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Hyperspectral data from the Airborne Visible and Infra-Red Imaging
Spectrometer – Next-Generation (AVIRIS-NG) offers transformative potential
for Earth science research, enabling detailed analysis of land surface processes,
resource monitoring, and environmental dynamics. This study presents an
automated methodology to optimize the selection of AVIRIS spectral bands,
improving the computation of indices critical to Earth science applications. By
leveraging multiple hyperspectral bands, the approach enhances the accuracy
of indices used to monitor water resources, vegetation health, urban expansion,
and built-up areas. The methodology involves calculating indices from all
possible AVIRIS band combinations, evaluating their root mean squared error
(RMSE) against Sentinel-2 indices, reducing RMSE skewness, and selecting bands
with minimal deviation for specific Land Use Land Cover (LULC) categories.
The process is automated and employs parallel processing with Python,
significantly reducing execution time and enabling scalability for large geospatial
datasets. Key indices, including the Normalized Difference Water Index (NDWI),
Normalized Difference Red Edge (NDRE), and Normalized Difference Built-
up Index (NDBI), Green Normalized Difference Vegetation Index (GNDVI) were
validated using the proposedmethodology. Results demonstrate the potential of
hyperspectral data to outperform traditional single-band approaches, providing
more precise and reliable assessments.
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AVIRIS, automation, band selection, hyperspectral data, indices, parallel processing

1 Introduction

Hyperspectral data have revolutionized remote sensing by offering detailed
spectral information across hundreds of narrow, contiguous bands, enabling
fine-grained analysis of surface materials (Hamedianfar et al., 2023). This
capability is particularly valuable in Earth sciences, where it supports the
study of critical features such as urban growth, water resources, built-up
areas and vegetation health. Hyperspectral data provide an unparalleled ability
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to distinguish subtle variations in surface composition, enhancing
the understanding of processes like land-use change, water body
dynamics, and ecosystem responses to environmental stresses.

Indices derived fromhyperspectral data, such as theNormalized
Difference Water Index (NDWI), Normalized Difference Red Edge
(NDRE), Normalized Difference Built-up Index (NDBI) and Green
Normalized Difference Vegetation Index (GNDVI), play a crucial
role in monitoring Earth surface features. NDWI is widely applied
in water resource management, aquaculture mapping, and coastal
monitoring (Taloor et al., 2021; Guha et al., 2020; Xu et al., 2021;
Laonamsai et al., 2023; Ihsan et al., 2023; Zhu et al., 2021; Fu-
min et al., 2007). NDRE and GNDVI are essential for assessing
vegetation health, monitoring land cover changes, and analyzing
vegetation responses to climatic conditions (Frampton et al., 2013;
Mangewa et al., 2022; Maccioni et al., 2001; Jorge et al., 2019; Bonfil,
2017; Jiang W. et al., 2021; Lu et al., 2020). NDBI serves as a vital tool
for detecting built-up areas, enabling urban planning, infrastructure
development, and the analysis of land-use changes (Zheng et al.,
2021; Bhatti and Tripathi, 2014; Yasin et al., 2022; Hadeel et al.,
2009; Liu and Zhang, 2011; Delogu et al., 2023; Enrique Valdelamar
Martínez et al., 2024).

Despite their utility, the high dimensionality of hyperspectral
data poses challenges in processing and analysis (Alcaras et al.,
2021; Mekuriaw et al., 2017; Omran et al., 2023). Noise removal,
dimensionality reduction, and band selection are essential
preprocessing steps for extracting meaningful information
from these datasets (Rasti et al., 2018; Rasti et al., 2020;
Zheng et al., 2020). Current research primarily employs single-
band combinations to compute indices, which does not fully
leverage the rich spectral range offered by hyperspectral sensors
(Oppelt, 2002; Zarco-Tejada et al., 1999). Furthermore, existing
studies lack comprehensive methodology to select bands of
hyperspectral data to compute indices.

The increasing volume and complexity of hyperspectral data
necessitate automation in analysis workflows. Parallel processing
is a promising solution to mitigate computational bottlenecks,
distributing tasks across multiple cores to enhance efficiency and
scalability. While parallel processing has been employed in various
geospatial analyses, its application in hyperspectral data workflows,
particularly for automating band selection, remains under explored.
This study addresses these gaps by automating the selection of
spectral bands from AVIRIS-NG data for computing key Earth
science indices. The approach involves calculating spectral indices
from all possible AVIRIS band combinations, comparing them with
Sentinel-2-derived indices using root mean squared error (RMSE),
and selecting optimal bands based on statistical criteria for specific
Land Use Land Cover (LULC) categories. The RMSE serves as a
critical metric for quantifying the disparity between datasets and
evaluating the accuracy of spectral indices derived from them.
RMSE is chosen for its sensitivity to larger deviations, which is
crucial in hyperspectral analysis, where even minor discrepancies
across bands can impact index reliability. Unlike metrics like
Mean Absolute Error (MAE) and Mean Bias Deviation (MBD),
RMSE’s quadratic weighting emphasizes substantial deviations,
helping detect differences in spectral response characteristics. Its
interpretability in the same units as the data further facilitate clear
assessments of sensor compatibility, supporting accurate, consistent
index derivation across sensors. The Skewness correction technique

box-cox transformation, is employed to address any asymmetry
in the distribution of RMSE values, ensuring robust comparisons
between datasets. Subsequently, bands are selected based on their
agreement metrics for specific LULC categories.

Automation is achieved through Python-based workflows that
leverage parallel processing, significantly reducing computational
time and enabling large-scale geo-spatial analysis (Wu et al.,
2021). In this study, the efficiency of parallel processing for
automating hyperspectral data analysis is evaluated using a
high-performance computational machine running the Linux
Mint operating system within a virtual box environment. The
computational platform boasts 32 cores and 128GB RAM, but
to ensure optimal performance and avoid interference with
existing processes on the machine, only 25 cores are allocated
for computation. By leveraging the multiprocessing capabilities
of this setup, the study aims to expedite data processing tasks,
such as band selection and spectral index computation, thereby
enhancing overall workflow efficiency and reducing computational
turnaround times.

By focusing on indices like NDWI, NDRE, NDBI, and
GNDVI, this study highlights their relevance in Earth science
applications, including water resource management, vegetation
health assessment, and urban monitoring. Furthermore, it
evaluates the comparability of hyperspectral and multispectral
sensors, addressing a critical need for consistent and accurate
geo-spatial analyses. This research advances hyperspectral data
methodologies by integrating automation and computational
efficiency, contributing to a deeper understanding of Earth’s
dynamic systems.

2 Study area and data used

The study area is located in Vuyyuru, located in Andhra
Pradesh, India, sharing the border of Guntur and Krishna districts
(Figure 1). The hyperspectral data from the Airborne Visible
and Infra-Red Imaging Spectrometer–Next-Generation (AVIRIS-
NG) campaign under Phase 2A, was collected on 26 Feb 2018
Figure 1. The data covers an area between 16°20′N and 80°42′E
(site #114). This hyperspectral dataset comprises 430 narrow
spectral bands ranging from 380 to 2510 nm at 5 nm intervals
and has a spatial resolution of 4 m (Bhattacharya et al., 2024).
After undergoing radiometric, atmospheric corrections, and bad
band removal processes, the original 430 bands are reduced to
372 bands for analysis.

In addition to the AVIRIS-NG data, the study also incorporates
data from the Copernicus Sentinel-2 mission. Sentinel-2 comprises
two polar-orbiting, multispectral satellites, Sentinel-2A and
Sentinel-2B, which are phased at 180° and share the same sun-
synchronous orbit. These satellites offer a wide swath of 290 km
and revisit the same area every 5 days. The Sentinel-2 data used
in the study was acquired on 25 Feb 2018. This dataset includes
13 bands, encompassing visible, near-infrared (NIR) bands with a
spatial resolution of 10 m, and Shortwave Infrared (SWIR) bands
with a spatial resolution of 20 m.The Sentinel-2 data was corrected,
and the reflectance values were used directly for the study.
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FIGURE 1
Study area map of Vuyyuru, Andhra Pradesh, India. True Color Composite (TCC) of AVIRIS (hyperspectral) image.

3 Methodology

This study employs an automated Python-based framework
to streamline hyperspectral band selection and index comparison
between AVIRIS and Sentinel-2 imagery, focusing on the efficient
processing of spectral indices. The methodology starts with user-
defined input parameters, including paths to AVIRIS and Sentinel-2
imagery, a shapefile containing LULC classes (such as Barren Land,
River Sand, Urban, Vegetation, and Water), an output directory,
and a target spectral index. Based on the selected index, Sentinel-
2 bands are identified by calculating their central wavelengths
and bandwidths to establish upper and lower bounds (Table 1).
These bounds are then applied to the AVIRIS dataset to retrieve
corresponding bands within the defined wavelength range, ensuring
spectral alignment across sensors. For each LULC class, all possible

band combinations within the range are calculated to compute
the spectral indices, allowing for detailed inter-sensor analysis.
The accuracy of these spectral indices is quantified using the
RMSE, which provides a measure of the difference between
Sentinel-2 and AVIRIS indices across each LULC class. To further
normalize and refine RMSE values, a Box-Cox transformation
is applied, which corrects for any skewness and enables more
robust statistical comparisons. The final band selection process
applies an RMSE threshold (Mean–Standard Deviation) to identify
the bands with minimal spectral error for each LULC class.
Additionally, the mean bands of index are chosen based on their
frequency of occurrence across all LULC classes, prioritizing bands
that consistently appear in the low-error subset. This automated
pipeline integrates essential spatial and statistical operations,
significantly enhancing the reproducibility and efficiency of
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TABLE 1 AVIRIS wavelengths for corresponding Sentinel-2 bands: (source: Sentinel-2 resolutions, 2024).

Band name Sentinel AVIRIS band’s wavelengths

Central wavelegth (nm) Bandwidth (nm)

B2 492.4 66 462.01, 467.02, 472.02, 477.03, 482.04, 487.05, 492.06, 497.07, 502.08, 507.09, 512.09,
517.1, 522.11

B3 559.8 36 542.15, 547.15, 552.16, 557.17, 562.18, 567.19, 572.2, 577.21

B4 664.6 31 652.34, 657.35, 662.35, 667.36, 672.37, 677.38

B5 704.1 15 697.41, 702.42, 707.43

B6 740.5 15 737.48, 742.49, 747.5

B7 782.8 20 777.55, 782.56, 787.57, 792.58

B8 832.8 106 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64, 832.65,
837.66, 842.67, 847.67, 852.68, 857.69, 862.7, 867.70, 872.72, 877.73, 882.74

B8A 864.7 21 857.69, 862.7, 867.71, 872.72

B9 945.1 20 937.83, 942.84, 947.85, 952.86

B11 1613.7 91 1568.92, 1573.93, 1578.94, 1583.95, 1588.96, 1593.97, 1598.98, 1603.98, 1608.99,
1614.0, 1619.01, 1624.02, 1629.03, 1634.04, 1639.04, 1644.05, 1649.06, 1654.07,
1659.08

B12 2202.4 175 2119.88, 2124.89, 2129.89, 2134.9, 2139.91, 2144.92, 2149.93, 2154.94, 2159.95,
2164.96, 2169.96, 2174.97, 2179.98, 2184.99, 2190.0, 2195.01, 2200.02, 2205.02,
2210.03, 2215.04, 2220.05, 2225.06, 2230.07, 2235.08, 2240.09, 2245.09, 2250.1,
2255.11, 2260.12, 2265.13, 2270.14, 2275.15, 2280.15, 2285.16

hyperspectral band selection and inter-sensor spectral comparison,
thus supporting robust and large-scale hyperspectral data analysis
across diverse land cover types. The whole methodology is
illustrated in Figure 2.

3.1 Procedure for band selection

The band selection process involves extracting data from both
AVIRIS and Sentinel-2, calculating the normalized difference,
computing the RMSE between the normalized differences of
AVIRIS and Sentinel-2, transforming the RMSE, and finally
selecting the bands.

3.1.1 Extraction of AVIRIS and Sentinel-2 data
The process of extracting raster values to a point shapefile

involves working with a sampling shapefile containing points with
unique IDs, where the “class” field represents LULC classifications.
The extraction process for AVIRIS and Sentinel-2 reflectance
values to the sampling shapefile differs due to the structure of
the raster data. AVIRIS data is a raster file comprising 372
bands with a 5 nm bandwidth. The AVIRIS data is accessed
using the rasterio library, and the values are extracted using
the point_query tool from the rasterstats library. During the
extraction process, each band number is attached to the dataframe.
Since the wavelength information is not directly attached to
the raster data, a dataframe containing band numbers and

corresponding wavelengths is prepared to attach the wavelengths to
the extracted values.

The explanation of the extracted data within the output
file comprises fields such as id, class, point_id, value, band_no,
and wavelength. The id field represents a unique serial number
for each data entry, while the class field contains the LULC
classification obtained from the point shapefile. Additionally, the
point_id field provides a unique ID assigned to each point in
the shapefile. The value field stores the reflectance value extracted
from the raster data, and the band_no field indicates the band
number assigned by iterating through the raster data. Lastly, the
wavelength field attaches the corresponding wavelength to each
band number.

Regarding Sentinel-2 data, its structure differs from AVIRIS.
Sentinel-2 bands are stored as separate files when downloaded from
the European Space Agency website. Bands are selected based on
the index, such as Green and NIR bands for computing NDWI.
These selected bands are accessed individually using rasterio, then
extracted to the point shapefile and appended to the pandas
dataframe for further processing.

3.1.2 Calculation of normalized difference
Sentinel-2 data comprise several spectral bands, typically

ranging from visible light to shortwave infrared. When calculating
normalized differences with Sentinel-2 data, usually two bands
are selected. These bands are chosen based on their spectral
characteristics and the index of interest being analyzed. For example,
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FIGURE 2
Flow chart to automate the band selection of different indices.

the NDWI uses the Green and near-infrared (NIR) bands to
quantify water in a particular area. In the developed Python script,
the Sentinel-2 dataframe consists of the central wavelength and
bandwidth of each Sentinel-2 band. Unlike Sentinel-2, AVIRIS
doesn't have predefined bands with specific names like Green or
NIR. Instead, AVIRIS bands are typically numbered, and their
wavelengths may not directly correspond to those of Sentinel-2
bands. In the developed Python script, AVIRIS dataframe consists of
information about AVIRIS band numbers and their corresponding
wavelengths. Since AVIRIS bands may not align perfectly with
Sentinel-2 bands, we need to find the closest matching AVIRIS
bands for each Sentinel-2 band. This matching is done based on the
central wavelength and bandwidth of Sentinel-2 bands compared
to the wavelengths of AVIRIS bands. The Python script defines
a function to find the AVIRIS bands that are in the wavelength
range of a given Sentinel-2 band. Once the closest matching AVIRIS
band is found for each Sentinel-2 band, the normalized difference
is calculated. This involves obtaining reflectance values from

both Sentinel-2 and AVIRIS for the selected bands and applying
the desired formula. The Python script includes a function to
calculate the normalized difference using reflectance values from the
matched bands. The script iterates over each Sentinel-2 band, finds
the corresponding AVIRIS bands, and calculates the normalized
difference.

To calculate normalized differences, need to select two bands
at a time from this dataframe. The Python script retrieves the
first and second band dataframes separately from the function,
likely to facilitate pairing each band with every other band for
calculating the normalized differences. After separating the bands
into first and second dataframes, the unique () method from
pandas is employed. The unique () method is used to extract
unique combinations of wavelengths from the first and second
band dataframes. This ensures that each unique combination of
wavelengths is considered for calculating the normalized differences.
Once unique combinations of wavelengths are retrieved, normalized
differences are computed for all the combinations of AVIRIS data.
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FIGURE 3
Test and validation samples utilized in the study, along with a False Color Composite (FCC) of the AVIRIS-NG image.

TABLE 2 Selected AVIRIS bands for each LULC of NDWI.

LULC NIR Green

Barren Land 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 852.68, 857.69

552.16, 557.17, 562.18, 567.19, 572.2, 577.21

River Sand 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 852.68, 857.69, 862.7, 867.71, 872.72

542.15, 547.15, 552.16

Urban 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65

542.15, 547.15, 552.16

Vegetation 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 852.68, 857.69

547.15, 552.16, 557.17

Water 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62 542.15, 547.15, 577.21, 552.16, 557.17, 572.2, 562.18, 567.19

TABLE 3 Selected AVIRIS bands of NDWI.

NIR Green

782.56, 787.57, 92.58, 97.59, 02.6, 07.61, 12.61,
17.62, 22.63, 27.64, 832.65, 37.66, 42.67, 47.67,
52.68, 57.69

552.16, 57.17, 42.15, 47.15

The result of each calculation is saved to a dataframe, likely
likely with columns representing the wavelength combinations
and their corresponding normalized differences. This dataframe
serves as a structured format to store and analyze the computed
normalized differences for further interpretation and visualization.
The computed normalized differences for each combination of
wavelengths are saved to a dataframe. Organizing the results in a
dataframe facilitates efficient comparison and interpretation of the

normalized differences among various combinations of Sentinel-2
and AVIRIS bands.

3.1.3 Computing the RMSE for the normalized
difference between AVIRIS and Sentinel-2

The RMSE is computed between the normalized differences
obtained from Sentinel-2 and AVIRIS data. For each combination
of normalized differences, the RMSE is calculated using the mean_
squared_error function from the scikit-learn (sklearn) library.
This involves comparing the normalized differences obtained from
both Sentinel-2 and AVIRIS data for all possible combinations.
The computed RMSE values for each combination of normalized
differences are stored in the pandas dataframe.

3.1.4 Transformation of RMSE
After computing the RMSE values, the skewness of these values

is reduced. Skewness refers to the asymmetry of the distribution of
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TABLE 4 Selected AVIRIS bands for each LULC of NDRE.

LULC Red edge 2 NIR

Barren Land 742.49, 747.5 817.62, 822.63, 827.64, 832.65, 837.66, 842.67, 847.67

River Sand 747.5 802.6, 807.61, 812.61, 817.62, 822.63, 827.64, 832.65, 837.66, 842.67, 847.67, 852.68, 857.69, 862.7, 867.71, 872.72, 877.73, 882.74

Urban 742.49, 747.5 807.61, 812.61, 802.6, 817.62, 822.63, 827.64, 847.67, 852.68

Vegetation 742.49 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64, 832.65, 837.66, 842.67, 847.67, 852.68, 857.69, 862.7, 867.71, 872.72,
877.73, 882.74

Water 737.48, 742.49, 747.5 782.56, 787.57, 812.61, 817.62, 822.63, 827.64, 792.58

TABLE 5 Selected AVIRIS bands of NDRE.

Red edge 2 NIR

742.49, 47.5 817.62, 22.63, 27.64, 32.65, 37.66, 42.67, 47.67, 02.6, 07.61,
12.61, 852.68

data. In this case, applying the box-cox transformation, available
in the scipy library, reduces the skewness of the RMSE values.
The box-cox transformation is a statistical method used to
stabilize variance and make data more normally distributed. By
transforming the RMSE values, it becomes easier to interpret
and analyze the distribution of errors between Sentinel-2 and
AVIRIS data.

3.1.5 Selection of bands
The process begins by associating specific bands with different

LULC categories. This association is based on the mean minus
the standard deviation of the transformed RMSE values. The
mean minus the standard deviation is a measure of central
tendency that also accounts for variability in the data. Lower
values of mean minus standard deviation indicate better agreement
between the Sentinel-2 and AVIRIS data for a particular band
and LULC category. Therefore, bands with lower mean minus
standard deviation values are chosen as they represent better
agreement or similarity between the two datasets for a specific
LULC category.

After selecting bands for each LULC category based on
mean minus standard deviation values, the selection of bands is
determined. This determination is made by identifying the bands
with the highest frequency among the selected LULC bands. In
other words, among the bands selected for each LULC category,
the ones that are most frequently chosen across all categories are
considered the final selection of bands. This approach ensures that
the chosen bands are not only representative of individual LULC
categories but are also consistent across different categories. By
selecting bands with the highest frequency, the final set of bands
is likely to capture the common spectral characteristics relevant
to multiple LULC categories, enhancing the overall accuracy and
reliability of the analysis.

In the research conducted by Peddinti et al., (2021), Set-1
encompasses all the bands relevant to various LULC categories.

This comprehensive inclusion ensures that it captures the unique
spectral characteristics across all the land covers, making it versatile.
On the other hand, Set-4 is curated to include only the most
frequently occurring bands across different LULC types. By setting
a frequency threshold of greater than 3, the study optimized
the wavelength selection to be representative of the majority
of LULC categories. This approach strikes a balance, with Set-
1 providing breadth in coverage and Set-4 focusing on high-
frequency, common bands, collectively offering an effective and
efficient solution.

4 Results

The band selection process for indices such as NDWI,
NDRE, GNDVI, and NDBI is meticulously executed according
to the established methodology. This involves identifying optimal
band combinations to ensure the most accurate computation
of each index. Figure 3 provides a visual representation of the
datasets used in both the testing and validation phases of the
study. Specifically, the test dataset is employed to determine the
most suitable AVIRIS bands for each index, utilizing a range
of spectral and statistical analyses. Once the optimal bands are
selected, the validation dataset is used to compare and verify the
results, ensuring the selected bands provide consistent and accurate
index calculations. This dual-phase approach helps to confirm the
reliability and applicability of the chosen bands across different
datasets and conditions.

4.1 Band selection for NDWI

The Normalized Difference Water Index (NDWI) is calculated
as the normalized difference between the green bands and near-
infrared (NIR), as represented by Equation 1 (Jiang J. et.al., 2021).

NDWI = Green−NIR
Green+NIR

(1)

Table 2 shows the selected AVIRIS bands corresponding to
different LULC categories for NDWI analysis. Table 3 shows the
chosen AVIRIS bands for NDWI computation.
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TABLE 6 Selected AVIRIS bands for each LULC of GNDVI.

LULC Green NIR

Barren Land 552.16, 557.17, 562.18, 567.19, 572.2, 577.21 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 852.68, 857.69

River Sand 542.15, 547.15, 552.16 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 857.69, 867.71, 852.68, 862.7, 872.72

Urban 542.15, 547.15, 552.16 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65

Vegetation 547.15, 552.16, 557.17 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62, 822.63, 827.64,
832.65, 837.66, 842.67, 847.67, 852.68, 857.69

Water 542.15, 547.15, 552.16, 557.17, 562.18, 567.19, 572.2, 577.21 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61, 817.62

TABLE 7 Selected AVIRIS bands of GNDVI.

Green NIR

552.16, 57.17, 42.15, 47.15 782.56, 87.57, 92.58, 97.59, 02.6, 07.61, 12.61,
17.62, 22.63, 27.64, 32.65, 37.66, 42.67, 47.67,
52.68, 857.69

4.2 Band selection for NDRE

The Normalized Difference Red-Edge index (NDRE) is
calculated as the normalized difference between the near-
infrared (NIR) and Red Edge (RE) bands, as represented by
Equation 2 (Liu et al., 2023).

NDRE =
NIR−Red Edge
NIR+Red Edge

(2)

Table 4 shows the selected AVIRIS bands corresponding to
different LULC categories for NDRE analysis. Table 5 shows the
chosen AVIRIS bands for NDRE computation.

4.3 Band selection for GNDVI

The Green Normalized Difference Vegetation Index
(NDWI) is calculated as the normalized difference between
the near-infrared (NIR) and green bands, as represented by
Equation 3 (Bautista et al., 2022).

GNDVI = NIR−Green
NIR+Green

(3)

Table 6 shows the selected AVIRIS bands corresponding to
different LULC categories for GNDVI analysis. Table 7 shows the
chosen AVIRIS bands for GNDVI computation.

4.4 Band selection for NDBI

The Normalized Difference Built-up Index (NDBI) is
calculated as the normalized difference between the Short Wave

Infrared (SWIR) and near-infrared (NIR), as represented by
Equation 4 (Zhao and Pan, 2023).

NDBI = SWIR−NIR
SWIR+NIR

(4)

Table 8 shows the selected AVIRIS bands corresponding to
different LULC categories for NDBI analysis. Table 9 shows the
chosen AVIRIS bands for NDBI computation.

4.5 Parallel processing for the
implementation of automation of selected
bands

Parallel processing is employed to efficiently handle the large
number of iterations necessary for the task, delivering a significant
advantage over conventional sequential methods like for loops
and while loops. By distributing the workload across multiple
processors or threads, it minimizes computation time, accelerates
task completion, and boosts overall efficiency. This reduction in
processing time not only enhances productivity but also allows for
the handling of more complex or larger-scale problems that would
be impractical with sequential approaches.

5 Discussion

For most land cover classes for NDWI, the RMSE values in the
adoptedmethodology are generally lower compared to themean of all
bandsandsinglecentralbands.Theadoptedmethodologyconsistently
exhibits lower RMSE values across different land cover classes,
indicating higher agreement and stability in NDWI values (Figure 4).
Notably, the “Water” class demonstrates a substantial reduction in
RMSE values in the adopted Methodology, suggesting consistency
and accuracy in water index values derived using the proposed
methodology. Barren Land, while exhibiting slightly higher RMSE
values, still demonstrates relatively good agreement and stabilitywhen
compared to single central bands.

Therefore, the selected methodology exhibits robustness in
deriving NDWI values across various land cover types. The
methodology consistently outperforms the mean of all AVIRIS bands
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TABLE 8 Selected AVIRIS bands for each LULC of NDBI.

LULC NIR SWIR

Barren Land 847.67, 852.68, 857.69, 862.7, 867.71, 872.72, 877.73,
882.74

1568.92, 1573.93, 1578.94, 1583.95, 1588.96, 1593.97,
1598.98, 1603.98, 1608.99, 1614.0, 1619.01, 1624.02,
1629.03, 1634.04, 1639.04, 1644.05, 1649.06, 1654.07,
1659.08

River Sand 812.61, 817.62, 822.63, 827.64, 832.65, 837.66, 842.67,
847.67, 852.68, 862.7, 867.71, 872.72, 877.73, 882.74

1573.93, 1578.94, 1583.95, 1568.92, 1588.96, 1593.97,
1603.98, 1608.99, 1614.0, 1619.01

Urban 847.67, 852.68, 857.69, 862.7, 867.71, 872.72, 877.73,
882.74

1573.93, 1578.94, 1583.95, 1568.92, 1593.97, 1603.98,
1608.99, 1614.0, 1588.96, 1598.98, 1619.01, 1624.02,
1629.03, 1634.04, 1644.05, 1654.07, 1659.08, 1639.04,
1649.06

Vegetation 782.56, 787.57, 792.58, 797.59, 802.6, 807.61, 812.61,
817.62, 822.63, 827.64, 832.65, 837.66, 842.67, 847.67,
852.68, 857.69, 862.7, 867.71, 872.72, 877.73, 882.74

1624.02, 1629.03, 1634.04, 1639.04, 1644.05, 1649.06,
1654.07, 1659.08

Water 837.66, 842.67, 857.69, 862.7, 867.71, 872.72, 877.73,
882.74

1614.0, 1619.01, 1624.02, 1629.03, 1634.04, 1639.04,
1644.05, 1654.07, 1659.08, 1649.06, 1608.99, 1588.96,
1593.97, 1598.98, 1603.98

TABLE 9 Selected AVIRIS bands of NDBI.

NIR SWIR

847.67, 852.68, 857.69, 862.7, 867.71,
872.72, 877.73, 882.74, 837.66, 842.67

1568.92, 1573.93, 1578.94, 1583.95,
1588.96, 1593.97, 1598.98, 1603.98,
1608.99, 1614, 1619.01, 1624.02,
1629.03, 1634.04, 1639.04, 1644.05,
1649.06, 1654.07, 1659.08

and single central bands approaches, demonstrating its effectiveness in
providingaccurateandconsistentwater indexvalues.Whilechallenges
may exist in accurately characterizing barren land, the adopted
methodology presents a favorable outcome, indicating its reliability
in water index assessment across diverse land cover types.

Figure 5 illustrates the root mean squared error (RMSE) values
of Sentinel-2 and AVIRIS NDRE corresponding to the mean of all
bands, single central bands, and the proposed methodology across
various LULC categories. The adopted methodology consistently
demonstrates lower RMSE values compared to the mean of all
bands and single central bands across all land cover classes.
This consistency suggests that the chosen methodology effectively
enhances the agreement and stability of NDRE values across diverse
land cover types. Vegetation exhibits the lowest RMSE value when
the mean of all bands is considered. However, it's noteworthy that
this RMSE value is lower than that derived from the single central
bands. Urban areas consistently show higher RMSE values, even
though the adopted methodology has lower RMSE values. Water
bodies demonstrate moderate RMSE values, indicating variability
in NDRE values. The bands selected using adopted methodology
consistently outperform the mean of all bands and single central
bands approaches, indicating its effectiveness in providing accurate
and consistent NDRE values.

FIGURE 4
The comparison between the RMSE of Sentinel image and AVIRIS for
NDWI is conducted through: a) calculating the mean of all AVIRIS
bands falling within the range of Sentinel 2 bandwidth, b) single
central bands of AVIRIS data, and c) bands of AVIRIS data selected
based on the proposed methodology.

Across all land cover classes, the proposed methodology
consistently yields lower RMSE values compared to those obtained
by considering the mean of all bands for GNDVI (Figure 6). The
methodology also generally demonstrates RMSE values lower than
those derived from a single central band, indicating its effectiveness
in calculatingGNDVI value using the proposedmethodology. In the
“Barren Land” and “Vegetation” classes, the proposedmethodology’s
RMSE values fall between those of the mean of all bands and single
central bands.

The bands selected using the proposed methodology
consistently outperform both the mean of all bands and single
central bands in providing accurate and consistent GNDVI
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FIGURE 5
The comparison between the RMSE of Sentinel image and AVIRIS for
NDRE is conducted through: a) calculating the mean of all AVIRIS
bands falling within the range of Sentinel 2 bandwidth, b) single
central bands of AVIRIS data, and c) bands of AVIRIS data selected
based on the proposed methodology.

FIGURE 6
The comparison between the RMSE of Sentinel image and AVIRIS for
GNDVI is conducted through: a) calculating the mean of all AVIRIS
bands falling within the range of Sentinel 2 bandwidth, b) single
central bands of AVIRIS data, and c) bands of AVIRIS data selected
based on the proposed methodology.

assessments across different land cover classes. In the “Urban” class,
the methodology yielded an RMSE value of 0.0944, compared to
0.1025 and 0.1096 for the mean of all bands and single central
bands, respectively. This underscores our proposed methodology’s
effectiveness in reducing noise and enhancing the reliability of
GNDVI values, essential for vegetation assessment and monitoring
applications.

While there are slight variations in RMSE values across
land cover classes, the proposed methodology consistently yields
RMSE values that are marginally lower than those obtained from
considering themean of all bands and single central bands froNDBI.
In the case of “Water,” the proposed methodology’s RMSE value
is notably lower compared to the other two approaches. Overall,

FIGURE 7
The comparison between the RMSE of Sentinel image and AVIRIS for
NDBI is conducted through: a) calculating the mean of all AVIRIS
bands falling within the range of Sentinel 2 bandwidth, b) single
central bands of AVIRIS data, and c) bands of AVIRIS data selected
based on the proposed methodology.

FIGURE 8
Parallel processing for AVIRIS data extraction.

while there are differences in RMSE values across different land
cover classes, there is no significant difference between the proposed
methodology and the other approaches (Figure 7).

Comparing the RMSE values for the Normalized Difference
Built-Up Index (NDBI) across different land cover classes, it's
evident that our adopted methodology doesn't exhibit any
detrimental effects. While there are slight variations in RMSE
values across different approaches, including considering the
mean of all bands and single central bands, bands selected using
our methodology consistently maintain comparable or slightly
lower RMSE values. This indicates that our adopted methodology
effectively reduces noise and enhances the reliability of NDBI
assessments without introducing any negative impacts on the
accuracy of the results. Thus, it can be concluded that there is no
adverse effect associated with the utilization of our methodology for
NDBI computation across various land cover types.

The band selection approach enhances the results across
diverse LULC types by prioritizing spectral bands that consistently
exhibit high relevance and reliability. By focusing on bands
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FIGURE 9
Parallel processing calculation of RMSE for AVIRIS and Sentinel-2 data.

that capture key biophysical and biochemical properties across
various LULC classes, such as vegetation, urban areas, water
bodies, and barren land, this method minimizes variability in
spectral indices and ensures robust results. This is particularly
beneficial for indices, which rely on precise discrimination of
spectral features to accurately represent vegetation health, water
presence, or urban areas. Additionally, the approach yields lower
RMSE values compared to methods using all band reflectances
or single central bands, demonstrating superior alignment with
LULC spectral characteristics. By avoiding overfitting to specific
datasets, the method enhances the transferability of results across
regions and datasets, ensuring broader applicability. This current
approach effectively mitigates these challenges through robust
metrics like RMSE, ensuring reliable, transferable, and scalable
hyperspectral analysis.

5.1 Parallel processing

Parallel processing is employed tomanage the extensive iteration
required in the processing task, offering a significant improvement
over traditional sequential approaches, such as simple for loops
or while loops. By leveraging parallel processing, the computation
time can be substantially reduced, leading to enhanced efficiency
and productivity. Initially, AVIRIS data is extracted to the point
shapefile, resulting in a significant reduction in execution time
by up to 62% (see Figure 8). To optimize efficiency, the code is
structured to avoid redundant extraction of AVIRIS data if the
extracted file already exists in the output folder. Subsequently,
all possible combinations of indices are computed. For example,

the computation of NDWI involves pairing NIR and red bands
from the AVIRIS-NG dataset, which encompasses 8 green bands
and 21 NIR bands within the sentinel wavelength range (see
Table 1). These combinations are computed and stored as CSV
files. Furthermore, the RMSE is calculated for AVIRIS indices
compared to Sentinel indices.The effectiveness of parallel processing
for all indices is demonstrated in Figure 9, showcasing a notable
decrease in execution time by 48% for NDWI, 62% for GNDVI,
59% for NDRE, and 51% for NDBI. The comprehensive code
execution cycle, encompassing band selection for different indices, is
illustrated in Figure 10, depictingmaximum reductions in execution
time by 31% for NDWI, 49% for GNDVI, 53% for NDRE, and
39% for NDBI. In the present study, 25 cores are employed to run
the process, with optimization occurring for 30%–50% of these
cores. Beyond this range, the time taken for execution increases as
the basic functionalities of the computational platform is affected.
The RMSE calculation for NDBI takes longer due to the higher
number of indices, highlighting the need for optimized parallel
processing configurations for efficient computational workflows.
Parallel processing is crucial for AVIRIS band selection due to
the high-dimensional nature of hyperspectral data, computational
intensity of data extraction, spectral index calculations, and the
need to evaluate multiple band combinations. By leveraging parallel
processing, researchers can significantly reduce execution time and
improve productivity.This approach facilitates the efficient selection
of optimal AVIRIS bands for various indices and enables the
handling of large datasets. Ultimately, parallel processing unlocks
the potential of hyperspectral data for advanced applications,
including environmentalmonitoring, agriculturalmanagement, and
target detection, by providing timely and accurate insights.

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2024.1487160
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Peddinti et al. 10.3389/feart.2024.1487160

FIGURE 10
Parallel processing for comprehensive code execution cycle.

5.2 Future scope

Future research in hyperspectral data band selection could
expand by incorporating additional non-normalized indices tailored
to specific materials and environmental conditions, enhancing
applications across fields like mineral exploration. Advanced
machine learning models, especially deep learning, could improve
classification and prediction accuracy, while advances in GPU
and cloud computing may soon enable real-time hyperspectral
processing, beneficial for applications such as climate change
and disaster response. Band selection using various sensors and
standardized frameworks would increase data consistency, and
field validation across diverse environments could strengthen
the indices’ applicability in areas like urban heat mapping
and marine studies.

6 Conclusion

Python code was developed using open-source libraries to
select bands from hyperspectral imagery using different indices
such as NDWI, GNDVI, NDRE, and NDBI. Peddinti et al.
(2021) included bands within the range of Sentinel-2 bandwidth
in their study.

The results demonstrate lower RMSE values across various
land cover classes for NDWI values, with a notable reduction in
the Water class. While the Barren Land class may exhibit slightly
higher RMSE values, it still maintains relatively good agreement and
stability compared to single central bands. Similarly, the adopted
methodology consistently shows lower RMSE values compared to

the mean of all bands and single central bands across all land
cover classes for NDRE values. While vegetation displays the lowest
RMSE value with the mean of all bands, it's important to note
that this value is still lower than that derived from single central
bands. Conversely, urban areas consistently exhibit higher RMSE
values despite lower RMSE values. For GNDVI, the proposed
methodology consistently yields lower RMSE values across various
land cover classes compared to considering the mean of all bands.
It also generally demonstrates lower RMSE values compared to
those derived from single central bands, indicating its effectiveness
in calculating GNDVI values. Similarly, for NDBI, the proposed
methodology consistently yields slightly lower RMSE values across
various land cover classes compared to considering the mean of
all bands and single central bands. Notably, in the Water class, the
proposedmethodology’s RMSE value is notably lower than the other
approaches. Overall, while differences in RMSE values exist across
different land cover classes, there is no significant difference between
the proposed methodology and the other approaches. In addition to
the proposed methodology, single central bands were considered to
assess performance.

Theproposedmethodology demonstrates superior accuracy and
reliability in deriving spectral indices (NDWI, NDRE, GNDVI,
NDBI) across diverse land cover types by yielding consistently
lower RMSE values compared to the mean of all bands and single
central bands. It excels in earth science applications including water
resource management, vegetation health assessment, and urban
monitoring, with notable improvements in noise reduction and
index stability. Parallel processing enhances efficiency, reducing
computation time by up to 62%, making the approach scalable
for large datasets. The methodology’s robustness, transferability,
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and broad applicability make it a valuable tool for advanced
hyperspectral data analysis and environmental monitoring. Also
the proposed methodology outperformed both the mean of all
AVIRIS bands and single central bands, providing superior results.
Parallel processing significantly reduced execution time, especially
for AVIRIS data extraction and index computation. Optimized
coding prevented redundant data extraction, further enhancing
efficiency. Utilizing 25 cores, optimal performance was achieved
with 30%–50% of the cores, while higher usage impacted execution
time. Longer computation times for NDBI were due to the greater
number of indices involved. Overall, the approach ensured accurate
results with improved computational efficiency.
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