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Obtaining high temporal and spatial resolution spectral data is the key to
revealing the influencing factors, effects, and mechanisms of land-atmosphere
interactions in deserts. This study, we used MODIS and Sentinel-2 data as data
sources to calculate daily reflectance and Normalized Difference Vegetation
Index (NDVI) data with a spatial resolution of 10 m, based on the Spatiotemporal
Fusion Incorporating Spectral Autocorrelation (FIRST) model, across different
climatic zones in the Hobq Desert, northern China, in March. Then, we evaluated
the adaptability of the FIRST model in the Hobq Desert based on spatial and
textural characteristics, as well as spatial-temporal distribution characteristics,
using qualitative analysis, quantitative analysis, and geographic detectors. The
results show that the correlation coefficients of First fused data and Sentinel-2
data in red, green, blue, near-infrared bands, and NDVI were 0.574 (p < 0.01),
0.448 (p < 0.01), 0.485 (p < 0.01), 0.573 (p < 0.01), and 0.625 (p < 0.01), and
the scatter points were evenly distributed on both sides of y = x. Meanwhile,
FIRST NDVI and Sentinel-2 NDVI maintained consistency in spatial texture and
hue changes, with similar value ranges. The daily scale coefficient of variation
(CV) of FIRST NDVI in different desert types were less than that of MODIS NDVI.
Among them, the variability of FIRSTNDVI in fixed duneswas significantly smaller
than that of MODIS NDVI, with the former’s CV being 0.034 smaller than the
latter’s. Besides, it was found that there were significant differences in First
NDVI among different desert types based on risk detection, while MODIS NDVI
showed insignificant differences between fixed dunes and semi-fixed dunes.
This suggests that First model integrated effectively various types of remote
sensing data and had strong applicability in the eastern part of Hobq Desert,
which could distinguish between fixed dunes and semi-fixed dunes, providing
a more accurate monitoring tool for environmental zoning management in
desert areas.
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1 Introduction

Vegetation is the main body of the terrestrial ecosystem,
connecting the material cycle and energy flow of the atmosphere,
water, and soil, and playing an important role in regulating the
climate system and terrestrial carbon balance (Rahman et al.,
2022; Cai et al., 2022). Normalized Difference Vegetation Index
(NDVI) is the most commonly used index to represent vegetation
conditions, comprehensively reflecting the changes of vegetation
coverage and biomass (Zhang et al., 2022). Deeply understanding
the mechanism of driving forces in the process of vegetation
change and systematically evaluating the relative role of each
driving factor in the process of vegetation change are the keys
to effectively carrying out vegetation construction, especially in
arid and semi-arid desert areas, where vegetation construction
is an important measure to effectively prevent soil erosion and
vegetation degradation (Rahman et al., 2022; Alam et al., 2021;
Guerra et al., 2016; Zhao et al., 2024). With the development of
remote sensing technology, the use of remote sensing methods to
monitor vegetation growth has become the mainstream approach
in current research (Hasan et al., 2024; Vélez et al., 2023). Remote
sensing can quickly obtain NDVI for continuously distributed
areas, providing a good monitoring effect for large-scale surface
vegetation information (Lyapustin et al., 2023). However, desert
areas often exhibit complex surface features, such as dunes, rocky
surfaces, and saline-alkali land (Wang et al., 2022), which can lead
to reduced accuracy in traditional remote sensing (Abdullah et al.,
2024). Additionally, changes in desert environments tend to be
gradual (Vogelmann et al., 2016), and existing high spatial resolution
data lack sufficient time series for continuous monitoring over
time, limiting the analysis of change trends and significantly
reducing their applicability for long-term monitoring (Peirce et al.,
2024). Single remote sensing data may be affected by atmospheric
conditions and variations in surface reflectance characteristics,
leading to deficiencies in temporal or spatial resolution and
making it difficult to capture small-scale dynamic changes in desert
environments (Andrew and Warrener, 2017).

The spatiotemporal fusion method of multi-source remote
sensing data is an effective way to resolve the conflict between
temporal and spatial resolution, enabling the acquisition of temporal
phase information from high temporal resolution remote sensing
data and spatial texture information from high spatial resolution
data simultaneously (He et al., 2023b; He et al., 2023a). The
spatiotemporal fusion of data involves the integration of known
“time-dense” low spatial resolution image sequences with “time-
sparse” high spatial resolution image sequences corresponding to
some time points, generating “time-dense” higher spatial resolution
image sequences corresponding to the low spatial resolution
image sequences (Ghassemian, 2016). Currently, spatiotemporal
fusion models can be broadly classified into three categories:
transformation-based fusionmodels (Agarwal et al., 2020), machine
learning-based fusion models (Hilal et al., 2022), and fusion
models based on reconstruction (Jarihani et al., 2014). The
advantage of transformation-based fusion models is that detailed
spectrum information is preserved, but the disadvantage is the
unsolvable problem of mixed pixels and low fusion accuracy
(Malenovský et al., 2007). The machine learning-based fusion
models use a two-layer spatio-temporal fusion model, which

accounts for differences in data resolution and can capture changing
surface reflectance in images. However, they have high data
requirements and poor efficiency, so they are not suitable for
large-scale studies (Niu et al., 2022). Fusion models based on
reconstruction not only consider spatial heterogeneity but also
account for the nonlinear characteristics of pixel reflectance changes,
making them widely applicable in areas with high heterogeneity.
Typical models include the spatial and temporal adaptive reflectance
fusion model (STARFM) (Dhillon et al., 2023), the enhanced
spatial and temporal adaptive reflectance fusion model (ESTARFM)
(Knauer et al., 2016), the flexible spatiotemporal data fusion
(FSADF) (Zhu et al., 2016), and the spatial and temporal non-
local Filter-based fusion model (STNLFFM) (Dong et al., 2020).
These methods predict individual bands separately, generating
predictions for a single band by inputting a single spectrally
similar band, overlooking the valuable spectral autocorrelation
between multiple bands. The latest proposed spatiotemporal fusion
method incorporating spectral autocorrelation (FIRST) utilizes a
many-to-many framework, maximizing the information extracted
from all available spectral bands and mitigating the impact of
concatenation, resulting in more accurate multi-band fused images
(Liu et al., 2022). FIRST can consistently produce better predictions,
even for complex temporal change patterns with distinct spatial
details. Additionally, this method can resist some noise caused by
haze and thin clouds while achieving good fusion accuracy and
spatiotemporal detail performance. The FIRST model can more
effectively integrate various types of remote sensing data, such as
optical, radar, and LiDAR, enhancing the comprehensiveness and
accuracy of the information (Liu et al., 2022). The ESTARFM model
mainly focuses on time series interpolation of optical imagery and
lacks integration of multi-source data (Knauer et al., 2016). The
FSDAF and STNLFFM models also have limitations in data fusion,
often relying on a single data source (Zhu et al., 2016; Dong et al.,
2020). The FIRST model employs more advanced noise suppression
techniques, effectively reducing atmospheric and environmental
interference, thereby improving data accuracy (Liu et al., 2022).
The ESTARFM model is relatively sensitive when handling noise,
which may affect the reliability of the results (Knauer et al., 2016).
Similarly, the FSDAF and STNLFFM models have relatively weak
capabilities in noise handling (Zhu et al., 2016; Dong et al., 2020).
The FIRST model demonstrates strong capabilities in processing
complex terrain and surface features, allowing for more accurate
reflection of changes in specific environments like deserts (Liu et al.,
2022). In contrast, the ESTARFM model faces certain challenges in
processing complex terrains (Knauer et al., 2016), while the FSDAF
and STNLFFM models have poorer adaptability to complex surface
features (Zhu et al., 2016;Dong et al., 2020).However, due to its short
history and lack of extensive validation in various sample areas, its
applicability to different surface types still needs to be determined.

The Hobq Desert is located at the northwest edge of the East
Asian summer monsoon region, where wind direction undergoes
significant seasonal changes, and it is classified as a typical arid
and semi-arid area in northern China (Kubo et al., 2013; Ao et al.,
2023). Hobq Desert is also the nearest large desert to Beijing, and
its special geographic location determines that it has an important
impact on the ecological environment of North China (Zhang et al.,
2024). Obtaining high spatial and temporal resolution remote
sensing data is of great value for monitoring vegetation degradation
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and desertification control in the Hobq Desert. Thus, we utilized
Sentinel-2 and MODIS data as the primary data sources, studying
the adaptability of FIRST model in the Hobq Desert, northern
China. The major objectives of the study included (a) to analyze
the applicability of the FIRST model for red, green, blue, near-
infrared band data, and NDVI in the Hobq Desert by correlation
analysis; (b) to analyzed the spatial and temporal distribution
characteristic of FIRST NDVI in March by qualitative analyses
and quantitative analyses, compared with MODIS data; (c) to
evaluate the performance and reliability of the FIRSTmodel through
geographic detector analysis.

2 Study area and dataset

2.1 Study area

Hobq Desert is located in Ordos City, Inner Mongolia
AutonomousRegion, China (106°55′ ∼ 111°25′E, 39°21′ ∼ 40°52′N)
(Zhang et al., 2024), situated to the north of the Ordos Plateau
ridgeline and to the south bank of the Yellow River in the Hetao
Plain, covering a total area of about 13,900 km2 (Figure 1). The
region spans three climate zones, including the middle temperate
zone of Menggan region, the middle temperate zone of Mengzhong
region, and the middle temperate zone of Mengdong region
(Zheng et al., 2013). The rainfall in the east is relatively high, while
thewest is rich in heat.The average annual precipitation in the desert
ranges from 150 to 400 mm, while the average annual evaporation
reaches 2,162 mm. The average annual temperature is relatively low,
ranging from 7°C to 8°C (Ao et al., 2023). Shifting dunes account for
about 61%, with a height of 10–60 m in the desert. Fixed dunes are
concentrated in themiddle temperate zone of the easternMengdong
region. The number of gale days per year is 25–35, with an average
wind speed of about 10 m per second, and the wind speed during the
wind erosion period can reach 30 m/s, resulting in a serious problem
of land desertification (Zhang et al., 2024; Alherbawi et al., 2022).

2.2 Data source

Sentinel-2 is a high-resolution multispectral imaging satellite
carrying a multispectral imager (MSI) for land monitoring,
providing images of vegetation, soil and water cover, inland
waterways, coastal areas, etc. Sentinel-2 data from March 2023
was downloaded from the European Space Agency (https://scihub.
copernicus.eu/dhus/#/home). The orbit numbers are T49TBE
(20230307, 20230317), T49TCE (20230314, 20230319), and
T49TDE (20230329). Through the Sentinel Application Platform
(SNAP), resampling and projection transformationwere performed,
selecting the red band (Red), green band (Green), blue band
(Blue), and near-infrared band (NIR). The Sentinel-2 NDVI with a
spatial resolution of 10 m was calculated using red band (Red) and
near-infrared band (NIR).

The Moderate-resolution Imaging Spectroradiometer (MODIS)
is a large-scale space remote sensing instrument developed byNASA
to understand global climate change and the impact of human
activities on climate. MODIS reflectance products MOD09GA of
H26V04 and H26V05 orbits were obtained from the National

Aeronautics and Space Administration (https://ladsweb.modaps.
eosdis.nasa.gov/). These products have a spatial resolution of 500 m
and a temporal resolution of 1 day. MOD09GA data was used for
projection conversion and image mosaicking through the MRT
program and batch processing tools to obtain the red, green, blue,
and near-infrared bands of MODIS data at the daily scale in March
2023. The NDVI was calculated based on these bands. However, due
to the influence of cloudy and rainy weather, the quality of MODIS
data on 3 March 2023 was poor and could not be used for fusing
corresponding time data.

The data of desert types is derived from 1:100,000 Distribution
Atlas of Chinese Deserts provided by the Western China
Environment and Ecological Science Data Center (http://westdc.
westgis.ac.cn). The main desert types in Hobq Desert include
shifting dunes, semi-shifting dunes, semi-fixed dunes, and fixed
dunes, accounting for 37.37%, 28.04%, 24.12%, and 10.47%
respectively. Monthly meteorological data of 1 km temperature and
precipitation comes from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/zh-hans/data/). In addition, the ASTER
GDEM digital elevation model (30 m) for the corresponding area
was obtained from the Geospatial Data Cloud; population density
data (100 m) comes from the Seventh National Population Census
(2020) (https://figshare.com/).

2.3 Methodology

2.3.1 FIRST model
Inmost existing spatial-temporal fusion processes, there is often

a significant difference in spatial resolution between coarse and fine
images, which can lead to the introduction of new errors through
spatial interpolation residuals from coarse to fine resolution. Even
with similar pixel filtering, spatial textures may become smoothed
(Liu et al., 2022). The FIRST model revises these errors through
adaptive combination of residual compensation, resulting in a more
robust final fusion result (Formula 1):

̂F2(x,y,b) =H(x,y,b) × ̂Fs(x,y,b) + (1−H(x,y,b)) × ̂Fp(x,y,b)
(1)

where ̂F2(x, y, b) is the reflectance value of the final fusion result at
the position of b band (x, y); ̂Fs(x, y, b) and ̂Fp(x, y, b) are the fusion
results of b band (x, y) position adaptive combinatorial residual
compensation and Partial least squares regression (PLSR) prediction
results without residual compensation, respectively. H(x, y, b) is the
binary weight of the residual compensation fusion result ( ̂Fs) in
the b band (x, y) position. The new residual Rs(x, y, b) is used to
compensate the fusion result ̂Fs(x, y, b) instead of ̂Fp(x, y, b). For each
thick pixel, H(x, y, b) is set to 1 when the corresponding Rs(x, y, b)
is less than R(x,y,b) (Formula 2); Conversely, H(x,y,b) is set to 0.

R(x,y,b) = C(x,y,b) − 1
nm

nm
∑
i=1

̂Fp(xi,yi,b) (2)

whereR(x, y, b) is the residual value of the coarse pixel at the position
of b band (x, y); C(x, y, b) is a thick pixel in the b band (x, y)
position; ̂Fp(xi, yi, b) is the reflectance value of the ith fine pixel in
C(x, y) in band b; nm is the number of fine pixels within a thick
pixel.The fusion steps are as follows: Firstly, the red, green, blue, and
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FIGURE 1
The geographical location of expermental areas in Hobq Desert.

nir-red bands of MODIS and Sentinel-2 were selected, and MODIS
was upscaled to ensure the same column numbers and resolutions
with Sentinel-2. Secondly, the spectral reflectance features as well
as the temporal variation features of each band were extracted to
calculate the autocorrelation of the spectral features and identify
the significant change in the time series. Finally, PLSR was used for
effective fusion and the fusion results were visualized.

2.3.2 GeoDetector
GeoDetector is a spatial statistical method for detecting spatial

divergence and explaining its driving factors. It is used to explore the
spatial heterogeneity between dependent and independent variables
and measure the explanatory power (i.e., q value) of independent
variables with respect to dependent variables. It is calculated as
follows (Formula 3):

PD = 1−
L

∑
h=1

Nhσ
2
h/Nσ2 (3)

where PD is the explanatory power of NDVI with a value range
of 0–1; the larger the value, the stronger the explanatory power of
NDVI; h (1, 2, . . . ,L) is the variable classification or partition; Nh
and N are the number of layers, h, and regional units, respectively;
σh

2 and σ2 are the variance of the Y value in the h layer and
region, respectively. Based on the calculation of the PD value of

a single factor, PD (x1), PD (x2) and PD (x1 ∩ x2) are calculated
to determine and explain the explanatory power of the combined
(increasing orweakening) and independent effects ofmeteorological
factors on NDVI.

F =
Nx1 × (Nx2 − 1) ×

L1
∑
h−1

Nhσ
2
h

Nx2 × (Nx1 − 1) ×
L2
∑
h−1

Nhσ
2
h

(4)

where F is the F statistic (Equation 4), which is used to compare
whether there are significant differences in the influence of the two
factors x1 and x2 on the spatial distribution of NDVI. Nx1 and Nx2
were the sample sizes of two factors, respectively. L1 and L2 are the
number of tiers x1 and x2, respectively.

t = (Yh=1 −Yh=2)/√
Var(Yh=1)

nh=1
+
Var(Yh=2)

nh=2
(5)

where t is the risk detection statistic (Equation 5), which is used
to determine whether there is a significant difference in the mean
NDVI between the two desert type subregions. Yh is the mean value
of NDVI in subregion h. nh is the number of samples in subregion
h; Var (Yh) is the variance of NDVI in subregion h (Figure 2).
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FIGURE 2
Technical flowchart.

3 Results and analysis

3.1 Accuracy evaluation of the FIRST model

The FIRST model was utilized to obtain the red, green, blue,
and near-infrared band data of the Hobq Desert experimental area
with a spatial resolution of 10 m and a temporal resolution of
1d. The correlation coefficients between the fusion results and the
corresponding Sentinel-2 data were calculated, as shown in Table 1.
The scatter plots of different band data were relatively evenly
distributed on both sides of y = x. The correlation coefficients of
the FIRST data and Sentinel-2 data in the red, green, blue, and
near-infrared bands were 0.574, 0.448, 0.485, and 0.573, respectively.
The maximum bias was 0.035, and the minimum was 0.013. The
root mean square error (RMSE) ranged from 430.130 to 558.904.
Due to the influence of the quantity and quality of Sentinel-2 data
with higher spatial resolution, the fusion accuracy of different bands
for T49TBE and T49TCE was significantly higher than that of
T49TDE. The correlation coefficients of the former were all above
0.7, while the latter’s correlation coefficients were only larger than 0.6
in the near-infrared band, and the bias was larger than 0.1. Among
them, the correlation coefficients of the red, green, blue, and near-
infrared bands of T49TBE on March 7th and T49TCE on March
14th were all larger than those of the corresponding bands onMarch
17th and March 19th, and the single-band correlation coefficients
were all larger than 0.91, indicating that T49TBE and T49TCE had
better single-band fusion effects on March 7th and March 14th,
respectively.

Further, the correlation coefficient, bias, and root mean square
error (RMSE) between the First NDVI and Sentinel-2 NDVI
in different experimental areas were calculated using the red
and near-infrared bands, as shown in Figure 3. The scatter plot
of First NDVI and Sentinel-2 NDVI was mainly concentrated

near the y = x line, and most NDVI values were concentrated
in the range of [0.05–0.1], with R, Bias, and RMSE values of
0.625, 0.054, and 0.016, respectively, indicating a low degree of
dispersion in the fused images and good overall fusion results.
Comparing the fusion accuracy at different times, we found that
the correlation coefficients between First NDVI and Sentinel-2
NDVI on March 7, March 14, March 17, March 19, and March
29 were 0.836, 0.752, 0.852, 0.771, and 0.223, respectively. The
Bias ranged from −0.118 to 0.194, and the root mean square
error (RMSE) was less than 0.025. Except for March 29, the
First NDVI and Sentinel-2 NDVI had good correlation and
high simulation accuracy at other times, which can be used for
subsequent research.

A comparative analysis of the spatial characteristics of FIRST
NDVI with Sentinel-2 NDVI and MODIS NDVI for corresponding
time periods (Figure 4) revealed that FIRST NDVI, compared
to MODIS NDVI, possesses excellent spatial detail information,
enabling it to accurately represent spatial differences between
smaller ground objects. Meanwhile, due to the low spatial
resolution of MODIS NDVI, there were many mixed pixels,
making it difficult to accurately represent the changing trends
of NDVI within the sample area, manifesting as a narrower
range of NDVI values. Further comparison of FIRST NDVI with
Sentinel-2 NDVI showed that on March 29th in the T49TDE
region, there were significant differences in the spatial distribution
characteristics between MODIS NDVI and Sentinel-2 NDVI,
resulting in poor fitting between FIRST NDVI and Sentinel-2
NDVI. However, in other regions, FIRST NDVI and Sentinel-2
NDVI remained consistent in spatial texture and tonal changes,
with similar value ranges and good simulation effects. Therefore,
we believe that the FIRST fusion model has strong applicability
and good simulation accuracy for simulating NDVI in the
Hobq Desert.
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FIGURE 3
Scatter plots of First NDVI and Sentinel-2 NDVI in Hobq Desert for different periods ((A–F) represent different times for all experimental areas,
T49TBE20230307, T49TCE20230314, T49TBE20230317, T49TCE20230319, T49TDE20230329).

FIGURE 4
Comparative Analysis of FIRST NDVI with the concurrent NDVI from Sentinel-2 and MODIS in Hobq Desert in March.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1493726
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zheng et al. 10.3389/feart.2024.1493726

T
A
B
LE

1
R
,B

IA
S,

an
d
R
M
SE

b
et
w
ee

n
Fi
rs
t
d
at
a
an

d
Se

n
ti
n
el
-2

d
at
a
in

re
d
,G

re
en

,B
lu
e,

an
d
N
ir
w
av

e
se
g
m
en

ts
.

A
ll
e
xp

e
ri
m
e
n
ta
l

ar
e
as

T
4
9
T
B
E
2
0
2
3
0
3
0
7

T
4
9
T
C
E
2
0
2
3
0
3
14

T
4
9
T
B
E
2
0
2
3
0
3
17

T
4
9
T
C
E
2
0
2
3
0
3
19

T
4
9
T
D
E
2
0
2
3
0
3
2
9

R
B
IA
S

R
M
SE

R
B
IA
S

R
M
SE

R
B
IA
S

R
M
SE

R
B
IA
S

R
M
SE

R
B
IA
S

R
M
SE

R
B
IA
S

R
M
SE

Re
d

0.
57

4
0.
01

3
54

8.
61

3
0.
95

7
−0

.1
46

53
0.
54

5
0.
93

9
−0

.0
81

33
0.
44

2
0.
91

6
0.
09

9
38

2.
97

8
0.
88

9
0.
02

8
22

6.
59

3
0.
58

9
0.
20

6
95

8.
93

5

G
re

en
0.
48

5
0.
03

5
53

2.
58

0
0.
95

2
−0

.1
50

43
1.
59

3
0.
91

3
−0

.0
69

25
3.
14

6
0.
89

1
0.
13

7
41

0.
79

2
0.
83

1
0.
05

7
25

4.
96

6
0.
51

3
0.
23

1
96

8.
46

2

Bl
ue

0.
44

8
0.
01

5
43

0.
13

0
0.
91

3
−0

.0
75

18
2.
99

2
0.
85

0
0.
01

2
16

5.
49

2
0.
80

7
0.
02

7
11

6.
54

4
0.
80

9
−0

.0
31

16
7.
58

3
0.
44

5
0.
15

6
90

9.
37

7

N
ir

0.
57

3
0.
02

0
55

8.
90

4
0.
93

7
−0

.1
23

52
7.
03

0
0.
93

6
−0

.0
64

33
7.
70

7
0.
79

0
0.
08

3
39

1.
95

9
0.
90

0
0.
03

8
25

6.
56

5
0.
62

8
0.
19

6
97

6.
99

3 3.2 Spatial distribution characteristics of
different bands and NDVI in Hobq Desert

The mean values of the Red, Green, Blue, NIR, and NDVI
bands in the T49TBE, T49TCE, and T49TDE regions in March
were calculated separately, as shown in Figure 5. The DN values
of different bands in T49TBE, T49TCE, and T49TDE showed a
decreasing trend, with the most significant decrease in the Blue
and NIR bands. T49TBE was located in the western part of the
desert, mainly composed of arid areas, with 56.28% shifting dunes
and 35.16% semi-shifting dunes, while fixed and semi-fixed dunes
only accounted for 8.56%. The peak values of the Red, Green, Blue,
and NIR bands in the shifting dunes (10895.5, 10302.4, 9256.58,
11084.3) were significantly higher than those in the semi-shifting
dunes (7083.31, 6871.28, 6692.1, 7429.93), while the lower limits
of both remained consistent, indicating that the variation range of
DN values in different bands was higher in shifting dunes than in
semi-shifting dunes. In T49TCE, the proportions of shifting, semi-
shifting, and semi-fixed dunes were 33.72%, 35.33%, and 24.27%,
respectively. Among them, the variation range of DN values in
different bands decreased sequentially from shifting dunes, semi-
shifting dunes, to semi-fixed dunes.The eastern part of HobqDesert
(TDE) belongs to a semi-arid area with higher precipitation than
the central and western parts of the desert. Semi-fixed dunes had
replaced semi-shifting and shifting dunes as the main desert type
in this region, accounting for 34.62%. The range of DN values
in different bands of semi-fixed dunes were [1095.18, 6944.6],
[1335.83, 7028.41], [1269.35, 7863.48], and [898.506, 8812.24].
The variation range was significantly greater than that of fixed
dunes ([1003.77, 6130.91], [1177.27, 6051.86], [1092.35, 6809.35],
[958.875, 7593.71]). In summary, the variation range of DN values
in different bands of different desert types showed a trend of shifting
dunes > semi-shifting dunes > semi-fixed dunes > fixed dunes. The
NDVI values in different regions were highly correlated with the
desert types.TheNDVI values in the shifting dunes in the northwest
of T49TBE were significantly lower than those in the semi-shifting
dunes in the southeast. The NDVI values in the contiguous shifting
dunes in the northeast of T49TCE were significantly lower than
those of other desert types in the region. The dunes types in
T49TDE were cross-distributed, coupled with poor fusion accuracy,
leading to insignificant differences in NDVI values among different
dunes types.

3.3 Temporal variation characteristics of
NDVI in different desert types

The NDVI of Hobq Desert in March was classified and
statistically extracted according to different desert types (Figure 6).
TheNDVI of different desert types changed relatively synchronously
in March, with the mean and median values maintaining a relatively
stable and consistent trend. Among them, the NDVI of fixed
and semi-fixed dunes were concentrated in the range of [0.67,
0.71], while the NDVI of shifting and semi-shifting dunes were
concentrated in the range of [0.60, 0.65]. Meanwhile, the coefficients
of variation of NDVI in March for fixed, semi-fixed, semi-shifting,
and shifting dunes were 0.251, 0.257, 0.287, and 0.320, respectively.
The variability of NDVI in shifting and semi-shifting dunes were
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FIGURE 5
Spatial distribution characteristics of different bands and NDVI in T49TBE, T49TCE, and T49TDE of Hobq Desert in March.

FIGURE 6
Temporal Variation Characteristics of NDVI in March for semi-fixed (A), fixed (B), semi-shifting (C), and shifting (D) dunes in Hobq Desert.

greater than that in semi-fixed and fixed dunes. In the late March,
the degree of variation in NDVI for different desert types was
significantly higher than in the early March, which was influenced
by only one Sentinel-2 NDVI data in the late March and the
poor image quality of the corresponding MODIS NDVI due
to cloudy and rainy weather.

A further comparative analysis of the variation trends of the
daily-scale First NDVI and MODIS NDVI coefficients of variation
(CV) was presented in Figure 7. The CVs of daily-scale MODIS
NDVI were higher than those of First NDVI, and the differences
were more prominent on Julian days 67, 73, 80, 83, and 87,
indicating that the stability of MODIS NDVI was poorer than
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FIGURE 7
Temporal variation trends of the CV between First NDVI and MODIS NDVI for different desert types in Hobq Desert.

First NDVI. Among them, the differences in daily-scale NDVI
CVs between First NDVI and MODIS NDVI were relatively small
in shifting dunes, semi-shifting dunes, and semi-fixed deserts,
with the mean difference in March’s CV not exceeding 0.01.
Due to the relatively small area of fixed dunes, the number
of mixed pixels in MODIS NDVI increased, leading to greater
variability. As a result, the daily-scale MODIS NDVI variability
was significantly greater than First NDVI, with the CV of the
former being 0.034 higher than the latter. This suggested that First
NDVI exhibits stronger stability and better adaptability in smaller
areas of fixed dunes.

3.4 Detection of NDVI influencing factors
in Hobq Desert

The mean values of First NDVI, MODIS NDVI, DEM, and
population density data in March were resampled to 1 km. Using
the Geographic Detector, the q-values of desert type, DEM,
precipitation, temperature, and population density for the mean
values of First NDVI and MODIS NDVI in March were calculated,
and the results were shown in Table 2. Compared to MODIS NDVI,
the q-values of different factors for First NDVI showed an increasing
trend, indicating that the fused First NDVI had an enhanced
response to different factors. Among them, the q-value of desert
type increased themost significantly, suggesting that FirstNDVI had
good applicability in Hobq Desert. The explanatory power of other
factors on First NDVI fromhigh to lowwas precipitation (q = 0.452),
temperature (q = 0.352), DEM (q = 0.270), and population density
(q = 0.052). Among them, precipitation and temperature factors
reached extremely significant levels, indicating that precipitation
and temperature were the main factors limiting the First NDVI
in Hobq Desert in March, while population density had a poor
explanatory power for First NDVI. Further calculations of the risk
detection of NDVI in different desert types were shown in Table 3.
There were significant differences in First NDVI among different
desert types, while the differences in MODIS NDVI between fixed
dunes and semi-fixed dunes were not significant. In summary, we

believe that the adaptability of First NDVI in Hobq Desert is higher
than MODIS NDVI, and this adaptability is most significant in
fixed dunes.

4 Discussion

The spectral values of multiple bands in optical remote sensing
data change in a certain pattern, interrelated and not independent.
The First spatiotemporal fusion model fully utilizes the multi-
band spectral autocorrelation, obtaining more information by using
multiple bands in the regression rather than a single band, thereby
establishing a more accurate model to capture complex temporal
variation patterns (Liu et al., 2022). Compared to traditional
spatiotemporal fusionmodels based on a one-to-one framework, the
First spatiotemporal fusion model achieves higher fusion accuracy.
Sentinel-2 (10 m) boasts a higher spatial resolution compared to
Landsat (30 m), which is crucial for monitoring low vegetation
coverage and its trends in deserts (Hill and Guerschman, 2022). The
First spatiotemporal fusion model can incorporate the high spatial
texture details of Sentinel-2 data at corresponding times, addressing
the issue of mixed pixels in MODIS (500 m) data and effectively
adjusting inaccurate information on NDVI changes in different
desert types in the region. It also resolves the discreteness issue
of Sentinel-2 data in the time series, better reflecting the changing
characteristics of NDVI in Hobq Desert on a continuous timescale.
Moreover, compared to MODIS NDVI, First NDVI has improved
stability across different desert types, and can better distinguish
between semi-fixed dunes and fixed dunes within small areas in the
eastern part of the desert (He et al., 2022). Therefore, we believe that
the First spatiotemporal fusionmodel has good adaptability inHobq
Desert, and the fused data with high spatiotemporal resolution can
provide guidance for future ecological restoration and sand control
efforts in Hobq Desert.

Related studies (Alherbawi et al., 2022; Afuye et al., 2021;
He et al., 2021) have found that precipitation and temperature were
the main meteorological factors that affect vegetation changes in
desert areas. InMarch, the precipitation inHobqDesert is relatively
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TABLE 2 PD values of desert type, DEM, precipitation, temperature, and population density for First NDVI and MODIS NDVI.

Desert type DEM Precipitation Temperature Population density

First NDVI 0.652∗∗ 0.270∗ 0.452∗∗ 0.352∗∗ 0.052

MODIS NDVI 0.504∗∗ 0.143∗ 0.404∗∗ 0.304∗∗ 0.044

∗p < 0.05;  ∗∗p < 0.01.

TABLE 3 Risk detection results of NDVI in different desert types.

Shifting dunes Semi-shifting dunes Semi-fixed dunes Fixed dunes

Shifting dunes

Semi-shifting dunes Y

Semi-fixed dunes Y Y

Fixed dunes Y Y Y

First NDVI 0.060 0.065 0.067 0.070

Shifting dunes

Semi-shifting dunes Y

Semi-fixed dunes Y Y

Fixed dunes Y Y N

MODIS NDVI 0.053 0.066 0.074 0.075

low, and the lack of water becomes the main limiting factor for
NDVI, which is reflected in the low NDVI value. The experimental
areas T49TBE, T49TCE, and T49TDE belong to the temperate zone
of Menggan area, the temperate zone of Mengzhong area, and the
temperate zone of Mengdong area respectively (Zheng et al., 2013).
The precipitation inHobqDesert shows a significant increase trend
from west to east (Kidron, 2024). There is a significant positive
correlation between NDVI and precipitation, and the trend is
increasing from west to east. Precipitation, as a limiting factor,
is crucial for vegetation growth. The positive correlation between
FIRST NDVI and precipitation indicates that vegetation in desert
areas can grow better with sufficient precipitation, which is positive
for maintaining the health and diversity of desert ecosystems. This
is consistent with the research results of Yang et al. (2022) and
Zhang et al. (2018). At the same time, the increase of precipitation
will improve soil moisture, making the physical characteristics
of the soil surface smoother and more uniform, reducing light
scatteringandreflection, resulting in significantly lowerbandvalues
in the desert experimental areas T49TCE and T49TDE than in
T49TBE (Bahddou et al., 2023). The change of temperature is not
the main limiting factor for vegetation growth. However, as the
temperature rises, the process of surface evaporation accelerates.
This indirectly leads to a lack of soil moisture, which significantly
inhibits vegetation growth (He et al., 2021). Warmer temperatures
may lead to a reduction in soil moisture and inhibit vegetation
growth. This phenomenon is a reminder of the vulnerability of

desert ecosystems in the context of climate change. In addition,
the evaporation in Hobq Desert is large in spring, and the relative
humidity is small, which is easy to form sandstorms.The frequency
of windy weather (wind speed ≥ 8 m/s) begins to increase.The dust
source is mainly shifting dunes, and the sand particles are relatively
coarse and contain a large number of quartz particles with high
transparency and high reflectivity, resulting in a greater degree
of deviation of the reflectivity to the high-value range (He et al.,
2022). At the same time, March is the germination stage of fixed
dunes vegetation, and the appearance of vegetation will cause the
reflectivity to cluster at low values. The shifting and semi-shifting
dunes are prone to direct reflection of light sources, with a high
proportion of medium and high reflectivity (Wang et al., 2015),
resulting in significantly lower peak values in different bands of
fixed dunes than in the shifting and semi-shifting dunes. Vegetation
on fixed dunes corresponds to low albedo, indicating that these
areas have relatively high vegetation cover, which contributes to the
stability and resistance of fixed dunes to wind erosion. The high
albedo of mobile and semi-mobile dunes, on the other hand, may
imply that these areas have lowvegetation cover and are ecologically
fragile and vulnerable to environmental change.

Data analysis based on FIRST NDVI can provide a more
accurate monitoring tool for environmental management in
desert areas, helping to identify drivers of vegetation change so
that conservation and restoration measures can be developed
accordingly. Although the FIRST model combines MODIS and
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Sentinel-2 data, the temporal and spatial consistency of different
sensors may affect the accuracy of the final results. Understanding
the effects of precipitation on vegetation growth can help to advance
management measures during the dry season to protect existing
vegetation and increase its resilience to adversity. During the
analysis, precipitation was assumed to be the only limiting factor
and other potential factors (e.g., soil type, vegetation type, etc.)
were ignored, which may lead to a one-sided understanding of
ecological relationships. Based on the reflectance characteristics
and vegetation cover of different dune types, land use planning
can be carried out more rationally to avoid overdevelopment of
ecologically sensitive areas.The results of the study are mainly based
on localized data, which may not fully reflect the effects of global
climate change, and need to be combined with larger-scale studies
to verify these findings.

5 Conclusion

The FIRST spatiotemporal fusion model was used to obtain
data of different wavebands with a spatial resolution of 10 m and
a temporal resolution of 1 day. This data could not only better
retain the temporal variation information of MODIS data, but also
reflect the spatial texture characteristics of Sentinel-2 data. At the
same time, the FIRST NDVI calculated based on the waveband
data in March had significant differences in shifting dunes, semi-
shifting dunes, semi-fixed dunes and fixed dunes. Compared with
MODIS NDVI, FIRST NDVI could better distinguish semi-fixed
and fixed desert, and had strong applicability in the eastern part of
Hobq Desert.

The emergence of vegetation in fixed dunes would cause
the reflectivity to converge to low values in March. Shifting
and semi-shifting dunes are prone to direct reflection of light
sources, resulting in a higher proportion of medium and high
reflectivity values. The peak values of different wavebands in
fixed dunes are significantly lower than those in shifting and
semi-shifting dunes.

Precipitation was the main limiting factor for the FIRST
NDVI in the spring of Hobq Desert. The FIRST NDVI in Hobq
Desert had a significant positive correlation with precipitation,
both showing an increasing trend from west to east. The
change in temperature was not the main limiting factor for
vegetation growth, but as the temperature rised, it accelerated
the process of surface evaporation, which indirectly led to a
lack of soil moisture and had a significant inhibitory effect on
vegetation growth.
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