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Synthetic Aperture Radar Interferometry (InSAR), which can map subtle ground
displacement over large areas, has been widely utilized to recognize active
landslides. Nevertheless, due to various origins of subtle ground displacement,
their presence on slopes may not always reflect the occurrence of active
landslides. Therefore, interpretation of exact landslide-correlated deformation
from InSAR results can be very challenging, especially in mountainous areas,
where natural phenomenon like soil creep, anthropogenic activities and
erroneous deformational signals accumulated during InSAR processing can
easily lead tomisinterpretation. In this paper, a two-phase interpretationmethod
applicable to regional-scale active landslide recognition utilizing InSAR results
is presented. The first phase utilizes statistical threshold and clustering analysis
to detect unstable regions mapped by InSAR. The second phase introduces
landslide susceptibility combined with empirical rainfall threshold, which are
considered as causative factors for active landslides triggered by rainfall, to
screen unstable regions indicative of active landslides. A case study validated by
field survey indicates that the proposed interpretation method, when compared
to a baseline model reported in the literature, can achieve better interpretation
accuracy and miss rate.

KEYWORDS

InSAR, active landslide, landslide recognition, interpretation method, empirical rainfall
thresholds

1 Introduction

Landslides are a sign of slope instability, which can transform into disastrous events
due to natural or anthropogenic triggering factors (Varnes, 1984). To mitigate such
risks, recognition of active landslides before catastrophic collapse is a primary goal
of current research (Lacroix et al., 2020). Active landslides can be generally described
with a three-state creep behavior, including a secondary creep that accumulates subtle

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1482940
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1482940&domain=pdf&date_stamp=2024-09-16
mailto:yfkang1225@163.com
mailto:yfkang1225@163.com
https://doi.org/10.3389/feart.2024.1482940
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1482940/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1482940/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1482940/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1482940/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liao et al. 10.3389/feart.2024.1482940

displacements constantly (Intrieri et al., 2019). Therefore, ground
displacements have often been utilized as an important sign for
recognizing active landslides (Pu et al., 2023). However, such
ground displacements are not registered routinely, especially
in mountainous regions, because of the high cost involved
in field survey and in-situ instrumentation. In recent years,
interferometric synthetic aperture radar (InSAR), capable of
capturing millimetric ground displacement from space, has become
a consolidated tool for the landslide community (Bekaert et al.,
2020). Indeed, satellite-based InSAR has been widely used to
recognize active landslides without prior knowledge of their
location since the early 2000s (Ferretti et al., 2001). With the
improvement of SAR satellites that provide an unprecedented time
series dataset of InSAR (Ho Tong Minh et al., 2020), mapping active
landslides utilizing InSAR results, from national (Di Martire et al.,
2017; Festa et al., 2022), regional (Zhang et al., 2018), and basin
(Zhang et al., 2016; Jia et al., 2022) levels, has been adopted by both
developed and developing countries.

Nevertheless, focusing on practical aspects of recognizing
active landslides in mountainous regions, processing SAR datasets
and interpreting InSAR results can be very challenging. For
instance, landslide-prone regions are typically distributed in alpine
canyon areas with vegetation coverage, where signal decorrelations,
geometric distortion, and phase wrapping inevitably limit the
reliable extraction of ground surface deformation from the entire
interferograms (Ho Tong Minh et al., 2020). Besides, the current
satellite acquisition frequency and the one-dimensional nature
of the InSAR results impose physical constraints on capturing
the three-dimensional and nonlinear kinematics of landslides.
Furthermore, as emphasized by Wasowski and Bovenga (2014),
subtle ground displacements measured by InSAR can have different
origins, without distinguishing the origins of their motion, this may
lead to misleading results. Milillo et al. (2022) reported practical
research combining InSAR results with machine learning methods
to recognize active landslides automatically. However, they also
reported misinterpreted results localized in non-landslide areas,
which were attributed to anthropogenic activities such as oil
field extraction or aquifer use. Necula et al. (2021) reported a
more complicated case of misinterpretation in which ground
displacement mapped by InSAR was attributed to the construction
of residential buildings over in-active landslides. In summary,
inevitable signal noise during InSAR processing in landslide-
prone regions and the difficulty in discriminating landslide-
correlated deformation in InSAR results are ongoing challenges.
Although InSAR processing is crucial to obtain reasonable ground
deformation measurements, the present study only focuses on the
interpretation of InSAR results (e.g., interferograms, IFs; mean
velocity maps, MVMs). Therefore, from the perspective of radar
interpretation defined by Farina et al. (2006), InSAR results require
careful interpretation before they can be reliably considered as active
landslides.

To reduce erroneous interpretations of InSAR results for
the purpose of landslide recognition (also reported as landslide
detection or identification in the literature), various interpreting
methods have been proposed over the last decade. In addition to
visual interpretation by experts (Ponziani et al., 2023), combining
velocity threshold with clustering analysis (e.g., unsupervised
machine learning algorithms, UMLAs) has been widely utilized

to interpret active landslides from InSAR results: fixed threshold
reported by Righini et al. (2012), statistical threshold reported by
Aslan et al. (2020), hot-spot analysis reported by Lu et al. (2019),
C-index reported by Xiong et al. (2023), index of separating trend
reported by Li et al. (2023). Furthermore, by applying landslide
predisposing factors (e.g., slope angle, lithology, land use, and
others), which have been used in landslide susceptibility analysis,
researchers have attempted to explicitly link InSAR-mapped ground
displacements to active landslide.

With the expansion of large SAR archives and processing
techniques (Ho Tong Minh et al., 2020), interpreting large volumes
of InSAR datasets automatically has become crucial nowadays,
especially for large scale engineering applications. From the aspect
of practical interests, interpretation of InSAR data to recognize
active landslides can be further divided into two processes, which
include unstable regions detection (also called anomalies detection
reported by (Raspini et al., 2018) and root-cause analysis of ground
deformation phenomena, respectively. Festa et al. (2022) reported a
pioneering work in semi-automatic interpretation of nation-wide
InSAR results to recognize various natural hazards. The unstable
regions detection process was accomplished by applying spatial
clustering to obtain moving area clusters. The root-cause analysis
process was done by introducing ancillary data like landslide
inventory maps, vertical-horizontal component ratios obtained
through 2D-decomposition of LOS displacements, and minimum
slope angle threshold. He et al. (2023) reported an interpretation
method by combining fixed displacement rate thresholds and
landslide susceptibility. By introducing the latter into the root-cause
analysis process, they found the interpretationmethod could further
separate InSAR-mapped deformation correlated to active landslides
from others. However, the aforementioned threshold, factors or
input parameters used during interpretation may not be confidently
determined, and they should be case-specific to account for the
complex characteristics of different slopes, as well as measurement
precision for the given InSAR results (Cigna et al., 2013).

In addition, supervised machine learning algorithms (SMLAs)
have been introduced for interpreting InSAR results to recognize
active landslides recently. Some of these studies only utilized InSAR
results as the model input variable, where IFs or MVMs were
directly inputted into pre-trained models using different SMLAs.
For instance, combining stacked IFs with YOLOv3 reported by
Fu et al. (2022), combining MVMs with Faster RCNN reported by
Cai et al. (2023). In addition, some other studies, assisted by SMLAs
and multi-dimensional datasets containing InSAR results and
auxiliary data, were also reported (Novellino et al., 2021). Indeed,
many published and unpublished SMLAs studies are addressing in
improving accuracy and efficiency of landslide recognition using
InSAR results.However, there are still several limitations highlighted
in the literature, including dilemmas in constructing an appropriate
dataset with limited landslide samples within a given region, and
most importantly, introducing landslide triggering mechanisms to
improve model interpretability (Novellino et al., 2021).

On the other hand, from the perspective of slope-scale
landslide analysis, grounddisplacement induced by certain causative
factors can be evaluated by means of analytical or numerical
methods. However, the application of these methods may not
be completely justified for regional-scale landslide recognition
purposes, especially if all required input data are not available
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without prior knowledge of landslides’ location. To the best of
the authors’ knowledge, there have been rather few attempts to
connect InSAR results to landslide triggering mechanism for the
purpose of recognizing active landslides, especially considering
causative factors such as precipitation. For instance, Dong et al.
(2023) reported an interpretation method to screen pre-clustered
InSAR results. The Pearson correlation coefficient between InSAR-
mapped ground displacement time-series and accumulatedmonthly
rainfall combined with landslide susceptibility was introduced into
the root-cause analysis. Even though the reported interpretation
method only requires a limited number of easily accessible datasets,
the simplified statistical relationship between ground displacement
and rainfall described by the Pearson correlation coefficient may
not represent the sophisticated triggering mechanisms of rain-
induced landslides compared with analytical/numerical or other
statistical methods.

In this paper, for the purpose of recognizing active landslides
at a regional scale, a simple-to-use method for interpreting
InSAR results is presented. Taking landslide triggering by seasonal
precipitation as an example, we propose a two-phase process
to screen InSAR-measured MVMs combining clustering analysis,
landslide susceptibility and possibility of rainfall-induced landslide
failures. Here we assume that a higher likelihood of landslide
failure, as indicated by rainfall thresholds, would correlate with a
greater potential for landslide-correlated deformation captured by
InSAR. This, in turn, may serve as an indicator for interpreting
InSAR results to recognize active landslides. To achieve this, we
construct empirical rainfall thresholds to indicate the possibility
of landslide failures using satellite-based hourly precipitation data
and recorded landslide failure events. After validating this by field
surveys, the performance of the proposed method is evaluated and
compared with a baseline model reported in the literature. Overall,
by explicitly introducing the causative factors into the root-cause
analysis, this study provides a semi-automatic interpretationmethod
for discriminating InSAR-mapped deformation results correlated to
the unique physical phenomena of rainfall-induced landslides.

2 Study area

The selected study area is Fengjie County, located in
the Northeastern Chongqing Municipality, China. Due to its
mountainous terrain, complex geological conditions, and unique
weather patterns characterized by continuous rainy days and heavy
rainfall every autumn (referred to as the West China Autumn
Rain), Fengjie County is particularly vulnerable to rainfall-induced
landslides (Li et al., 2022). Furthermore, Fengjie County has
jurisdiction over 29 towns with approximately 745,000 inhabitants.
Due to rapid development, human engineering activities such
as land reclamation and housing construction have become
significant contributing factors to events related to ground surface
deformation (Zhang et al., 2023).

Open-source SAR data have been acquired by Sentinel-1 from
the European Space Agency (ESA) to ensure weekly global coverage
of the land surface. Due to the impact of Sentinel-1B failure, the
acquisition of Sentinel-1A has been affected worldwide, especially
in China. As a result, the acquisition percentage (actual acquisition
versus planned acquisition) of the Sentinel-1A has degraded in the

study area since 2021. It is worth noting that Sentinel-1A data have
acquisitions only in ascending orbits in the study area (See Figure 1).
In addition, the digital elevation model (DEM) obtained from the
Shuttle Radar Topography Mission (SRTM) and the normalized
difference vegetation index (NDVI) derived from Sentinel-2 optical
images imply that the area would suffer from geometrical distortion
and signal decorrelation.

3 Materials and methods

3.1 Data preparation

The application of InSAR results to landslide deformation
tracking should satisfy the geometric sensitivity to deformation
(van Natijne et al., 2022). Therefore, the applicability of SAR images
acquired by Sentinel-1A was analyzed initially. We followed the
methods suggested by (Notti et al., 2014; Dai et al., 2022) to create
visibility and sensitivity maps of the study area (See Figure 2). The
R-index (RI), or range index, has been widely used to assess the
topographic effects, specifically the visibility of the SAR image. As
indicated by Notti et al. (2014), the RI represents the ratio between
the slant range (a radar geometry distance) and the ground range (an
Earth surface distance).The RI was classified into three levels, which
includes poor, medium, and good visibility, ranging from below 0, 0
to 0.38, and 0.38 to 1, respectively. The S-index (SI), or sensitivity
index, was calculated by the orthogonal projection of the downslope
unit vector onto the line-of-sight of the radar satellite (Chang et al.,
2018). The SI was classified into three levels (Dai et al., 2022), which
include poor, medium, and good visibility, ranging from below 0 to
0.3, 0.3 to 0.6 and 0.6 to 1, respectively.

The landslide susceptibility map of the study area was produced
by the analytic hierarchy process (AHP), which belongs to
the expert’s knowledge-based methodology. Twelve conditioning
factors were used in the analysis process following the suggestion
reported by Gong et al. (2022). Areas with landslide susceptibility
values (LSV) among lower than 0.3, 0.3–0.55, 0.55–0.7 and greater
than 0.7 were categorized into low, moderate, high, and very high
susceptibility, respectively. As illustrated in Figure 3, 79.97% of
the study area is referred to as having good RI. However, due
to the west-east distribution of the Yangtze River and extrusion
from the Ta-Pa Mountains, slopes in the study area may tend to
form a north-south orientation along river networks or mountains.
As a result, SI in the study area exhibits only 25.68% of good
sensitivity. From the perspective of landslide susceptibility, as shown
in Figure 3 and reported by other researchers (Zhang et al., 2023),
most of the study area exhibits low and moderate susceptibility.
Areas with high and very high susceptibility are mainly located
along the Yangtze River or low mountain and hilly areas in the
northwest part.

To construct empirical rainfall thresholds for the study area,
historical data of recorded landslide failures from 2013 to 2019
were collected.Then, data preprocessing was conducted to eliminate
improbable data. After that, as illustrated in Figure 3, 951 recorded
landslide failure events were utilized in this study. The Precipitation
Estimation from Remotely Sensed Information using Artificial
Neural Network Cloud Classification System (PERSIANN-CSS), a
widely used satellite precipitation product (Nguyen et al., 2019),
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FIGURE 1
The location of the study area and the distribution range of SAR data.

FIGURE 2
The visibility and sensitivity maps of the study area.

was utilized as rainfall data. This product has an hourly temporal
resolution and a 4 km spatial resolution. PERSIANN-CSS data from
2013 to 2019 were collected, totalling 242 grid cells per hour in the
study area. It should be noted that the PERSIANN products tend
to overestimate precipitation in high-elevation regions in Southwest

China due to fewer rain gauge observations that can be used for
correction (Nie and Sun, 2020).

To avoid the influence of irregular Sentinel-1A acquisitions in
the study area since 2021, 58 scenes of SAR images were collected
from January 1 to 26 December 2020. The processed InSAR data
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FIGURE 3
The distribution of recorded landslide failures from 2013 to 2019 and overlayed with landslide susceptibility in the study area. The distribution of
R-Index, S-Index, and landslide susceptibility in the study area.

from these SAR images with ascending orbits were used, generating
a total of 10,454,266 coherent targets (CTs) in the study area. The
final spatial resolution of the InSAR data was 20 × 20 m. Based on
the CT density evaluation process suggested by Wang et al. (2021),
five land cover types, which include cropland, forest, grassland,
water, and bareland, were chosen to evaluate the CT density. As
depicted in Figure 4, CT density changes dramatically in different
land cover types and can be categorized into three applicability
levels. Excluding the land cover type of water, the land cover type
of forest, which covers 62% of the total area, has the lowest value
of 1398 CT/km2 and can be classified as having a low applicability
level. In contrast, the land cover type of bareland, which covers less
than 1% of the total area, has the highest value of 6170 CT/km2 and
can be classified as having a high applicability level. Additionally,
CT density in the land cover types of cropland and grassland varies
from4,417 to 4927CT/km2 and can be classified as having amedium
applicability level.

3.2 Causally-connected method for
interpreting InSAR results

As depicted in Figure 5, the proposed interpretation method
contains two phases, namely, unstable regions detection (Phase I)
and root-cause analysis (Phase II). Clustering analysis combined
with statistical thresholds are utilized to detect unstable regions
initially. Then, these preliminary results are further evaluated
through root-cause analysis considering internal and external
attributions that contribute to landslide movements. In particular,
landslide susceptibility is introduced as the internal attribution to
isolate unstable regions that are located in landslide-prone areas.
Additionally, rainfall thresholds, which indicate the possibility
of rainfall-induced landslide failures, are introduced as the

external attribution. By screening with landslide susceptibility and
reconstructed rainfall thresholds, the unstable regions mapped by
InSAR can be isolated to surface movements pointing to active
landslides.

3.2.1 Unstable regions detection
Based on previous studies and data conditions in the study

area, we first used statistical analysis to obtain CTs with mean
annual velocity above 3 times standard deviation (3σ). Then, we
used a spatial clustering algorithm calledDBSCAN (Pedregosa et al.,
2011). According to parameter selection reported by Bakon et al.
(2017) andMontalti et al. (2019), three parameterswere preset in the
DBSCAN algorithm. Eps, which refers to radius for which the CTs
are considered reachable, was set as 100 m;MinPts, which refers to a
minimumnumber of neighboring points, was set as 3;Metric was set
to haversine to allowdata input in the formof latitude and longitude.

3.2.2 Root-cause analysis
Aiming to improve the performance of the interpretation

method, the root-cause analysis was further divided into two
individual processes in the proposed interpretation method.
Landslide susceptibility and rainfall thresholds were introduced
to causally connect InSAR-mapped ground deformation to active
landslides triggered by rainfall.

After screening CTs through Phase I, clustered polygons were
compared with landslide susceptibility, which corresponds to the
probability of landslide occurrence across a given geographic space
(Loche et al., 2022). Compared with the minimum slope angle
threshold reported in the literature, the landslide susceptibility
can take slope angle as well as other predisposing factors
into consideration. Landslide susceptibility of the study area
was obtained by considering twelve conditioning factors, which
include elevation, slope angle, aspect, terrain curvature, terrain
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FIGURE 4
The results of InSAR-mapped ground surface deformation and the relationship between CT density versus land cover types.

FIGURE 5
Flowchart of the proposed two-phase interpretation method (diagram of DBSCAN was redrawn from Pedregosa et al., 2011).

ruggedness index, lithology, distance to fold, distance to river, stream
power index, topographic wetness index, NDVI, and distance to
road (Gong et al., 2022). To unify the resolution of conditioning
factors, all data were resampled and input at a resolution of

100 m following the suggestion reported by Liu et al. (2023).
Clustered polygonswith low landslide susceptibilitywere considered
as other ground deformation phenomena captured by InSAR
and removed.
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The following step was used to introduce the rainfall threshold
for indicating the precursorymovement before landslide failure.The
rainfall threshold is one of the known hydrological conditions (e.g.,
rainfall, infiltration, soil moisture) that, when reached or exceeded,
is likely to trigger landslides (Guzzetti et al., 2007). To obtain such
a threshold, the best separators in a Cartesian plane segmenting
triggering and non-triggering rainfall conditions need to be
extracted from known slope failure events and correlated rainfall
records (Crozier, 1997). The most common rainfall thresholds in
the literature include rainfall mean intensity versus rainfall duration
(I-D) and cumulated event rainfall versus rainfall duration (E-D).
In this paper, an E-D type of rainfall threshold was constructed by
using a comprehensive tool called CTRL-T (Melillo et al., 2018).The
CTRL-T, which includes three main algorithm blocks for rainfall
events reconstruction, selection of triggering conditions responsible
for the slope failure events, and calculation of rainfall thresholds
at different exceedance probabilities (EPs), was written in R open-
source software.

The original CTRL-T algorithm requires two types of input
data, including rainfall data (rain gauge location, rainfall time series,
and event parameters) and landslide data (location and occurrence
time). To introduce satellite rainfall products instead of rain gauge
observations, we followed the procedures suggested by Rossi et al.
(2017). The centroid of each satellite-based rainfall grid cell was
treated as a virtual rain gauge, resulting in a total of 242 virtual
rain gauges capable of providing hourly precipitation observations
in the study area. Like the traditional method of empirical rainfall
threshold construction, the CTRL-T involves selecting the rain
gauge for each landslide failure to obtain the representative rainfall
condition responsible for landslide triggering. Rossi et al. (2017)
suggested using buffer analysis with a 5 km radius to identify the
rain gauge for mountain regions. Because the distance between each
virtual rain gauge (the centroid of each grid cell) is 4 km, less than
the buffering radius mentioned above, the closest virtual rain gauge
for each landslide failure event was selected in this paper.

After correlating satellite-based rainfall observations to
landslide failure events, it is necessary to set reasonable parameters
to determine the rainfall event responsible for landslide triggering.
Ten parameters were utilized to reconstruct the rainfall events
responsible for landslide triggering. A detailed description of
these parameters refers to Melillo et al. (2015). As emphasized
by Melillo et al. (2015), these parameters, which were primarily
suitable for Italy, were empirically determined by experts. It
should be noted that the study area belongs to the subtropical
monsoon climate with West China Autumn Rain, which is
different from the Mediterranean climate in Italy. Therefore, the
warm period for the study area was adjusted to April to October
according to the characteristics of the subtropical monsoon
climate. As illustrated in Table 1, we carefully selected other
empirical parameters based on the localmeteorological and seasonal
conditions.

In the literature, the daily rainfall intensity (DRI) is a widely
utilized indicator and shows good predictive power for landslide
triggering (Leonarduzzi et al., 2017). Therefore, the maximum daily
rainfall intensity (MARI) was utilized as the indicator in the root-
cause analysis process. First, based on the E-D type of rainfall
threshold derived by the CTRL-T algorithm, lower-bound DRI with
different EPs were constructed. Then, the MARI in 2020, which is

TABLE 1 Input parameters for CRTL-T algorithm.

Parameter
name

Parameter value Unit

Warm
periods (CW)

Cold periods
(CC)

Gs 0.2 0.2 mm

ER 0.2 0.2 mm

P1 6 3 h

P2 12 6 h

P3 1 1 mm

P4 96 48 h

sws 5 month

ews 9 month

Rb 5 km

compatible with InSAR observation, was extracted from gridded
satellite precipitation data. Next, clustered polygons distributed
in the grids with MARI surpassing certain DRI were considered
as interpreted results likely indicating active landslides triggered
by rainfall.

3.2.3 Validation of the proposed interpretation
method

In order to validate the proposed interpretation method and
evaluate its performance, we constructed a baseline model first.
Then, results between the proposed and the baseline models
were compared and validated through field survey. It should
be noted that the Sentinel-1A has only acquired ascending
orbits in the study area. As a result, 2D-decomposition of LOS
displacements from ascending and descending InSAR observation
is not available in the study area. Additionally, the interpretation
method reported by Dong et al. (2023) requires InSAR-mapped
ground displacement time-series, which would be less feasible for
large-scale engineering applications compared toMVMs.Therefore,
we utilized the interpretation method reported by He et al. (2023)
as the baseline model. We constructed this model by using the
same method applied in the proposed model for the process of
unstable regions detection. Besides, the root-cause analysis process
for the baseline model was conducted by setting a threshold for
unstable regions located in areas with high and very high landslide
susceptibility.

The union set of interpreted results obtained from the baseline
and the proposed models was investigated by evaluating macro
deformation, deformation history, and stability in the field, as
suggested by Xu et al. (2023). Field survey results were first classified
into three levels to quantify whether the ground surface movement
can be observed (Liang et al., 2022). The principles of classifications
were based on field investigation within the interpreted spatial
polygons, which include the deformation phenomenon of local
cracks, building and infrastructure, covered vegetation, and existing
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FIGURE 6
The cumulated rainfall and duration of the 813 recorded landslide failure events for MPRCs and MRCs.

landslide mitigation facilities. The deformation phenomenon was
divided into distinct deformation (Level I), slight deformation (Level
II)), and no obvious deformation (Level III), respectively. After
that, field survey results were categorized into three groups, which
include landslide-correlated deformation (Category I), ground
surface movement induced by other triggering factors (Category
II), and no identifiable ground surface movement (Category III).
Finally, by comparing the results between the baseline and the
proposed model assisted by a confusion matrix, the performance of
the proposed interpretation method was evaluated.

4 Results

4.1 Rainfall thresholds for the study area

As shown in Figure 6, 2,251 rainfall events were reconstructed
in the study area. Maximum cumulated rainfall in 24 h for these
events ranged between 20 and 157 mm. Additionally, by evaluating
the delay between the rainfall ending time and the landslide
occurrence time for each failure event, a delay longer than 48 h
was considered as an indicator for incorrectly dated landslide
failure events (Melillo et al., 2018). By applying this criterion, 813
recorded landslide failure events were utilized to construct the
rainfall threshold.

After connecting each landslide failure event with the
corresponding rainfall event, maximum probability rainfall
conditions (MPRCs) and multiple rainfall conditions (MRCs) were
reconstructed to obtain rainfall duration (DL) and cumulated event
rainfall (EL), respectively. The MPRCs are the subset of MRCs with
the highest weight ω, which is proportional to the inverse square
distance between the rain gauge and the landslide, the EL, and
the rainfall mean intensity. It should be noted that the weight ω is
attributed to each DL - EL pair of the MRCs. When the difference
in the EL between one pair and the subsequent is less than 10%, the

weight ω attributed to the latter pair is null. Figure 6 illustrates the
results of the MPRCs and the MRCs. For the 813 recorded landslide
failure events, 1623DL - EL pairs forMRCs and 834DL - EL pairs for
MPRCs were reconstructed. Table 2 shows the power-law function
of empirical rainfall thresholds at 5%, 10%, and 20% Eps, as well
as uncertainty associated with the threshold parameters and their
respective uncertainties.

After obtaining empirical rainfall thresholds illustrated in
Table 2, critical cumulated rainfall for various durations was
calculated. As shown in Figure 7, cumulated rainfall for durations
of 24 h (daily), 48 h (2-day), and 96 h (3-day) with 5% EP are
marked with dashed lines for the two datasets. At a certain EP
level, the difference in the cumulated rainfall between the MPRC
and the MRC dataset increases with duration. Additionally, similar
increasing trends of difference between the two datasets also appear
with the increase of the EP. Using the lower-bound value of
thresholds derived from the two datasets, DRI can be obtained
to indicate the precursory movement for landslide triggering. For
5%, 10%, and 20% EPs, the corresponding DRIs are 29 mm/day,
32 mm/day, and 37 mm/day, respectively.

4.2 Interpreted results based on the
baseline and the proposed model

It should be noted that, by applying threshold to unstable regions
located in areas with high or very high landslide susceptibility, the
baselinemodel interpreted 52 spatial polygons of unstable regions as
active landslides, where 31 and 21 spatial polygons were located in
high and very high landslide susceptibility, respectively. In contrast,
by combining landslide susceptibility and rainfall threshold, the
proposed model utilizing 5% EP interpreted 71 spatial polygons of
unstable regions as active landslides. However, applying 10% and
20% EP can only interpret 38 and 23 spatial polygons of unstable
regions as active landslides.
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TABLE 2 Empirical rainfall thresholds at different EPs.

EPs (%) Power-law function
E = (α ± Δα) × D(γ±Δγ)

Uncertainty (Δα/α) (%) Uncertainty (Δγ/γ) (%) Dataset

5 E = (11.61 ± 0.87) × D(0.34 ± 0.02) 7.53 5.88

MPRC10 E = (12.81 ± 0.94) × D(0.34 ± 0.02) 7.35 5.88

20 E = (14.42 ± 1.03) × D(0.34 ± 0.02) 7.13 5.88

5 E = (8.23 ± 0.59) × D(0.44 ± 0.02) 7.16 4.54

MRC10 E = (9.16 ± 0.64) × D(0.44 ± 0.02) 6.98 4.54

20 E = (10.42 ± 0.70) × D(0.44 ± 0.02) 6.78 4.54

FIGURE 7
The critical cumulated rainfall for durations of 24 h, 48 h, and 72 h under different EPs.

In order to illustrate the difference in interpreted results between
the baseline and the proposed model directly, the union set of
interpreted results obtained from the two models is illustrated in
Figure 8. As shown in Figure 8A, 19 spatial polygons interpreted
by the proposed model with 5% EP were interpreted as others by
utilizing the baseline model. Figure 8B depicts interpreted results of
the proposed model with three rainfall thresholds, which are 5%,

10% and 20% EPs. As shown in Figure 8B, by applying 5%EP during
the interpretation process, 71 spatial polygons were all located in
grids with DRI surpassing 29 mm/day. That is to say, these polygons
of unstable regions were all interpreted as active landslides. In
contrast, applying 10% EP would interpret 22 spatial polygons as
others, while applying 20% EP would interpret an additional 15
spatial polygons as others.
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FIGURE 8
Interpreted results based on the baseline model and the proposed model: (A) results from the baseline model overlayed with landslide susceptibility;
(B) results from the proposed model overlay with the MARI in 2020. Interpreted results with three EPs were marked in different colors.

FIGURE 9
Field survey results for interpreted polygons from the baseline and the proposed model: (A) results for the baseline model; (B) results for the
proposed model.
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FIGURE 10
Confusion matrices for the baseline and the proposed model, where TP refers to true positive; TN refers to true negative; FN refers to false negative; FP
refers to false positive: (A) the baseline model; (B) the proposed model with 5% EP; (C) the proposed model with 10% EP; (E) the proposed model with
20% EP; (E) accuracy, precision, recall, false alarm and miss rate for different models.

4.3 Validation and evaluation of the
proposed interpretation method

By conducting field surveys for 71 spatial polygons, the
deformation phenomenon of interpreted results was classified into
three levels, as discussed previously. Level I contains 21 interpreted
polygons that can be observed as distinct deformation in the field,
primarily rupture and cracks on the ground surface or identifiable

cracks on the buildings and roads within the polygon area. In
contrast, 34 interpreted polygons, 48% of the total polygons, can
be subsumed into Level II. These interpreted polygons mainly
showed identifiable cracks in the infrastructures. Additionally, Level
III includes 17 interpreted polygons. It should be noted that 13
interpreted polygons of Level III were found covering newly-
increased farmland. The main culprit for these polygons could be
farm work on the slopes. Based on a comprehensive analysis of
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FIGURE 11
Typical cases of interpreted results for Category I and Category II: (A) Deformation map and interpreted polygon of a typical case for Category I. (B)
Field survey results of the typical case for Category I. (C) Deformation map and interpreted polygon of a typical case for Category II. (D) Field survey
results of the typical case for Category II The results of interpreted active landslide and corresponding landslide susceptibility.

data obtained by field investigation, field survey results were then
categorized into three groups, as discussed previously. Category I
includes 40 interpreted polygons believed to correlate with active
landslides. Fourteen interpreted polygons were subsumed into
Category II, mainly correlated with anthropogenic activities or soil
creep. Category III includes 17 interpreted polygons, which were
consistent with Level III.

Field survey results for the baseline and the proposed
model are overlayed with interpreted results and illustrated
in Figure 9. In Figure 9A, for interpreted results from the
baseline model, most of Category I can be recognized correctly.
However, several missing recognitions of Category I can be clearly
observed, as well as misidentification of Category III. In contrast,
as shown in Figure 9B, by applying the proposed model, only two
spatial polygons belonging to Category I were not interpreted as
active landslide correctly.

Confusion matrices for both the baseline and the proposed
model are illustrated in Figure 10. When comparing the
performance among different models, the accuracy and recall have
similar tendencies. For instance, the accuracy for the proposed
model with 5% EP is 0.66, which is better than the baseline model

with an accuracy of 0.61. With the increase of EPs, the accuracy
for the proposed model appears slightly degraded. In contrast, the
precision of the proposed model is 0.63, which is slightly better than
the baselinemodel with a precision of 0.62.With the increase of EPs,
a growing tendency for the precision can be observed. However,
from the perspective of practical interests, local authorities and
experts would prefer to have false detections (FP) rather thanmissed
ones (FN). From this point of view, the proposed model with 5%
EP shows remarkable performance compared to the baseline model.
Themiss rate (FNdivided by the sumofTP andFN) for the proposed
model with 5% EP is 0.05, which is only a quarter of the miss rate
for the baseline model.

5 Discussion

In order to improve the applicability of InSAR results for rainfall-
induced landslide recognition, we assume that rainfall would be a
promising indicator to distinguish precursors of slope instability
from other ground surface movement phenomena. This hypothesis
is based on the causal relationship that in a landslide-prone area
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with seasonal precipitation, anomalous ground surface deformation
correlated to landslides should primarily be caused by rainfall events
necessary to trigger slope instability. Therefore, introducing such a
causal relationship in the interpretation process of the InSAR results
would be beneficial for model interpretability and applicability for a
certain study area.

In order to show and discuss the pros and cons of the proposed
method, typical casesof interpretedresults forCategory IandCategory
II are depicted in Figure 11. As shown in the Figure 11A, the case of
Category I exhibitsnoticeable groundsurfacemovement in themiddle
part of the slope. It should be noted that the InSAR results observed a
considerable surface deformation, surpassing 50 mm/y, even though
the slope direction is nearly perpendicular to the line-of-sight (LOS)
direction. By conducting field surveys through the local geomorphic
unit (SeeFigure 11B), distinct deformationwasobserved in thefield as
expected. Additionally, from the perspective of slope stability analysis,
the surface deformation captured by InSAR implies that the mobility
of the active landslide belongs to the thrust type, where the active area
is mainly concentrated in the trailing edge. The possible culprit for
this case should mainly be attributed to precipitation. However, the
influence of irrigation farming in the middle and the human-cutting
slope at the toe could not be evaluated without further investigation.
Although the above case shows promising recognition of the active
landslide using InSAR results, the case of Category II depicts an
unexpected misidentification. The slope of the interpreted polygon
is in a west-east direction (See Figure 11C), which is consistent with
the LOS direction for the ascending orbit. Vegetation coverage in this
region is coarse. Therefore, it can be concluded that the observation
conditionforthiscase isbetter thanthoseabove.However,fieldsurveys
indicated that the possible culprit for this case should be attributed to
anthropogenic influences, including irrigation farming and human-
cutting slope (See Figure 11D). Even after broadening the survey area
and interviewing local citizens, no signs or precursors of landslide
triggering can be detected in the field.

Although the performance of the proposed model is inspiring
when compared to the baseline model reported in the literature,
misclassification cases can still be observed. Possible culprits for
misclassification could be attributed to spatial-temporal resolution
and accuracy of satellite precipitation products (Brunetti et al.,
2018), uncertainties in rainfall thresholds induced by various factors
(Segoni et al., 2018), anthropogenic cause contributing to landslide
triggering (Xu et al., 2022), and limitations of field investigation to
capture subtle signs of ground surface movements (Guzzetti et al.,
2012). Therefore, further analysis based on the utilization of cross-
validated InSAR results, a combination of satellite precipitation
products calibrated with on-site precipitation stations, modification
of rainfall thresholds by combining statistical and physical
methodology, and improvement of field survey methods are
suggested.

6 Conclusion

In this work, a semi-automatic interpretation method for
recognizing active landslides induced by rainfall through InSAR
results is presented. By constructing empirical rainfall thresholds,
the causal relationship between recorded landslide failure events and
corresponding rainfall events was introduced into the interpretation

process. The proposed approach is divided into two individual
phases, which include unstable regions detection and root-cause
analysis. In order to improve the performance of the interpretation
method, attempts were made to causally connect rainfall with
InSAR-mapped landslide-correlated ground displacement by
introducing empirical rainfall thresholds in the latter phase. After
validating by field survey, the proposed model utilizing DRI with
5% EP demonstrates a remarkable performance for reducing the
miss rate when compared to a baseline model reported in the
literature. Although a more extensive validation is necessary,
the present interpretation method seems to be very promising
from a practical viewpoint for improving large-scale recognition
performance for interpreting active rainfall-induced landslide
assisted by InSAR results.
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