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Introduction: Young’s modulus and shear modulus are essential mechanical
parameters for evaluating subsurface rocks, playing a pivotal role in the
exploration and development of unconventional resources. Young’s modulus
indicates the brittleness of the reservoir, while shear modulus determines the
ease of fracturing rock layers.

Methods: Traditional methods estimate these moduli through indirect
calculations and approximate expressions, which are prone to cumulative
errors and rely on multiple assumptions, reducing inversion accuracy. This
paper presents a direct inversion method for acquiring of Young’s modulus
and shear modulus using the exact Zoeppritz equations, integrated within
a Bayesian framework for pre-stack inversion. The quantum particle swarm
optimization (QPSO) algorithm is introduced to achieve a nonlinear solution to
the objective function.

Results: Tests on synthetic and actual field data demonstrate the feasibility and
effectiveness of the proposed method, yielding more accurate inversion results
compared to traditional methods.

Discussion: These findings provide valuable insights for predicting reservoir
brittleness and characterizing reservoirs in unconventional shale gas exploration
and development.

KEYWORDS

exact Zoeppritz equations, Young’s modulus, shear modulus, pre-stack inversion,
Bayesian framework, shale gas exploration, quantum particle swarm optimization

1 Introduction

As exploration advances, unconventional resources have become the primary focus
in contemporary oil and gas exploration (Zong et al., 2018; Wang et al., 2022; Zhou et al.,
2022). The exploration and development of unconventional oil and gas are essential for
ensuring sustainable and stable economic growth. In this context, accurately evaluating
the brittleness of reservoir rocks is a crucial step in identifying shale oil and gas
reservoirs. Parameters such as Young’s modulus and shear modulus reflect the fracture
characteristics of rocks, which are vital for assessing reservoir rock brittleness and
estimating the extent of fracturing (Li et al., 2023; Liu et al., 2023; Zhou et al., 2023).
Therefore, extracting these elastic modulus parameters from seismic data is key to
identifying shale oil and gas reservoirs.
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The acquisition of elastic parameters such as Young’s modulus
and shear modulus has evolved from indirect calculation to direct
inversion (Zheng et al., 2024). After obtaining elastic parameters
such as P-wave and S-wave velocities and density, the rock
physics relationships among these elastic parameters are used to
calculate Young’s modulus and shear modulus profiles (Liu et al.,
2022; Chen et al., 2023). Indirect calculation methods are prone
to introducing cumulative errors, which reduce the accuracy of
the inversion. To address the drawbacks of indirect inversion
methods, many researchers have derived reflection coefficient
equations involving Young’s modulus to establish direct inversion
procedures. For example, Zong et al. (2013) derived the linear
relationship between the P-wave reflection coefficient and Young’s
modulus, Poisson’s ratio, and density (YPD equation) from the
Aki–Richards approximation of Zoeppritz equations. ZHANG et al.
(2014) proposed that the product of Young’s modulus and
density (Eρ) has good hydrocarbon indication effects. They
derived approximate equations for the P-wave reflection coefficient
and converted the wave reflection coefficient based on Eρ,
Poisson’s ratio, and density and tested the approach in shale
reservoirs.

Amplitude Variations with Offset (AVO) is a technique
that obtains subsurface lithology information by studying the
relationship between seismic amplitude and offset, playing
an important theoretical role in pre-stack seismic inversion
(Buland and Omre, 2003; Liu and Grana, 2018; Zhou et al.,
2020; Cheng et al., 2022). Through pre-stack AVO inversion, fluid
information and elastic parameters in reservoir rocks can be
extracted from seismic data. Pre-stack AVO inversion requires
the Zoeppritz equations as the forward modeling foundation.
Aki–Richards introduced approximations to the Zoeppritz
equations for small incidence angles and low contrast, allowing
rapid development of the AVO technology (Aki and Richards,
2009). Many scholars proposed various approximations to the
Zoeppritz equations (Shuey, 1985; Fatti et al., 1994; Gray et al.,
1999). The introduction of these approximations made the
pre-stack AVO technology based on the Zoeppritz equations
feasible, contributing significantly to the oil and gas industry
(Grana et al., 2022; Zhou et al., 2023). However, with the increasing
demands for refined exploration, inversion based on approximation

formulas shows low resolution when applied to complex oil
and gas reservoirs, big offsets, and large incident angles. With
the development of inversion algorithms, the pre-stack AVO
technology based on exact Zoeppritz equations has been developed
and applied. Chen et al. (2023) derived the PP-wave equation
from the exact Zoeppritz equations in a form that includes
Young’s modulus and proposed a nonlinear inversion method,
which performed well in practical field applications. Song et al.
(2023) conducted similar derivations and applied them in
sandstone reservoirs. Zhou et al. (2021) re-derived the exact
Zoeppritz equations in terms of fluid factors and shear modulus,
achieving simultaneous inversion of the elastic modulus and fluid
factors. This paper will derive reflection coefficient equations
based on Young’s modulus and shear modulus from the exact
solutions of the Zoeppritz equations and apply them to pre-stack
AVO inversion.

Constructing the inversion objective function within the
Bayesian framework allows for the targeted introduction of prior
distributions, reducing the uncertainty of geophysical inverse
problems (Zong and Ji, 2021). By using Bayesian theory, the
correlation of elastic parameters can be effectively introduced
into the objective function as a regularization constraint, thus
enhancing the well-posedness of the inversion. In the study of
prior distributions, Alemie and Sacchi (2011) proposed a pre-
stack AVO inversion process by introducing the trivariate Cauchy
distribution. Zhou et al. (2017) believed that a prior model based
on the Laplace distribution can better characterize reservoir
boundaries. They introduced and tested the Laplace distribution
in their inversion. The modified trivariate Cauchy distribution can
highlight weak reflection information, balance the enhancement
of strong reflection boundaries, improve the signal-to-noise ratio,
and suppress weak reflections (Pan et al., 2019). This approach
has been adopted by many scholars in addressing geophysical
inverse problems.

Inversion based on the exact Zoeppritz equations is a highly
intensive nonlinear problem. Traditional quasi-linear iterative
algorithms have difficulty handling such problems. Moreover, linear
solution methods heavily rely on the initial model (Pan et al.,
2017). If the initial model deviates significantly from the true
value, the iterative results are prone to getting trapped in local

TABLE 1 Four types of AVOmodels.

Model Vp (km/s) Vs (km/s) Density (g/cm3) E (109N/m2) μ (Gpa)

I
3.02 1.455 2.3 13.136 4.869

4.06 2.530 2.4 36.334 15.362

II
2.54 1.120 2.3 7.959 2.885

2.68 1.615 2.1 13.309 5.477

III
2.45 0.785 2.2 3.912 1.356

1.82 0.852 1.9 3.545 1.379

IV
3.45 1.570 2.4 16.202 5.916

1.92 0.925 2.0 4.617 1.711
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minima. In areas with few drillings, it is difficult to provide an
accurate initial model, affecting the accuracy of the inversion
results. Using fully nonlinear algorithms to directly map nonlinear
problems from data space to model space can achieve global
optimization of the solution area, such as genetic algorithms,
Monte Carlo methods, simulated annealing, and particle swarm
optimization (PSO) (Liu et al., 2022). Fully nonlinear algorithms
can achieve the global optimization process by establishing
appropriate search strategies. Compared with linear algorithms,
these algorithms have higher computational accuracy. PSO, a global
intelligent optimization algorithm, is widely applied in various
engineering problems due to its iterative stability and fast solving
speed (Kennedy and Eberhart, 1995). However, PSO also has
limitations, such as a tendency to get trapped in local minima
and complex parameter settings. Sun et al. introduced the concept
of quantum bits, enabling particles to exhibit quantum behavior,
and proposed a quantum particle swarm optimization (QPSO)
algorithm (Sun et al., 2005, Sun et al., 2012). In theQPSO algorithm,
each particle’s position is no longer a definite value but a probability
distribution, which enhances the global search capability of the
particles and allows for greater exploration within the search space
(Xu et al., 2016).

Therefore, this paper first introduces the exact solution to
the exact Zoeppritz equation and rederives it into a form
that includes Young’s modulus, shear modulus, and density.
An exact PP-wave reflection coefficient expression based on
Young’s modulus, shear modulus, and density was obtained.
Then, within the Bayesian inversion framework, the modified
trivariate Cauchy distribution was introduced to construct the
objective function for the direct inversion of Young’s modulus,
shear modulus, and density. The inversion objective function was
solved using the quantum particle swarm optimization algorithm.
The proposed algorithm was validated using synthetic data and
real-field data.

2 Materials and methods

2.1 Derivation of the exact Zoeppritz
equation based on Young’s modulus, shear
modulus, and density

When a P-wave is incident, the geological properties on both
sides of the interface do not vary significantly, and the incident angle

FIGURE 1
Comparison of PP-wave reflection coefficients for four AVO models. (A) Model I; (B) Model II; (C) Model III; and (D) Model IV.
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is small, approximate formulas can be used as forward operators.
However, for complex reservoirs, these approximate formulas no
longer satisfy inversion requirements, necessitating the use of the
exact Zoeppritz equation as the forward operator. The Zoeppritz
equation can be expressed as follows (Equation 1):

[[[[[[[

[

sin α cos β − sin α′ cos β′

−cos α sin β −cos α′ − sin β′

sin 2α VP1
VS1

cos 2β
ρ2V

2
S2VP1
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2
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−ρ2VS2VP1

ρ1V
2
S1

cos 2β′

cos 2β −VS1
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−ρ2VP2
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−ρ2VS2
ρ1VP1

sin 2β′
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TPS

]]]]

]

=
[[[[

[

− sin α
−cos α
sin 2α
−cos 2β

]]]]

]

.

(1)

In the above equation, RPP, RPS, TPP, and TPS represent the
reflection and transmission coefficients of P-waves and converted
S-waves, respectively. The subscripts 1 and 2 in parameters such
as VP, VS, and ρ represent the medium parameters on the upper
and lower sides of the interface, respectively. α, α′, β, and β′

represent the incident and transmission angles of seismic waves
in the upper and lower layers, respectively. The exact Zoeppritz
equation is complex in form and difficult to implement in programs.
Aki and Richards (2009) derived an analytical solution for the P-
wave reflection coefficient. Yin et al. (2018) rewrote the analytical
solution into a simpler form, as shown in Equation 2.

RPP =
a1b1 − c1d1
a2b2 + c2d2

. (2)

In the abovementioned formula,

a1 =
VP2

VP1
⁢cos α (

ρ2
ρ1
⁢ (1− 2sin2β′) + 2sin2β)

− cos α′ ⁢ ((1− 2sin2β) + 2
ρ2
ρ1
⁢sin2β′),

a2 =
VP2

VP1
⁢cos α (

ρ2
ρ1
⁢ (1− 2sin2β′) + 2sin2β)

+ cos α′ ⁢ ((1− 2sin2β) + 2
ρ2
ρ1
⁢sin2β′),

FIGURE 2
Single-well model; the red line represents the true value, and the black
dashed line represents the search range.
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ρ2VS2
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d1 = d2 =
ρ2
ρ1
⁢ (1− 2sin2β′) − (1− 2sin2β) − 2 cos α′

cos β (
ρ2V

2
S2

ρ1VP2VS1
−
VS1

VP2
).

Next, it is necessary to derive the relationship between
Young’s modulus, shear modulus, and wave velocity based
on rock physics relationships. According to rock physics
relationships, the bulk modulus K can be expressed in terms
of Young’s modulus E and Poisson’s ratio σ, as shown in
Equation 3.

K = E
3(1− 2σ)

. (3)

The relationship between shear modulus and P-
wave and S-wave velocities can be expressed as
Equations 4, 5.

V2
S =

μ
ρ
, (4)

V2
P =

K+ 4
3
μ

ρ
. (5)

The relationship between Poisson’s ratio and P-wave and S-wave
velocities is

(
VP

VS
)
2
=
2(1− σ)
1− 2σ
. (6)

By solving Equations 3 and 6 simultaneously, the relationship
between Young’s modulus E, shear modulus μ, and P-wave and
S-wave velocities can be derived as follows:

VP = √
Eμ− 4μ2

ρ(E− 3μ)
, (7)

VS = √
μ
ρ
. (8)

By substituting Equations 7, 8 into Equation 3, a new form of the
reflection coefficient equation in terms of Young’s modulus E, shear
modulus μ, and density ρ can be derived Equation 9.
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RPP =
A1B1 −C1D1

A2B2 +C2D2
. (9)

The specific form of the equation is provided in Appendix A.
To compare the accuracy of the newly derived PP-wave

reflection coefficient (EGD-Zoeppritz) with that of the traditional
exact Zoeppritz reflection coefficient, we tested four types of AVO
models. Table 1 lists the parameters of the four AVO models.
Figure 1 shows the reflection coefficients of the exact Zoeppritz
equation, Aki–Richards approximation, Fatti approximation,
and EGD-Zoeppritz equation under different AVO models. The
reflection coefficient accuracy of the EGD-Zoeppritz equation
is the same as that of the exact Zoeppritz equation and better
than that of the approximate equations. When the incident angle
exceeds 30°, the reflection coefficients calculated by the approximate
equations start to deviate from the exact reflection coefficients. This
deviation is caused by the small-angle assumption inherent in the
approximate equations. However, the EGD–Zoeppritz equation can
consistently fit the exact reflection coefficient equation with high
accuracy. Figure 1 demonstrates the correctness of the reflection
coefficient equation derived in this paper.

2.2 Construction of the inversion objective
function

In seismic exploration, seismic records can be obtained
by convolving reflection coefficients with seismic wavelets, and
the relationship between seismic observation data and model
parameters can be expressed as Equation 10.

d = Gm+n. (10)

Here, d represents seismic records, m represents model
parameters, G represents the forward operator, and n represents
added noise data. In geophysical inverse problems, the physical
properties of the subsurface medium are inferred from observed
data, which are often ill-posed, exhibiting non-uniqueness,
nonlinearity, and other issues. Bayesian inversion is a probabilistic
inversion method that can effectively address various problems
encountered in geophysical inversion.

P(m|d ) =
P(d|m )P(m)

P(d)
∝ P(d|m )P(m). (11)

FIGURE 3
Synthetic angle-gathered seismic records. (A) Noise-free synthetic seismic record; (B) S/N=5 synthetic seismic records; (C) S/N=2 synthetic
seismic records.
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In the above equation, P(m|d ) is the posterior probability
distribution function, P(d|m ) is the likelihood function, P(m) is the
estimated prior probability distribution, and P(d) is the marginal
probability distribution, which serves as a normalized constant
factor, aiming to ensure that the sum of the posterior distribution
probability integrals is 1. Assuming that the likelihood function
follows a Gaussian distribution, we obtain

P(d|m ) = 1

√(2π)nd det(Σe)
× exp(− 1

2
(d−G(m))T(Σe)

−1(d−G(m))).

(12)

Here, nd represents the data dimension, Σe represents the noise
covariance matrix, andm is the model parameter to be inverted.

The advantage of the Bayesian method is that it can
introduce prior information in a targeted manner during

the inversion process, thus improving the accuracy of the
inversion results. The modified trivariate Cauchy distribution
has heavy tails, which can enhance the resolution of
inversion results, while reducing the suppression of weak
reflection information and highlighting strong reflection
boundaries, effectively recovering thin layers and weak
reflection strata (Wang et al., 2023). Assuming that the model
parameters follow a modified trivariate Cauchy distribution, we
obtain

P(m) = 1
π(2nd)|χ|nd/2

exp(−
nd
∑
i=1

(m−ω)Tζi(m−ω)
1+ (m−ω)Tζi(m−ω)

). (13)

Here, χ is a 3×3 covariance matrix that includes the statistical
correlations between model parameters, ω is the average value
of model parameters obtained from prior information, and ζi =
DT

i χ
−1Di, where Di is a 3 × 3nd matrix, which takes the following

FIGURE 4
Nonlinear inversion results based on the EGD-Zoeppritz equation: the red line represents the model values, the blue line represents the inversion
results, and the black dashed line represents the search boundaries. (A) Inversion results without noise; (B) inversion results with noise S/N=5; and (C)
inversion results with noise S/N=2.
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FIGURE 5
Inversion results based on the Aki–Richards equation: the red line represents the model values, and the blue line represents the inversion results. (A)
Inversion results without noise; (B) inversion results with noise S/N=5; and (C) inversion results with noise S/N=2.

specific form as Equation 14.

[Di]xy =

{{{{{{{
{{{{{{{
{

1 i fx = 1andy = i

1 i f x = 2andy = i+ nd
1 i f x = 3andy = i+ 2nd
0 else

. (14)

Substituting the prior model distribution probability
(Equation 13) and the likelihood distribution probability
(Equation 12) into Equation 11, the expression for the posterior
probability distribution function is obtained as Equation 15.

P (m |d ) ∝ exp (−1
2
⁢(d−G (m))T ⁢Σe

−1 ⁢ (d−G (m))

−
nd
∑
i=1

m−ωTζi (m−ω)
1+m−ωTζi (m−ω)

) . (15)

Taking the natural logarithm of both sides of Equation 11 and
multiplying by −1 transform the maximization of the posterior

probability distribution function P(m|d ) into the minimization of
the following objective function (Equation 16).

J(m) = (d−G(m))T(d−G(m)) + kμ(m), (16)

where μ(m) =
nd
∑
i=1

(m−ω)Tζi(m−ω)
1+(m−ω)Tζi(m−ω)

is the constraint term for prior
information, and when k increases, the sparsity of the inversion
results increases.

2.3 Introduction of the quantum particle
swarm optimization algorithm

Inspired by the regularity of bird foraging behavior, Kennedy
and Eberhart (1995) proposed the traditional PSO algorithm. The
conventional PSO algorithm is characterized by its simplicity,
ease of implementation, and fast convergence speed. However,
it also has drawbacks such as requiring numerous parameter
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FIGURE 6
Seismic records of PP waves at different angles in the X area, with the black line indicating the well location. (A) Seismic record at 3° incidence angle.
(B) Seismic record at 9° incidence angle. (C) Seismic record at 15° incidence angle. (D) Seismic record at 21° incidence angle. (E) Seismic record at 27°
incidence angle.

settings, poor global optimization capability, and a tendency to get
trapped in local minima. To address these issues, Sun et al. (2012)
introduced the concept of quantum bits, allowing particles to exhibit
quantum behavior, and proposed the QPSO algorithm. In the QPSO

algorithm, the position of each particle is no longer a fixed value
but rather a probability distribution, enhancing the particle’s global
search capability and allowing for greater exploration within the
search space.
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FIGURE 7
Inversion results using the method proposed in this paper. (A) Young’s modulus. (B) Shear modulus. (C) Density.

The core of the QPSO algorithm lies in transforming the
deterministic description of a particle’s position and velocity into
a probabilistic description, achieved by simulating the behavior
of quantum particles. Unlike classical particles, quantum particles
do not have a definite trajectory; their position is represented as
a probability cloud or probability density function. In the QPSO
algorithm, particles do not possess a velocity vector. Therefore, in
the tth iteration, the particle’s update can be expressed as follows:

X(i+1) = Pi − β ∗ (mBest−Xi) ∗ ln (1/u)k ≥ 0.5

X(i+1) = Pi + β ∗ (mBest−Xi) ∗ ln( 1
u
)k < 0.5

, (17)

where

Pi = φ ∗ pBesti + (1−φ) ∗ gBesti

mBest = 1
N

N

∑
i=1

pBesti
. (18)

Here, mBest represents the mean best position of the particle
swarm, defined as the average of the best positions of all particles
(the global best position). PBest refers to the best position of each
particle at the current iteration (individual best position).N denotes
the number of particles in the swarm. In the QPSO algorithm, Pi is
the local attractor, determined jointly by the individual and global
best positions. The term φ is a random number between 0 and
1. In Equation 17 and Equation 18, both k and u are also random
numbers within the range of (0, 1). The parameter β is the only
constant that needs to bemanually specified in the QPSO algorithm,

known as the contraction–expansion coefficient, which controls the
convergence speed of the algorithm. The β value plays a crucial role
in the algorithm, where a larger β promotes global exploration in
the early stages, while a smaller β is suitable for local optimization
in the later stages. In this study, we set β to decrease linearly within
the range of [1, 0.5] according to Equation 19.

β =
(βmax − βmin) ∗ (N− 1)

N
+ βmin. (19)

3 Synthetic seismic data testing

In this section, synthetic angle-gathered seismic records are
used to test the effectiveness and reliability of the Young’s modulus
inversion based on the exact Zoeppritz equation (EGD-Zoeppritz).
Based on real well-logging data, Young’s modulus and shear
modulus curves are constructed as the model parameters to be
estimated, as shown in Figure 2. The incident angle range of the
synthetic multi-wave seismic data is 1°–40°. The PP wave reflection
coefficients at different incident angles are calculated using the
rederived exact reflection coefficient equation and convolved with
a 30 Hz Ricker wavelet to obtain the synthetic seismic records,
as shown in Figure 3A. Next, to test the noise resistance of the
proposed algorithm, Gaussian random noise with signal-to-noise
ratios (SNR) of 5 and 2 is added to the noise-free synthetic
seismic records to obtain the noisy synthetic seismic records,
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FIGURE 8
Inversion results based on the Aki–Richards equation. (A) Young’s modulus. (B) Shear modulus. (C) Density.

as shown in Figures 3B, C. The QPSO algorithm is introduced to
solve the inversion task. In this experiment, we set the QPSO
search range to fluctuate within ±50% of the well log curve values.
The population size is set to 400, and the number of iterations is
set to 800.

Comparing Figures 4A–C, it can be seen that the method
proposed in this paper can reasonably and effectively estimate the
values of Young’s modulus, shear modulus, and density of the
strata. When the synthetic seismic data are noise-free, the inversion
results can almost accurately fit the pseudo-well curves. As the noise
increases, the precision of the inversion results gradually decreases,
but the overall shape of the curves can still be fitted. Specifically,
when the noise level is raised to a high noise state with a signal-to-
noise ratio of 2, the fit of the inversion results to Young’s modulus
remains stable. However, the inversion accuracy of the density term
decreases due to its insensitivity in the Zoeppritz equation. Figure 5
shows the inversion results using the Aki–Richards approximation.
By comparing Figures 4A–C, 5A–C, it can be seen that the inversion
results based on the exact Zoeppritz equation are significantly better
than those based on the approximate equations.

4 Actual production data testing

To verify the practical application of themethod proposed in this
paper for estimating formation Young’s modulus based on the exact

Zoeppritz equation, seismic data from an actual field are selected
for testing in this section. The actual data used for testing come
from an exploration area in western China. This area is located in
the transitional zone where the Tianhuan syncline’s western edge
fault-fold belt convergeswith thewesternmargin of theOrdos Basin.
The faults in this region play a controlling role in hydrocarbon
accumulation, and source rocks are relatively well-developed within
the study area. The target reservoir is mainly distributed in the
central part of the exploration area, predominantly controlled by
two large distributary channel sand bodies. The reservoir has a
considerable thickness, with an average of 25 m and a maximum
of 40 m. The reservoir properties are favorable, with an average
porosity of 12% and a maximum of 15%. The data were processed
with amplitude compensation and correction, deconvolution, noise
suppression, and pre-stack time migration, extracting pre-stack
seismic records for angles of 3°, 9°, 15°, 21°, and 27°. The seismic
sampling rate is 4 ms, and the angle-gathered seismic profiles
are shown in Figures 6A–E, with the black line indicating the well
location. The phase-carrying seismic wavelet was extracted from
the well for inversion testing. Pseudo-logging curves of Young’s
modulus and shear modulus were calculated from conventional
logging curves from the well.

When applying intelligent optimization algorithms to solve
practical problems, it is often challenging to accurately define the
search range. Typically, hard constraints (fixed values) are set, or
the search range is determined based on well log curves. In this
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FIGURE 9
Comparison of inversion results using the proposed method beside
the well track. The red solid line represents the smoothed curve of the
inversion results, and the blue solid line represents the logging curve.

study, since the strata in the working area are relatively gentle,
we set the search range to fluctuate within ±50% of the well
log curve values. The population size was set to 400, and the
number of iterations was set to 800. To reduce the computational
time, we also implemented multi-core parallel computing using
the CPU.

The inversion results for Young’s modulus, shear modulus,
and density using the method proposed in this paper are shown
in Figure 7, with the blue line indicating the magnitude of the
logging curve. From the inversion profile, it can be seen that the
inversion results match the logging curve well. Simultaneously, we
applied the approximate formula to invert this area, as depicted
in Figure 8. Comparing Figures 7, 8, it is clear that the method
proposed in this paper performs well on actual data, with the
inversion results having a higher resolution than those obtained
using the approximate formula. We extracted the seismic trace
at the well location and compared it with the logging curve,
as shown in Figure 9, and the inversion results align with the trend
of the logging curve. Thus, the actual application results validate
the reliability of the proposed direct inversion method in field data
applications, with the estimation accuracymeeting the requirements
for brittleness calculation and sweet spot favorable area
planning.

5 Conclusion

Due to the approximate expressions and indirect calculations
associated with the Zoeppritz equation, it cannot meet the
requirement of high-precision inversion results for Young’s
modulus, shear modulus, and density. The paper deduced a new
form of the exact Zoeppritz equation for reflection coefficients based
on the Young’s modulus, shear modulus, and density. Subsequently,
a direct synchronous AVO inversion method for Young’s modulus,
shear modulus, and density is proposed based on the new Zoeppritz
expression of PP wave reflection coefficients. Then, under the
Bayesian inversion framework, an inversion objective function

that can simultaneously invert Young’s modulus, shear modulus,
and density is constructed in this paper. The quantum particle
swarm algorithm is introduced into the inversion method to
address ill-posed inverse problems. The applications of synthetic
data and field seismic data show that the proposed inversion
method based on the new Zoeppritz expression can directly and
reliably predict Young’s modulus, shear modulus, and density
simultaneously. The method proposed in this paper provides
some ideas for predicting reservoir brittleness and characterizing
reservoirs in unconventional shale gas exploration and
development.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YC: conceptualization, data curation, formal analysis,
investigation, methodology, project administration, resources,
supervision, validation, visualization, writing–original draft, and
writing–review and editing. SS: conceptualization, data curation,
funding acquisition, methodology, validation, visualization, and
writing–review and editing. DL: supervision and writing–review
and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this
article. The authors declare financial support was received for
the research, authorship, and/or publication of this article.
This research was funded by the Natural Science Basic
Research Program of Shaanxi (No. 2024JC-YBMS-199) the
Fundamental Research Funds for the Central Universities, CHD
(Ref. 300102262205)..

Acknowledgments

The authors would like to thank the Yellow River Research
Institute of Chang’an University and Shaanxi Yellow River Science
Research Institute. In addition, they thank the reviewers and the
editors for their valuable comments, which improved the quality of
this paper.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2024.1493749
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cheng et al. 10.3389/feart.2024.1493749

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Aki, K., and Richards, P. G. (2009). Quantitative seismology. 2. edition. Mill Valley,
California New York: University Science Books. corrected printing.

Alemie, W., and Sacchi, M. D. (2011). High-resolution three-term AVO inversion
by means of a Trivariate Cauchy probability distribution. GEOPHYSICS 76, R43–R55.
doi:10.1190/1.3554627

Buland, A., and Omre, H. (2003). Bayesian linearized AVO inversion. GEOPHYSICS
68, 185–198. doi:10.1190/1.1543206

Chen, X., Zong, Z., and Zuo, Y. (2023). Direct exact nonlinear broadband seismic
amplitude variations with offset inversion for young’s modulus. IEEE Trans. Geosci.
Remote Sens. 61, 1–16. doi:10.1109/TGRS.2022.3231594

Cheng, J.-W., Zhang, F., and Li, X.-Y. (2022). Nonlinear amplitude inversion using
a hybrid quantum genetic algorithm and the exact zoeppritz equation. Pet. Sci. 19,
1048–1064. doi:10.1016/j.petsci.2021.12.014

Fatti, J. L., Smith, G. C., Vail, P. J., Strauss, P. J., and Levitt, P. R. (1994). Detection of
gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the
Geostack technique. GEOPHYSICS 59, 1362–1376. doi:10.1190/1.1443695

Grana, D., Figueiredo, L. D., and Mosegaard, K. (2022). Markov chain Monte Carlo
for petrophysical inversion. GEOPHYSICS 87, M13–M24. doi:10.1190/geo2021-0177.1

Gray, D., Goodway, B., and Chen, T. (1999). “Bridging the gap: using AVO to detect
changes in fundamental elastic constants,” in SEG technical Program expanded abstracts
1999 (Society of Exploration Geophysicists), 852–855. doi:10.1190/1.1821163

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in Proceedings
of ICNN’95 - International Conference on Neural Networks (Houston, Texas: IEEE),
1942–1948.

Li, X., Wei, W., Xia, Y., Wang, L., and Cai, J. (2023). Modeling and petrophysical
properties of digital rock models with various pore structure types: an improved
workflow. Int. J. Coal Sci. Technol. 10, 61. doi:10.1007/s40789-023-00627-z

Liu, M., and Grana, D. (2018). “Ensemble-based joint inversion of PP and PS seismic
data using full Zoeppritz equations,” in SEG International Exposition and Annual
Meeting, (SEG), 511–515. SEG-2018-2993625. doi:10.1190/segam2018-2993625.136

Liu, X., Chen, X., Cheng, J., Zhou, L., Chen, L., Li, C., et al. (2023). Simulation of
complex geological architectures based on multistage generative adversarial networks
integrating with attention mechanism and spectral normalization. IEEE Trans. Geosci.
Remote Sens. 61, 1–15. doi:10.1109/TGRS.2023.3294493

Liu, X., Shao, G., Liu, Y., Liu, X., Li, J., Chen, X., et al. (2022). Deep classified
autoencoder for lithofacies identification. IEEE Trans. Geosci. Remote Sens. 60, 1–14.
doi:10.1109/TGRS.2021.3139931

Pan, X., Zhang,G., Chen,H., andYin, X. (2017).McMC-basedAVAZdirect inversion
for fractureweaknesses. J. Appl. Geophys. 138, 50–61. doi:10.1016/j.jappgeo.2017.01.015

Pan, X., Zhang, G., and Yin, X. (2019). Amplitude variation with offset and azimuth
inversion for fluid indicator and fracture weaknesses in an oil-bearing fractured
reservoir. GEOPHYSICS 84, N41–N53. doi:10.1190/geo2018-0554.1

Shuey, R. T. (1985). A simplification of the Zoeppritz equations. GEOPHYSICS 50,
609–614. doi:10.1190/1.1441936

Song, B., Li, X.-Y., Ding, P., Chen, S., and Cai, J. (2023). Direct pre-stack inversion
of elastic modulus using the exact Zoeppritz equation and the application in shale
reservoir. Front. Earth Sci. 11. doi:10.3389/feart.2023.1107068

Sun, J., Fang, W., Wu, X., Palade, V., and Xu, W. (2012). Quantum-Behaved particle
swarm optimization: analysis of individual particle behavior and parameter selection.
Evol. Comput. 20, 349–393. doi:10.1162/EVCO_a_00049

Sun, J., Xu, W., and Feng, B. (2005). “A global search strategy of quantum-behaved
particle swarm optimization,” in IEEE Conference on Cybernetics and Intelligent
Systems, 2004 (Singapore: IEEE), 111–116. doi:10.1109/ICCIS.2004.1460396

Wang, H., Zhou, L., Chen, Q., Gao, J., Chen, K., Liu, B., et al. (2022). Deep carbonate
reservoir and gas prediction based on multicomponent seismic amplitude attributes —
a case study. Interpretation 10, T759–T774. doi:10.1190/INT-2021-0050.1

Wang, P.-Q., Liu, X.-Y., Li, Q.-C., Zhou, X.-W., and Feng, Y.-F. (2023). Nonlinear
inversionmethod of russell’s fluid factor based on exact-zoeppritz equation. IEEETrans.
Geosci. Remote Sens. 61, 1–14. doi:10.1109/TGRS.2023.3294501

Xu, X., Shan, D., Wang, G., and Jiang, X. (2016). Multimodal medical image fusion
using PCNN optimized by the QPSO algorithm. Appl. Soft Comput. 46, 588–595.
doi:10.1016/j.asoc.2016.03.028

Yin, X.-Y., Cheng, G.-S., and Zong, Z.-Y. (2018). Non-linear AVO inversion
based on a novel exact PP reflection coefficient. J. Appl. Geophys. 159, 408–417.
doi:10.1016/j.jappgeo.2018.09.019

Zhang, G.-Z., Du, B.-Y., Li, H.-S., Chen, H.-Z., Li, Z.-Z., and Yin, X.-Y. (2014). The
method of joint pre-stack inversion of PP and P-SV waves in shale gas reservoirs. Chin.
J. Geophys. 57, 4141–4149. doi:10.6038/cjg20141225

Zheng, X., Zong, Z., andWang, M. (2024). Prediction of calcareous sandstone based
on simultaneous broadband nonlinear inversion of young’smodulus, Poisson’s ratio and
S-wave modulus. J. Appl. Geophys. 229, 105477. doi:10.1016/j.jappgeo.2024.105477

Zhou, L., Li, J., Chen, X., Liu, X., and Chen, L. (2017). Prestack amplitude versus
angle inversion for Young’s modulus and Poisson’s ratio based on the exact Zoeppritz
equations. Geophys. Prospect. 65, 1462–1476. doi:10.1111/1365-2478.12493

Zhou, L., Li, J., Yuan, C., Liao, J., Chen, X., Liu, Y., et al. (2022). Bayesian deterministic
inversion based on the exact reflection coefficients equations of transversely isotropic
media with a vertical symmetry Axis. IEEE Trans. Geosci. Remote Sens. 60, 1–15.
doi:10.1109/TGRS.2022.3176628

Zhou, L., Liao, J., Li, J., Chen, X., Yang, T., and Hursthouse, A. (2020). Bayesian
time-lapse difference inversion based on the exact Zoeppritz equations with blockiness
constraint. J. Environ. Eng. Geophys. 25, 89–100. doi:10.2113/jeeg19-045

Zhou, L., Liao, J.-P., Liu, X.-Y., Wang, P., Guo, Y.-N., and Li, J.-Y. (2023). A high
resolution inversion method for fluid factor with dynamic dry-rock VP/VS ratio
squared. Pet. Sci. 20, 2822–2834. doi:10.1016/j.petsci.2023.09.015

Zhou, L., Liu, X., Li, J., and Liao, J. (2021). Robust AVO inversion for the fluid factor
and shear modulus. GEOPHYSICS 86, R471–R483. doi:10.1190/geo2020-0234.1

Zong, Z., and Ji, L. (2021). Model parameterization and amplitude variation with
angle and azimuthal inversion in orthotropic media. GEOPHYSICS 86, R1–R14.
doi:10.1190/geo2018-0778.1

Zong, Z., Wang, Y., Li, K., and Yin, X. (2018). Broadband seismic inversion for low-
frequency component of the model parameter. IEEE Trans. Geosci. Remote Sens. 56,
5177–5184. doi:10.1109/TGRS.2018.2810845

Zong, Z., Yin, X., and Wu, G. (2013). Elastic impedance parameterization and
inversion with young’s modulus and Poisson’s ratio. GEOPHYSICS 78, N35–N42.
doi:10.1190/geo2012-0529.1

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1493749
https://doi.org/10.1190/1.3554627
https://doi.org/10.1190/1.1543206
https://doi.org/10.1109/TGRS.2022.3231594
https://doi.org/10.1016/j.petsci.2021.12.014
https://doi.org/10.1190/1.1443695
https://doi.org/10.1190/geo2021-0177.1
https://doi.org/10.1190/1.1821163
https://doi.org/10.1007/s40789-023-00627-z
https://doi.org/10.1190/segam2018-2993625.1
https://doi.org/10.1109/TGRS.2023.3294493
https://doi.org/10.1109/TGRS.2021.3139931
https://doi.org/10.1016/j.jappgeo.2017.01.015
https://doi.org/10.1190/geo2018-0554.1
https://doi.org/10.1190/1.1441936
https://doi.org/10.3389/feart.2023.1107068
https://doi.org/10.1162/EVCO_a_00049
https://doi.org/10.1109/ICCIS.2004.1460396
https://doi.org/10.1190/INT-2021-0050.1
https://doi.org/10.1109/TGRS.2023.3294501
https://doi.org/10.1016/j.asoc.2016.03.028
https://doi.org/10.1016/j.jappgeo.2018.09.019
https://doi.org/10.6038/cjg20141225
https://doi.org/10.1016/j.jappgeo.2024.105477
https://doi.org/10.1111/1365-2478.12493
https://doi.org/10.1109/TGRS.2022.3176628
https://doi.org/10.2113/jeeg19-045
https://doi.org/10.1016/j.petsci.2023.09.015
https://doi.org/10.1190/geo2020-0234.1
https://doi.org/10.1190/geo2018-0778.1
https://doi.org/10.1109/TGRS.2018.2810845
https://doi.org/10.1190/geo2012-0529.1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cheng et al. 10.3389/feart.2024.1493749

Appendix A

A1 = √
(E2μ2 − 4μ

2
2)ρ1 (E1 − 3μ1)

(E1μ1 − 4μ
2
1)ρ2 (E2 − 3μ2)

⁢

cos α (
ρ2
ρ1
⁢ (1− 2sin2β′) + 2sin2β)

−cos α′ ⁢ ((1− 2sin2β) + 2
ρ2
ρ1
⁢sin2β′),

A2 = √
(E2μ2 − 4μ

2
2)ρ1 (E1 − 3μ1)

(E1μ1 − 4μ
2
1)ρ2 (E2 − 3μ2)

⁢

cos α (
ρ2
ρ1
⁢ (1− 2sin2β′) + 2sin2β)

+cos α′ ⁢ ((1− 2sin2β) + 2
ρ2
ρ1
⁢sin2β′),

B1 = B2

= √
(E2μ2 − 4μ

2
2)ρ1

μ1ρ2 (E2 − 3μ2)
⁢cos β (

ρ2
ρ1
⁢ (1− 2sin2β′)

+ 2sin2β) +√
E2μ2 − 4μ

2
2

μ2ρ2 (E2 − 3μ2)
⁢cos β′

⁢ ((1− 2sin2β) + 2
ρ2
ρ1
⁢sin2β′),

C1 = P2 ⁢ (
E2μ2 − 4μ

2
2

ρ2 (E2 − 3μ2)
) ⁢(

ρ2
ρ1
⁢ (1− 2sin2β′)

− (1− 2sin2β) + 2 cos α cos β′

⁢(
ρ2√

μ2
ρ2

ρ1√
E1μ1−4μ

2
1

ρ1(E1−3μ1)

−

μ1
ρ1

√ E1μ1−4μ
2
1

ρ1(E1−3μ1)
√ μ2

ρ2

)),

C2 = P2 ⁢ (
E2μ2 − 4μ

2
2

ρ2 (E2 − 3μ2)
) ⁢(

ρ2
ρ1
⁢ (1− 2sin2β′)

− (1− 2sin2β) − 2 cos α cos β′

⁢(
ρ2√

μ2
ρ2

ρ1√
E1μ1−4μ

2
1

ρ1(E1−3μ1)

−

μ1
ρ1

√ E1μ1−4μ
2
1

ρ1(E1−3μ1)
√ μ2

ρ2

)),

D1 = D2 =
ρ2
ρ1
⁢ (1− 2sin2β′) − (1− 2sin2β) − 2 cos α′

cos β(
μ2

ρ1√
μ1(E2μ2−4μ

2
2)

ρ1ρ2(E2−3μ2)

−
√μ1

√ ρ1(E2μ2−4μ
2
2)

ρ2(E2−3μ2)

).

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1493749
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Derivation of the exact Zoeppritz equation based on Young’s modulus, shear modulus, and density
	2.2 Construction of the inversion objective function
	2.3 Introduction of the quantum particle swarm optimization algorithm

	3 Synthetic seismic data testing
	4 Actual production data testing
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References
	Appendix A

