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Time-dependent consolidation behavior of unsaturated soils is a vital problem in
the geotechnical engineering. With the aid of the Fredlund consolidation theory,
this work further assumes the total stress of soils skeleton freely change, and
extends the Fredlund consolidation theory to a Biot-type theory, establishing
the fully-coupled equation model of multilayered unsaturated poroelastic
media with transversely isotropic permeability. To convert the partial differential
governing equation into ordinary differential equations, the integration
transform technology is applied. Subsequently, the precise integration method
is used to acquire the time-dependent consolidation solution of multilayered
unsaturated media with transversely isotropic permeability in the transformed
domain, which is further solved in the actual domain by the inverse Hankel
transform. A verification examples is provided to compare the present results
with the existing work in the literature, showing a great coincidence and proving
the feasibility of the present solution. Finally, numerous numerical examples are
presented to investigate the evolution of excess pore pressure and settlement
under quasi-static loads, revealing the consolidation behavior of unsaturated
soils. The results demonstrates that the ramping time, stratification, permeability,
depth and mw

1 have a significant effect on the consolidation behavior.

KEYWORDS

unsaturated media, consolidation, semi-analytical solution, transverse isotropy,
multilayered soils

1 Introduction

Consolidation theory remains a key topic in geotechnical engineering. Originating
from Biot’s work (Biot, 1941; Biot, 1955), which rigorously integrated pore pressure and
settlement, lots of researchers (McNamee and Gibson, 1960; Schiffman and Fungaroli,
1965; Gibson et al., 1970; Booker and Randolph, 1984; Yue et al., 1994; Wang et al.,
2023a; Wang et al., 2023b; Chen et al., 2005; Singh et al., 2007; Ai and Wang, 2008;
Cai and Geng, 2009) have explored this complex issue. Their investigations typically
assume geomaterial behaves as either an elastic half-space or a finite soil layer. In fact,
natural geotechnical materials exhibit pronounced stratification due to prolonged and
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complex deposition processes, profoundly influencing their
consolidation characteristics (Pan, 1989; Yue, 1996; Pan, 1997; Yue
and Yin, 1998). Consequently, considering the layered characteristic
in the consolidation analysis is quite significant. Booker and Small
(Booker and Small, 1982; Booker and Small, 1987) firstly employed
the finite layermethod to explore themechanical-hydraulic behavior
of layered soils. Moreover, other researchers addressed this issue
using the boundary element method (Aramaki, 1985; Dargush
and Banerjee, 1991) and the transfer matrix method (Wang
and Fang, 2001), the analytical layer-element method (Ai et al.,
2011). In particularly, the analytical layer-element method only
has the decaying exponential functions thin its stiffness matrix,
mitigating the instability and the exponential overflow problem
in the transfer matrix method. However, many existing studies
fail to accurately model the comprehensive three-dimensional
conditions that involve both vertical and tangential loads.Therefore,
it is essential to expand this research to include three-dimensional
scenarios for a more generalized understanding of consolidation
problems. Vardoulakis and Harnpattanapanich (Vardoulakis and
Harnpattanapanich, 1986; Harnpattanapanich and Vardoulakis,
1987) examined settlement along depth under external loads,
while Senjuntichai and Rajapakse (Senjuntichai and Rajapakse,
1995) addressed the three-dimensional consolidation response of
soil, providing precise solutions. Additionally, Pan (1999) derived
fundamental solutions for layered poroelastic systems, and Ai
and his colleagues (Ai et al., 2010; Ai and Zeng, 2012) explored
non-axisymmetric consolidation solutions.

The above works assumes that the soil as the saturated medium.
In fact, most of the soils on the earth are located in arid and
semi-arid unsaturated zones, and the subgrade filler of railways
and airport runways is also mostly unsaturated soil. Therefore,
studying the consolidation characteristics of unsaturated soil under
external loads is of great engineering significance. Early studies
were limited to specific types of unsaturated soils, in which bubbles
existed in a closed form in the liquid, ignoring the free flow
effect of the two-phase fluid in the soil. To solve this problem,
there are many works (Barden, 1965; Fredlund and Rahardjo,
1993; Loret and Khalili, 2000; Cao et al., 2024a; Cao et al., 2024b;
Cao et al., 2023). Among them, Fredlund and Rahardjo (Fredlund
and Rahardjo, 1993) used dual stress-strain state variables to define
the contribution of the net stress and thematrix suction respectively,
and then constructed the two-phase flow equation of unsaturated
soils. Dakshanamurthy et al. (1984), Dakshanamurthy and Fredlund
(1980) further proposed 2D and 3D consolidation models for
unsaturated soils based on the assumption that the total stress of the
soil skeleton remain unchanged.

Building on the governing equations for unsaturated soil
consolidation, many investigators apply numerical or semi-
analytical methods to study consolidation behavior. Ausilio and
Conte (Ausilio et al., 2002) connected the displacement rate to
the average degree of consolidation, utilizing Fourier transform
to examine consolidation in unsaturated soils under both water-
air coupled and uncoupled conditions. Qin and her cooperators
(Qin et al., 2010; Wang et al., 2017a; Wang et al., 2017b) used
analytical methods and combined different boundary conditions
to study the one-dimensional unsaturated soil consolidation
theory. Shan et al. (2012) used the transfer matrix method to
discuss the distribution of pore water and air pressure of layered

one-dimensional unsaturated soils. Ho et al. (2014) derived the
governing equations of the one-dimensional consolidation model
of unsaturated soil under single-sided and double-sided permeable
boundaries, and proposed a theoretical solution method combining
the eigenfunctionmethod and Laplace transform. Based on previous
work (Ho et al., 2014;Ho et al., 2015),Ho et al. (2016) further derived
the uncoupled axisymmetric mathematical consolidationmodelling
of unsaturated soil. Huang and Li (2018) developed a plane strain
consolidation model under bidirectional continuous permeable
boundary conditions, solving it using Fourier transform and the
method of separation of variables. Moradi et al. (2019) proposed
a 1D multi-layer analytical model for unsaturated consolidation
under partially permeable boundaries and time-varying loads,
employing the differential quadrature method for the layered
unsaturated soil system. Other researchers have also explored
soil consolidation issues by incorporating non-ideal permeable
boundaries. Tian et al. (2020) studied a 1D consolidation model
of saturated soils under multi-stage loading conditions based on
continuous drainage boundary conditions. Zong et al. (2020)
pointed out that even if the external load is q0, the pore pressure
at the initial moment is smaller than q0, based on a one-dimensional
single-layer soil nonlinear consolidation model considering a
continuous permeable boundary. Wang et al. (2019) utilized the
eigenfunctionmethod expansion and integration transformmethod
to solve the 2D settlement-pore pressure distribution of unsaturated
soil introducing the lateral semi-permeable drainage boundary
(LSDB). Building upon a semi-permeable boundary (Wang et al.,
2017a; Wang et al., 2017b), Wang et al. (2017c) also investigated the
impact of time-varying loads on consolidation behaviors Niu et al.
(2021) introduced a 1D consolidation model for unsaturated soils
incorporating dynamic loaded scenarios. The partial differential
equations (PDEs) were theoretically resolved via the eigenfunction
expansion technique. Liu et al. (2022) explored the impact of
exponential time-varying loads on consolidation characteristics,
comparing these effects with those of constant loads.

In summary, current solutions for unsaturated consolidation
problems predominantly focus on one-dimensional loading
conditions, with limited research on two- or three-dimensional
scenarios. It is particularly noteworthy that the above studies are all
based on the assumption that the total stress remains unchanged
during the consolidation process, so they can be regarded as a
Terzaghi-type consolidation theory, that is, a non-coupled theory.
In comparison, there are few studies based on the fully coupled
consolidation theory (i.e., Biot-type consolidation theory) in
which the total stress changes during the consolidation process. In
addition, the stratification and transverse isotropy of permeability
characteristics formed by natural soil deposition are often ignored
in previous studies. Therefore, this paper utilizes Fredlund’s dual
stress variable consolidation theory to investigate the fully coupled
consolidation of layered unsaturated soil under variable loads,
examining the influence of ramping time, the transverse isotropy
of the permeability, the volume variation coefficient of pore water
regarding net stress, depth and stratification on the time-dependent
settlement, pore water pressure and pore air pressure distribution.
Compared with the existing research, the innovation of this work
can be drawn as follows: (1) A fully-coupled Fredlund consolidation
model is proposed in this work, while the other work is limited
to the non-coupled model based on the excessive assumption. (2)
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The transverse isotropy of permeability of soils is considered in the
work, which is not included in the previous work. (3) The precise
integration method is utilized to deal with these partial differential
equations of the mathematical model, showing a great stability and
robustness.

2 Methodology

2.1 Governing equations

In elasticity theory, the equilibrium differential equation
ignoring body forces is:

∂σr
∂r
+
∂σrz
∂z
+
σr − σθ

r
= 0 (1a)

∂σrz
∂r
+
∂σz
∂z
+
σrz
r
= 0 (1b)

where σr, σθ, σz are the normal stress in r,θandz direction, σrz is the
shear stress in the r-z plane.

Based on Fredlund’s dual stress variable theory (Fredlund
and Rahardjo, 1993), the linear elastic constitutive equation of
unsaturated soils is given:

σr − ua = 2G(
∂ur
∂r
+ αsεv)− β(ua − uw) (2a)

σθ − ua = 2G(
ur
r
+ αsεv)− β(ua − uw) (2b)

σz − ua = 2G(
∂uz
∂z
+ αsεv)− β(ua − uw) (2c)

σrz = G(
∂ur
∂z
+
∂uz
∂r
) (2d)

where the volume stress is εv = ∂ur/∂r+ ur/r+ ∂uz/∂z, ur and uz
are the displacement in r and z direction; the matric suction
is pc = ua − uw; uw and ua are the excess pore water and air
pressure; β =ms

2/m
s
1, m

s
1 = 3(1− 2μ)/E represents the coefficient

of volume change of the soil skeleton regarding the net stress
σmean = (σr + σθ + σz)/3− ua;m

s
2 = 3/H denotes the volume variation

coefficient of the soil skeleton regarding the matric suction pc; E and
H denote the elastic modulus regarding the net stress σmean and the
matric suction pc; μ is Poisson ratio.

It is assumed that two-phase flow in unsaturated soil is
continuous. By introducing Darcy law and the constitutive
relationship of pore water in Fredlund theory (Fredlund and
Rahardjo, 1993), the seepage continuity equation of pore water
with transversely isotropic permeability can be obtained as follows:

mw
1

ms
1

∂εv
∂t
+ (mw

2 −m
w
1 β)
∂
∂t
pc =

khw
γw
(
∂uw
∂r
+
uw
r
)+

kzw
γw

∂uw
∂z

(3)

in whichmw
1 andmw

2 are the volume variation coefficient of the pore
water regarding the net stress σmean and thematric suction pc; kw and
γw are the permeability coefficient and the specific gravity ̥

Similarly, with the aid of Boyle law (Fredlund and Rahardjo,
1993) and the constitutive equation of the skeleton, the seepage
continuity equation of the pore air with transversely isotropic

permeability can also be obtained:

ma
1

ms
1

∂εv
∂t
+ (ma

2 −m
a
1β)
∂
∂t
pc =

kha
gρa
(
∂ua
∂r
+
ua
r
)+

kza
gρa

∂ua
∂z

−
uatmn(1− Sr)

(⌢ua)
2

∂ua
∂t

(4)

where ma
1 and ma

2 are the volume variation coefficients of pore
air regarding the net stress and the matrix suction (there is an
intrinsic relationship ms

1 =m
w
1 +m

a
1 and ms

2 =m
w
2 +m

a
2); ka denotes

the permeability coefficient of pore air; and n represents the porosity
and Sr is the saturation degree; for ideal air, air density ρa =
⌢uaM/RT, where the average molar mass of the atmosphere is M =
0.029kg/mol; air constant R = 8.314J/mol ⋅K; T is the absolute
temperature; ⌢ua = ua + u0a + uatm represents the absolute air pressure.
Given that the excess pore air pressure usually dissipates rapidly
in the early stage of consolidation, its magnitude can be ignored
compared to the atmospheric pressure, so we use instantaneous
air pressure u0a and atmospheric pressure uatm to describe absolute
air pressure (Qin et al., 2010), i.e., ⌢ua = ua + uatm.

Finally, the total volume flow rateQwz of pore water and the total
mass flow rate of pore air Qaz along the depth direction from time 0
to time t are defined as:

Qwz =
t

∫
0

kzw
γw

∂uw
∂z

dt (5a)

Qaz =
t

∫
0

kza
g
∂ua
∂z

dt (5b)

Equations 1–5 constitute the mathematical governing equations
of the fully-coupled consolidation for unsaturated soils. It is found
that these equations are the partial differential equations (PDEs),
hard to solve directly. Therefore, the Laplace-Hankel transform and
the corresponding inverse transform in Equation 6 are introduced
to simplify these PDEs into ordinary differential equations (ODEs)
for solution:

f
m
(ξ,z, s) =

∞

∫
0

∞

∫
0

f(r,z, t)e−stJm(ξr)rdtdr (6a)

f(r,z, t) = 1
2πi

∞

∫
0

c+i∞

∫
c−i∞

fm(ξ,z, s)Jm(ξr)ξestdsdξ (6b)

in which, fm(ξ,z, s) denotes the corresponding function of f(r,z, t)
in the Laplace-Hankel domain; s denotes the Laplace parameter
regarding time t; ξ is the Hankel transform parameter regarding
coordinate r; Jm(ξr) is them-order Bessel function.

2.2 Ordinary differential governing
equations

In the Laplace transform domain, applying the 0th and 1st order
Hankel transforms to Equations 2d, 2c respectively, we can obtain:

∂u1r
∂z
= 1
G
σ1rz + ξu

0
z (7a)
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∂u0z
∂z
= 1
2G(1+ αs)

σ0z −
αsξ
1+ αs

u1r −
β

2G(1+ αs)
u0w +

β− 1
2G(1+ αs)

u0a

(7b)

Similarly, applying Laplace and 0th-order Hankel transforms to
Equations 5a, 5b, we can obtain:

∂u0w
∂z
=
sγw
kzw

Q0
wz (7c)

∂u0a
∂z
=
sg
kza
Q0
az (7d)

Substituting Equations 2a, 7b into Equation 1a and applying
Laplace and first-order Hankel transforms, we obtain:

∂σ1rz
∂z
=

αs
1+ αs

ξ σ0z +
2G
1− μ

ξ2u1r +
β

1+ αs
ξ u0w +

1− β
1+ αs

ξu0a (7e)

Based on Equation 1b, the following equation in the Laplace and
0th-order Hankel domains can be acquired:

∂σ0z
∂z
= −ξ σ1rz (7f)

In the Laplace and 0th-order Hankel transform domains, the
water seepage continuity Equation 3 and Equations 7b, 7c are
integrated to obtain:

∂Q0
wz
∂z
= A11u

0
w(z,ξ,0) −A11u

0
a(z,ξ,0) +A12ξu

1
r +A13σ

0
z −A14u

0
w +A15u

0
a

(7g)

In the Laplace and 0th-order Hankel transform domains,
the air flow continuity Equation 4 and Equations 7b, 7c are
integrated to obtain:

∂Q0
az
∂z
=
ua0M
RT
[A21u

0
w(z,ξ,0) −A21u

0
a(z,ξ,0) +A22ξ u

1
r +A23σ

0
z −A24u

0
w]

+A25u
0
a (7h)

where A11 =m
w
2 −m

w
1 β, A12 =

mw
1

ms
1(1+αs)

, A13 =
mw

1
2ms

1G(1+αs)
, A14 =

mw
1 β

2ms
1G(1+αs)
+A12 −

khwξ
2

sγw
, A15 =

mw
1 (β−1)

2ms
1G(1+αs)
+A12, A21 =m

a
2 −m

a
1β,

A22 =
ma

1
ms

1(1+αs)
, A23 =

ma
1

2ms
1G(1+αs)

, A24 =
ma

1β
2ms

1G(1+αs)
+A22, A25 =

ua0M
RT
[ ma

1(β−1)
2ms

1G(1+αs)
+A22 +

uatmn(1−Sr)
(u0a)

2 ] +
khaξ

2

sgρa
.

In Equations 7a–7h, the superscripts “0”and “1”represent that
the variables have been processed by 0th-order or 1st-order Hankel
transform.

Combination of the above equations leads to the following
matrix expression:

d
dz
[V(z,ξ, s)U(z,ξ, s)] = [

W1 W2
W3 W4

] ⋅ [V(z,ξ, s)U(z,ξ, s)] + [
0 0
W5 0] ⋅ [

V(z,ξ,0)
U(z,ξ,0)] (8)

inwhich, the generalized stress vector isV(z,ξ, s) = [σ1rz,σ
0
z ,u

0
w,u

0
w]

T;

the generalized displacement vector isU(z,ξ, s) = [u1r ,u
0
z ,Q

0
wz,Q

0
az]

T
;

and the coefficient matricesWi(i = 1− 5) are given as follows:

W1 =
[[[[[[

[

0 αs
1+ αs

ξ β
1+ αs

ξ 1− β
1+ αs

ξ

−ξ 0 0 0
0 0 0 0
0 0 0 0

]]]]]]

]

,

W2 =

[[[[[[[[[

[

2G
1− μ

ξ2 0 0 0

0 0 0 0

0 0
sγw
kzw

0

0 0 0 sg
kza

]]]]]]]]]

]

,

W3 =

[[[[[[[[[

[

1
G

0 0 0

0 1
2G(1+ αs)

− β
2G(1+ αs)

β− 1
2G(1+ αs)

0 A13 −A14 A15

0 ua0M
RT A23 −ua0MRT A24

ua0M
RT A25

]]]]]]]]]

]

,

W4 =

[[[[[[[[

[

0 ξ 0 0

−
αs

1+ αs
ξ 0 0 0

A12ξ 0 0 0
ua0M
RT

A23ξ 0 0 0

]]]]]]]]

]

,

W5 =
[[[[[[

[

0 0 0 0
0 0 0 0
0 0 A11 −A11

0 0 ua0M
RT A21 −

ua0M
RT A21

]]]]]]

]

In terms of the time-varying loads (ramping loads and
exponential loads) selected in this paper, the initial load magnitudes
are all 0. Therefore, it can be assumed that the instantaneous
generalized state vectorsV(z,ξ,0) = 0,U(z,ξ,0) = 0 when applied by
the external load.

2.3 Solution to the governing equation

In the context of the two-point boundary value problem, the
Precise integration method (PIM) introduced by Zhong (1994)
stands out as an efficient and highly accurate technique widely
utilized in various fields such as wave propagation, quasi-static
analysis, and dynamic interaction studies. This section adopts the
PIM for discretizing the ODEmatrix along the depth dimension. In
terms of a layered unsaturated soil with a depth L, the initial step of
PIM is to dividing the model into 2N micro layers, the length of each
micro layers is L/2N . Notably, within any adjacentmicro layers, there
exist four generalized state vectors, denoted as Va, Vb, Ua andUb.

In terms of adjacent micro layers given in Figure 1, four
generalized state vectors between the upper and lower surface are
established, respectively, i.e.,Va, Vb, Ua andUb found in micro layer
1 and Vc,Vd,Uc andUd found in micro layer 2. The continuity
condition at the depth zb leads toVb = Vc andUb = Uc.Thus, there is
indeed six generalized state vectors in the adjacent micro layers, i.e.,
Va,Vb,Vc,Ua,Ub andUc. The inherent relationship of the two micro
layers has been given in Equations 9 and 10 (Ye et al., 2023):
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FIGURE 1
The state vectors between the adjacent micro layers.

In terms of the layer element 1:

Vb = F1Va −G1Ub (9a)

Ua =Q1Va +E1Ub (9b)

Analogously, for the layer element 2:

Vc = F2Vb −G2Uc (10a)

Ub =Q2Vb +E2Uc (10b)

where Fi, Ei, Qi, Gi (i =1, 2) are four 4× 4 dimensional relational
matrices. With the aid of Talor expansion, the series expression
regarding the thickness l can be achieved. In order to enhance
computational efficiency while maintaining accuracy, higher-order
terms beyond the fourth order are truncated. This approach
optimizes the balance between computational complexity and
numerical fidelity, and the we can have:

F(l) = I+ F∗(l), F∗(x) ≈ f1l+ f2l
2 + f3l

3 + f4l
4 (11a)

E(l) = I+E∗(l),E∗(l) ≈ e1l+ e2l2 + e3l3 + e4l4 (11b)

Q(l) ≈ φ1l+φ2l
2 +φ3l

3 +φ4l
4 (11c)

G(l) ≈ g1l+ g2l
2 + g3l

3 + g4l
4 (11d)

where I is an n× n identity matrix, and fi,ei,φi andgi are defined as:

f1 =W1, f2 =
W1f1 + g1W3

2
, f3 =

W1f2 + g2W3 + g1W3f1
3

,

f4 =
W1f3 + g3W3 + g2W3f1 + g1W3f2

4
(12a)

e1 = −W4,e2 =
W3g1 − e1W4

2
,e3 =

W3g2 + e1W3g1 − e2W4

3
,

e4 =
e1W3g2 + e2W3g1 +W3g3 − e3W4

4
(12b)

g1 = −W2,g2 =
−g1W4 +W1g1

2
,g3 =
−g2W4 +W1g2 + g1W3g1

3
,

g4 =
W3g3 + g1W3g2 + g2W3g1 − g3W4

4
(12c)

φ1 = −W3,φ2 = −
W3f1 + e1W3

2
,φ3 = −

W3f2 + e2W3 + e1W3f1
3

,

φ4 = −
W3f3 + e3W3 + e1W3f2 + e2W3f1

4
(12d)

Subsequently, we merge the adjacent micro layers into a new
micro layer, termed as micro layer 3. The following expression is
defined as follows:

Vc = F3Va −G3Uc (13a)

Ua =Q3Va +E3Uc (13b)

in which

F3 = F2(I+G1Q2)−1F1 (14a)

E3 = E1(I+Q2G1)−1E2 (14b)

G3 = G2 + F2(G
−1
1 +Q2)

−1E2 (14c)

Q3 =Q1 +E1(Q−12 +G1)
−1F1 (14d)

Thus far, we have derived the expression for the state vector of
the newly formed micro layer as given in Equations 11–14. It is
important to note that the systemwas initially divided into 2N micro
layers. Consequently, each application of the merging operation to
adjacent micro layers reduces the total count by half, resulting in
2N−1 remainingmicro layers, each sharing identical expressions.The
discretized micro layers can be recombined into a new layer block,
and the corresponding generalized state vector can also be obtained
similarly.

Following these operations, the generalized state vectors of
the layer blocks are determined using Wi(i = 1− 5) specified in
Equation 8. Under external loading, the entire system is partitioned
into three-layer blocks defined by loading plane Hp and calculation
planeHc. Detailed procedures are elaborated in references (Ye et al.,
2023). Upon incorporating boundary conditions, solutions for the
unsaturated consolidation are obtained. Notably, the unsaturated
medium model features a permeable top boundary for pore water
and pore air, while the bottom is impermeable to both. Thus,
we have σw(r,0) = σa(r,0) = 0 and ∂σw(r,0)

∂z
= ∂σa(r,0)
∂z
= 0. In terms of

the external load, we define the ramping loads and exponential
loads as follows:
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The ramping loads in the physical domain and transformed
domain are given in Equation 15:

q(z, r, t) =
{{
{{
{

q0t
t0
 0 < t < t0

q0 t ≥ t0
0 < r < r0 (15a)

q(z,ξ, s) =
q0r0(1− e

−s∗t0)
t0ξs

2 J1(ξr0) (15b)

The exponential loads in the physical domain and transformed
domain are given in Equation 16:

q(z, r, t) = q0(1− e
−a∗t) 0 < r < r0 (16a)

q(z,ξ, s) =
q0r0
ξs

J1(ξr0) −
q0r0

ξ(s+ a)
J1(ξr0) (16b)

It is noteworthy that the solution obtained is situated in the
transformed domain, while the actual solution in the physical
domain still requires implementation through numerical inversion.
The Laplace inverse transform adopts the Stehfest method (Stehfest,
1970), and its specific expression is given in Equation 17:

f(t) = ln 2
t

N

∑
i=1

Vi f(
i ln 2
t
) (17a)

Vi = (−1)N/2+1 ×
min (i,N/2)

∑
k=(i+1)/2

kN/2+1(2k)!
(N/2− k)!k!(k− 1)!(i− k)!(2k− i)!

(17b)

in which, the precision control variable N is set to 12.
Using the Hankel inverse transform, every two adjacent zeros of

the Bessel function are grouped into sections, reducing the semi-
infinite integral to 64 segments. Each segment is then evaluated
using the 32-point Gauss-Legendre integration method, as detailed
in reference (Ye et al., 2023). Following the numerical Laplace-
Hankel inverse transformation, we can obtain the solution for the
fully coupled consolidation of unsaturated soils under time-varying
loads in the real domain.

2.4 Verification

In view of the lack of fully coupled consolidation solution of
axisymmetric unsaturated soil under variable load at present, this
paper compares it with the consolidation solution of saturated soil
under construction load in reference (Geng and Cai, 2009), and the
results are shown in Figures 2, 3. By comparison, it can be seen
that solution in this work is in good coincidence with solution in
reference (Geng andCai, 2009) in both settlement and pore pressure.

3 Parametric analyses

3.1 The ramping time

The subsequent analysis presents a series of numerical examples
to examine the influence of ramping time T0, the transverse isotropy
of the permeability, the volume variation coefficient ms

1 of pore
water regarding the net stress σmean, and stratification on the flow-
deformation characteristics of unsaturated soils through numerical

FIGURE 2
The variation of settlement against time under a ramp loading.

FIGURE 3
The variation of excess pore water pressure against time under a
ramp loading.

examples.The calculationmodel is an unsaturatedmediumwith the
finite thickness 100 m. The surface of the medium is applied by a
uniform vertical circular ramping load with a diameter d0 = 2r0 of
and strength of q0. The main parameters defining the original case
are: porosity n=0.5, saturation degree Sr = 0.8 Poisson’s ratio μ = 1/3,
ms

1 = 0.25MPa−1,ms
2/m

s
1 = 0.4,m

w
1 /m

s
1 = 0.2,m

w
2 /m

s
1 = 0.8, k

h
w/kzw =

1, kha/kza = 1. The dimensionless parameters of settlement and time
are u
∗
z = uz/m

s
1q0d0 and T = kzwt/m

s
1γwr0

2, respectively, while the
dimensionless parameters of excess pore water and air pressure
are u
∗
w = uw/q0 and u

∗
a = ua/q0, respectively, and the dimensionless

construction time is T0 = 0.1. In the following work, the calculation
point of settlement is the origin, that is, r = 0, z = 0, and the
calculation point of excess porewater and air pressure is r =0, z =0.5.

The influence of ramping time on the time-varying properties
of unsaturated soil consolidation is discussed in the following. As
can be seen from Figure 4: for different ramp times T0, the final
consolidation settlement is the same. Hence, the final settlement
is not related to the ramp times. In the logarithmic coordinate
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FIGURE 4
The variation of settlement against time with different ramp time T0.

system, most of the consolidation settlement occurs in the three
sections of τ =0.001–0.01, 0.01–0.1, and 0.1-1, respectively. The
less construction time T0, the earlier time of the main settlement.
For examples, the main settlement of the case T0 = 0.01 appears
when τ =0.001–0.01. When the dimensionless time is τ = T0, the
settlement is basically stable, that is, most of the consolidation
settlement is completed before the end of construction. Figure 5
depicts the varying law curve of excess pore water pressure over
time under different load construction times T0. It is shown in
Figure 5, as the ramp timeT0 increases, the peak pore water pressure
becomes lower and lower, and appears later and later. This is
because the loading process is quite slow, and the pore pressure
has been roughly dissipated when the construction is completed.
Also, the peak excess pore water pressure is always found around the
dimensionless construction timeT0. In terms of the pore air pressure
dissipation curve in Figure 6, there is a significant value difference
between it and the water pressure dissipation curve. The reason is
that the air pressure dissipates very quickly, and most of the air has
been completely discharged as the load increases. In addition, when
T0 = 1, the pore air pressure throughout the consolidation process is
basically 0, so it is necessary to consider its existence only when the
construction process is quite quick.

3.2 The transverse isotropy of the
permeability

To investigate the influence of the transverse isotropy of the
permeability on the flow-deformation behavior, four transverse
isotropy coefficient cases khw

kzw
= kha

kzz
= 0.2,1,5 are provided in this

section, when kzw and kza remain unchanged. Figures 7–9 show the
variation of the settlement, the excess pore water and air pressure
against the normalized time t. It is found from Figure 5 that the
variation cure of case khw/kzw = 5 and kha/kza = 5 is the earliest case to
start the settlement and the earliest case to reach the final settlement.
The larger the transverse isotropy coefficient khw/kzw and kha/kza, the
faster the consolidation is completed. Meanwhile, the value of the
final settlement is the same. In terms of the excess pore pressure,

FIGURE 5
The variation of excess pore water pressure against time with different
ramp time T0.

FIGURE 6
The variation of excess pore air pressure against time with different
ramp time T0.

whether for the water pressure or the air pressure, the peak value
decreases with increasing transversely isotropic coefficient. The
reason is attributed to that the higher horizontal permeability of soils
determines a smoother and more convenient drainage channel. The
excess pore pressure of soils with a higher horizontal permeability
is easier to dissipate under the external load. Hence, it is quite
important to introduce the influence of the transversely isotropic
permeability on the consolidation behavior of soils.

3.3 The volume variation coefficient of
pore water regarding the net stress mw

1

In order to discuss the effect of the volume variation coefficient
of pore water regarding the net stress mw

1 on the consolidation
characteristics of unsaturated soil, the designed case is mw

1 /m
s
1 =

0.2,0.4,0.6, T0=0.1, and the calculation results are shown in
Figures 10–12. It is found in Figure 10 that the settlement in the
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FIGURE 7
The variation of the settlement under different transversely isotropic
permeability.

FIGURE 8
The variation of the excess pore water pressure under different
transversely isotropic permeability.

unsaturated consolidation process is not greatly affected by mw
1 .

The reason is that mw
1 is defined in the constitutive equation of

pore water to describe the volume change of pore water under net
stress. In comparison, the volume change of pore water is negligible
compared with the soil skeleton deformation. Hence, the influence
of mw

1 on the settlement of soils is negligible. Figure 11 depicts the
pore water pressure dissipation curve regarding time τ, and found
that the change of mw

1 will not affect the time when the peak value
appears. Meanwhile, curves of three cases reach the peak value
at almost the same time τ = T0. The larger the volume variation
coefficient of pore water regarding the net stress mw

1 , the greater
the excess pore water pressure generated thereby. It is noteworthy
that the time of three cases when the excess pore water pressure
appears and dissipates are basically consistent. Figure 12 shows the
variation of the excess pore air pressure against time τ. Relatively
speaking, since the external load is borne more by the water in the
unsaturated soils, the pore air pressure decreases with the increase

FIGURE 9
The variation of the excess pore air pressure under different
transversely isotropic permeability.

FIGURE 10
The variation of settlement against time with different mw

1 .

of mw
1 /m

s
1, as shown in Figure 12. Similarly, the time of three cases

that the excess pore air pressure reaches the peak remains basically
consistent, which is occurred before T0.

3.4 Calculation depth

The displacement and pore pressure shows a different trend
along the depth. To describe the displacement development trend
along the depth direction and the dissipation law of excess pore
pressure and excess air pressure with time, the effect of calculation
depth is discussed in this section. It can be seen from Figure 13
that the main development time of consolidation settlement is
concentrated in this stage τ = 0.01− 0.1 under the action of
construction grading load, and after dimensionless time τ = T0, the
settlement is basically stable, that is to say, most of the consolidation
settlement will be completed before the end of construction. It is
found that along the depth direction, the deeper the calculation
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FIGURE 11
The variation of excess pore water pressure against time with different
mw

1 .

FIGURE 12
The variation of excess pore air pressure against time with different
mw

1 .

point, the less the settlement. Meanwhile, when the construction
load reaches the peak, the consolidation settlement basically does
not develop. The peak value of pore water pressure also decreases
with the increase of depth, and the peak value becomes later and
later as shown in Figure 14. On the whole, they all rise to the peak
with the increase of construction load, and then because the upper
limit of load has been reached, the pore water pressure in the soil
gradually dissipates completely with time. However, for the pore air
pressure shown in Figure 15, there is a significant difference with
the pore water pressure in magnitude. The reason is that compared
with the pore water pressure, the air pressure dissipates quickly,
and most of the air pressure caused by it has dissipated with the
continuous increase of load. The closer to the surface, the smaller
the peak pressure.

FIGURE 13
The variation of settlement against time along the depth.

FIGURE 14
The variation of excess pore water pressure against time along the
depth.

3.5 Stratification

To illustrate the feasibility of the present solution tomultilayered
media, we constructed a multilayered soil with a soft interlayer
(Case1) and compared it with a single-layer soil (Case 2) in which
soil parameters, including modulus, permeability, and so on, were
calculated by the weighted average method based on the parameters
and thickness of layers in Case 1. The specific settlement, excess
pore water and air pressure are shown in Figures 16–18. Parameters
of the soil layer in Case 2 are the same as those in the original
case except that the saturation is 0.73. Case 1 is a three-layer soil
with a soft interlayer. The thickness ratio of each layer is 1:1:1,
the ratio of the volume variation coefficient of the soil skeleton
regarding the net stress (from top to bottom) isms1

1 :m
s2
1 :m

s3
1 = 1:4:1,

and the saturation is 0.55, 0.78 and 0.86, respectively. The rest of
the proportional relationship remains unchanged with reference to
the that of Section 3.2. Meanwhile, the weighted average of the soil
parameters of each layer in Case 1 regarding the layer thickness is
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FIGURE 15
The variation of excess pore air pressure against time along the depth.

FIGURE 16
The variation of excess pore water pressure against time under
multi-layered and single-layered cases.

exactly the single-layer soil parameters in Case 2. From the results,
it is found that Case 1 with a soft interlayer is quite different from
Case 2 in terms of settlement, pore water pressure and pore air
pressure. Although there is a soft interlayer inside the case 1, soil
properties of layers 1 and 3 inCase 2 are obviously weaker than those
in Case 1. The reason is that the weighted average of the multi-layer
soil parameters is consistent with that of the single-layer soil. The
mechanics and permeability properties of the surface soil directly
affect the evolution of the settlement and pore pressure dissipation
within the soil. Therefore, the final steady-state settlement and
peak excess pore pressure of Case 2 are significantly greater than
those of Case 1. In fact, the settlement-pore pressure evolution law
of the actual engineering must be combined with the soil layer
parameter analysis obtained from the geology survey report. The
results of this example are only to show the complexity of the flow-
deformation consolidation law for layered unsaturated soils and
prove the feasibility of the solution to the stratification in this work.

FIGURE 17
The variation of excess pore water pressure against time under
multi-layered and single-layered cases.

FIGURE 18
The variation of excess pore water pressure against time under
multi-layered and single-layered cases.

4 Conclusion

Based onFredlund’s dual stress variable theory, the fully-coupled
axisymmetric consolidation governing equations of unsaturated
soils is presented. With the aid of integration transform and
precise integration method, proposed governing equations are
solved, obtaining the solution in the actual domain. A series
of numerical examples are provided to discuss the influence of
the ramp time, mw

1 , and stratification. This work is expected to
improve the fully-coupled consolidation theory, and revealed the
time-dependent flow-deformation behavior of unsaturated media.
Through the calculation result, the following conclusions can
be obtained:

(1) Under time-varying loads, the dissipation rate of excess pore
air pressure is significantly faster than that of excess pore water
pressure, but its magnitude remains negligible in comparison.

(2) The ramping time T0 does not affect the final steady-state
settlement; it only influences deformation rates and alters pore
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pressure and air pressure dissipation during consolidation. A
rapid loading velocity induce a surge of pore pressure.

(3) The volume variation coefficient of pore water regarding
the net stress mw

1 has no effect on the final consolidation
settlement. However, reduced pore water compression leads to
a notable increase in excess pore water pressure, though it does
not affect the timing of the peak.

(4) The vertical displacement and excess pore water pressure
along the depth shows a significant decrease, while
the excess pore air pressure along the depth shows a
unsignificant change.

(5) Stratification significantly influences the flow and deformation
of unsaturated soils. Using a weighted average method to
model multi-layer soil parameters in engineering analyses can
result in substantial errors in the final settlement.

In the future work, we can further extend the axisymmetric
condition to a three-dimensional condition. Meanwhile, the
transverse isotropy of soil skeleton can also be considered in the
future work to establish a more generalized consolidation model of
unsaturated soils. Thea time-dependent soil-structure interaction
investigation can also be considered based on the proposed model,
which is meaningful for the long-time settlement prediction and
control of underground structures in unsaturated soils, such as piles,
plate and beam.
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