onMay 5th.Therefore, the process of frozen depth
development in the region at depths of 0.2–2 m lasts approximately
4 months, with the melting development process lasting 2 months.
In the warm season, at a depth of 2 m, the soil temperature is
above 12°C for about 2.5 months, above 8°C for 5 months, and
the 16°C isotherm can extend to a depth below 1.4 m. Regarding
the soil temperature at a depth of 0.2 m, the shallow soil layer is
warmer from June to August, with approximately 2 months of soil
temperature above 20°C.

Figure 8 shows the variation of soil moisture and temperature
from February 2022 to October 2023. The annual average ground
temperature in the depth range of 0.2–2 m is between 6.22°C and
6.6°C, as indicated in the graph. Due to differences in depth,
there are significant variations in ground temperature fluctuation
characteristics across different layers. The fluctuation amplitudes of
ground temperature for seven layers are 37.44, 32.19, 27.65, 24.7,
22.86, 17.73, and 13.21°C respectively. Among them, the average
ground temperature in the 0.2–0.6 m soil layer during the months
of May to September ranges from 15.29°C to 17.51°C. In terms
of freezing duration, the freezing duration at a depth of 0.4 m is
147 days, whereas at a depth of 1.5 m, it decreases to 62 days. During
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FIGURE 5
Wind speed and wind direction from October 2022 to September 2023.

the freezing development period, the freezing depth development
rate ranges from 0.74 to 2.22 cm/day, with slower freezing rates
observed in the 0.4–0.6 m soil layer. As temperatures drop during
the freezing period, soil moisture content declines significantly as

water transforms from a molecular to a crystalline ice structure. In
the early stages of thawing, the moisture content in the shallow soil
layers rises sharply, likely due to the infiltration of surface snowmelt,
resulting in a supersaturated condition in the shallow layer.
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FIGURE 6
Variation of relative humidity (RH) from October 2022 to September 2023.

FIGURE 7
Freeze-thaw process from February 2022 to October 2023.

Seasonal freeze-thaw variations in the ground are indicators of
climate change, influenced by soil temperature states and moisture
distribution (Luo et al., 2020). Human activities can significantly
alter these seasonal freeze-thaw processes, such as changes in
land use, construction activities, greenhouse gas emissions, and
pollutant releases (Shiklomanov et al., 2017). Specifically, activities
like farmland reclamation, grazing, and urbanization modify land
use patterns, which in turn affects the type and thickness of surface

cover.This change impacts the heat transfer processes at the surface,
thereby altering the depth and timing of seasonal freeze-thaw
cycles. Infrastructure development in cold regions (such as roads,
buildings, and pipelines) alters the thermodynamic properties of
the soil (Jin et al., 2023). Human-induced greenhouse gas emissions
are a major driver of global warming, which directly affects
seasonal freeze-thaw characteristics, leading to shorter freezing
periods and increased frequency of freeze-thaw events. Pollutants
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FIGURE 8
Variation of soil moisture and temperature from February 2022 to October 2023.

generated by industrial activities and transportation, such as dust
and black carbon, settle on snow or ice surfaces, reducing their
albedo and accelerating melting, thereby impacting the thermal

balance of permafrost regions (Jin et al., 2024). Overall, human
activities change the characteristics of seasonal freeze-thaw through
both direct and indirect means.
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4 Conclusion

To investigate the meteorological characteristics and features
of seasonally frozen soil in the southern part of the Da
Xing’anling Mountains, based on the meteorological and ground
temperature data from 2022 to 2023, the following conclusions
were drawn:

1. The annual average air temperature at 5 m above ground
is 1.04°C. The air-freezing index and air-thawing index are
−2318.95°Cd and 2698.52°Cd, respectively, indicating a region
of severe cold.

2. The total annual precipitation is 397.1 mm, with 77.4%
occurring in summer and only 11.3% in winter.

3. Northwestern winds dominate, accounting for approximately
47% of the total annual wind frequency. Wind speeds range
from 0.045 to 10.33 m per second, with an annual average of
1.51 m per second.

4. The annual average relative humidity at 5 m and 10 m above
ground is 63.49% and 62.1%, respectively, reaching their lowest
points in May at 44.58% and 43.38%.

5. The study area is located within a region of seasonally frozen
ground.Themaximum frost depth occurs inmid to lateMarch,
with seasonal frost depths ranging between 1.93 and 1.99 m,
classifying it as moderately thick seasonally frozen ground.
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