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Numerical simulation is used to investigate the influence of thickness variation
on the evolution of buried structural wedges, representing structures formed
between two detachments. Simulations are based on the Kuqa fold-and-thrust
belt, characterized by a tapered sedimentary sequence. Two sets of models
were developed, one considering syn-tectonic sedimentation and the other
without it. Model results indicate that an increase in thickness leads to larger
intervals of thrusts, larger-scale thrust anticlines, and a reduced number of
thrusts within the buried structural wedge, regardless of the presence of syn-
tectonic sedimentation. The presence of syn-tectonic sedimentation is found to
constrain the propagation of deformation within buried structural wedges, while
increased thickness is observed to promote deformation propagation. Model
results show that the deformation front expands toward the foreland from the
thin model to the medium model and withdraws from the medium model to
the thick model. This suggests that with the increase of wedge thickness, the
restriction influence of syn-tectonic sedimentation on deformation propagation
is more obvious than promotion. Model results show similarities in the structural
features with the buried structural wedge in the Kuqa fold-and-thrust belt. With
insights from numerical simulation, we suggest that the increased Mesozoic
strata thickness from the west to east controls the structural variation along the
strike. In the east, there are fewer thrust faults and larger fault intervals. Due to
the restriction influence of the syn-tectonic sedimentation on the deformation
propagation, the deformation front is an arc shape in the map view from
west to east.
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1 Introduction

Structural wedges, which consist of closely packed thrust
sheets in fold-and-thrust belts and accretionary wedges, are a key
focus of research due to their widespread occurrence worldwide.
Examples include the Alpine-Himalayan system (Caméra et al.,
2017; Cifelli et al., 2016; Qayyum et al., 2015; Yin, 2006), The South
Pyrenean Central Salient (Ford et al., 2022; Lacombe et al., 2022;
Muñoz et al., 2013; Sussman et al., 2004), The Zagros fold-and-
thrust belt (Le Garzic et al., 2019; McQuarrie, 2004; Sherkati et al.,
2006), and the Keping fold and thrust belt (Zhang et al., 2019).
The geometry and dynamics of structural wedges play a crucial role
in various geological processes such as hydrocarbon accumulation
(Fan et al., 2020; Fan et al., 2024; Liu et al., 2019; Ryan et al., 2017),
tectonic evolution (He et al., 2023b; Hubert-Ferrari et al., 2007;
Zhou and Zhou, 2022), and earthquake assessment (Barchi et al.,
2021; Lu et al., 2016). Studies have shown that the evolution of
structural wedges is controlled by many factors [e.g., detachment
rheology (Pla et al., 2019; Ruh et al., 2012), surface process
(Konstantinovskaya and Malavieille, 2011; Wang et al., 2022),
mechanical stratigraphy (Dean et al., 2013), and inherited structures
(Wu et al., 2014; Yang et al., 2024)].This papermainly focuses on the
thickness variation of the deformed strata, which is also a primary
parameter controlling the structural evolution in natural structures
(Jiao et al., 2021; Santolaria et al., 2022; Santolaria et al., 2024).

Using analog modeling and numerical simulations, the
influence of thickness variation above the detachment has been
tested in different model set-ups, including the sharp transition,
gradual transition, and other complex models (Calassou et al.,
1993; Jiao et al., 2021; Santolaria et al., 2022; Santolaria et al.,
2024; Sun et al., 2016). Previous studies suggest that the
increased thickness of the overburden units can affect the
deformation propagation with larger structural intervals, less
thrust faults, and longer deformation front (Marshak and
Wilkerson, 1992; Soto et al., 2002).

However, previous studies mainly focus on the structural
wedges with sedimentary covers deforming along a basal
detachment, and the buried structural wedge developed in multiple
detachments system has rarely been discussed.The buried structural
wedges mainly develop in duplex structures. The deformation
is separated by lower and upper detachments, and a structural
wedge develops between them (Baby et al., 1992; Banks and
Warburton, 1986; Couzens-Schultz et al., 2003; Mitra, 1986). The
buried structural wedge deforms along the lower detachment.
The buried structural wedge exhibits quite different features in
geometry and kinematics from the systems with single detachment.
More intense deformation is formed by imbricate thrust faults
(Couzens-Schultz et al., 2003; Li et al., 2017).

In this study, numerical simulations are used to test the influence
of strata thickness on the deformation of the buried structural
wedges, using the Kuqa fold-and-thrust belt as an example. Two
detachments control the deformation of the Kuqa fold-and-thrust
belt, with a salt layer decoupling the deformation above and below
it as the upper detachment. (Izquierdo-Llavall et al., 2018; Pla et al.,
2019; Qi et al., 2023; Tang et al., 2004a;Wang et al., 2017;Wang et al.,
2011). A long-propagated fold belt develops above the upper
detachment, and a buried structural wedge consisting of imbricate
thrusts forms above the lower detachment.

The buried structural wedge shows varied geometries with the
strata thickness increases fromwest to east along the strike. Based on
the seismic interpretation, the structural variation along the strike
has been described. Then, a numerical simulation program was
designed according to the stratigraphy of the Kuqa fold-and-thrust
belts. The setup contains two detachments, and two model suites
were carried out with and without syn-tectonic sedimentations.
Each model suite includes three models, with different intermediate
layer thicknesses between two detachments.

By comparing the model results with the structural features of
the Kuqa depression, this study highlights the control of Mesozoic
strata thickness on structural variations along the strike in the Kuqa
fold-and-thrust belt. Besides, the simulations also provide insights
into the structural evolution of fold-and-thrust belts containing two
detachments.This is not only helpful to understanding the geometry
and kinematics of multiple detachment systems, but also useful to
the structural interpretation and hydrocarbon exploration in such
structures.

2 Geological setting

The Kuqa fold-and-thrust, located in the northern Tarim basin,
developed a Cenozoic multiple detachments system (Figure 1). The
Cenozoic and Mesozoic successions are involved in the Cenozoic
deformation, which mainly consists of clastic sediments, including
conglomerate, sandstone, andmudstone (Neng et al., 2018; Pla et al.,
2019; Qi et al., 2023) (Figure 2).

Previous studies suggest that the deformation of the Kuqa
fold-and-thrust belt is controlled by two detachment systems
(Chen et al., 2004; Gao et al., 2020; Li et al., 2021; Li et al.,
2014; Tang et al., 2004b; Wang et al., 2011; Yu et al., 2008).
The salt layer located at the lower part of Cenozoic stratigraphy
acts as the upper detachment and the base of Mesozoic acts
as the basal detachment (He et al., 2023a; Long et al., 2021;
Wang et al., 2023; Wang et al., 2017; Yang et al., 2024). The salt
layer decouples the deformation in the units above and below
it. A board deformation zone consists of gentle detached folds
developed in the suprasalt units with the salt layer as the upper
detachment, and a tight deformation zone containing imbricate
thrusts forms in the subsalt units. Two salt layers develop in this
region, the Paleogene Kumugeliemu salt layer in the western zone
and the Neogene Jidike salt layer in the eastern zone (Adeoti
and Webb, 2022; Li et al., 2021; Li et al., 2012; Neng et al.,
2018; Wang et al., 2011; Wu et al., 2014; Yang et al., 2024). The
Kumugeliemu salt layer is thicker and broader than the Jidike salt
layer (Pla et al., 2019; Wang et al., 2023).

The geological map shows two strong deformation belts in
the suprasalt units, the Kelasu structural belt and the Qiulitage
structural belt. However, the deformation in the subsalt units
occurs in the Kelasu structural belt (Figure 1). The subsalt units
show varied structural features along the strike with similar
deformation backgrounds. From the western zone to the central
zone, the deformation front moves toward the foreland and
then withdraws slightly from the central zone to the eastern
zone. The number of faults decreases from the west to east
in general.
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FIGURE 1
The geological map of the Kuqa fold-and-thrust belt and the subsalt system at the top Cretaceous. (A) Elevation map showing tectonic sketch of the
central Asia and the location of the Kuqa fold-and-thrust belt. (B) Geological map of the Kuqa fold-and-thrust belt. (C) Subsalt fault system at the top
Cretaceous in the Kelasu structural belts. The range is indicated in Figure 1B.
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FIGURE 2
Strata column of the Kuqa depression (modified from Wang et al., 2017). Two salt layers are deposited in the Kuqa depression acting as the upper
detachment. The Paleogene salt layer is in the western zone and the Neogene salt layer is in the eastern zone. The range is indicated in Figure 1.

3 Structural features

The Kelasu structural belt is located in the western of the Kuqa
depression. Structural geometries and kinematics show apparent
differences along the strike. Three seismic profiles are interpreted to
show the structural features (Figure 3). The seismic-well correlation
is used to determine the tops of strata, which is introduced in
Wang et al. (2023). The interpreted structural model of the Kelasu

structural belt is mainly controlled by two detachments, which is
consistent with previous studies (He et al., 2023a; Wang et al., 2023;
Wang et al., 2017; Wang et al., 2020). The thick Kumugeliemu salt
layer acts as the upper detachment, and the shales at the bottom of
Mesozoic strata as the basal detachment. Considering the salt layer
could form salt structures during the deformation, the structural
units are divided into four parts: suprasalt units, salt layer, subsalt
structural wedge, and basement units.
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FIGURE 3
Cross-sections showing the structural variation in the western (A), central (B), and eastern (C) zones of the Kelasu structural belt.

The difference in the suprasalt unit is mainly expressed as the
number of structures and sedimentation records. The geological
map of the Kuqa depression shows a varied number of folds along
the trike in the Kelasu structural belt (Figure 1A). No fold develops
in the western zone, while one thrust-related fold occurs toward the
central zone. Two folds form in the eastern zone, but the distance
between the two folds increases from the west to the east. In the
cross-sections, suprasalt units also showdifferent features (Figure 3).
The sedimentation of the western zone shows a changed depocenter
from the north to south, and then the Quaternary units cover
the previous units uniformly. The central and eastern zones both
develop a detached fold with the salt layer as the detachment. The
long interval between the two folds forms a board syncline between
them in the eastern zone.

The salt layer shows similar features in all three cross sections.
The salt layer acts as the upper detachment layer decoupling the

deformation above and below it. Some salts accumulate in the
core of the anticline and salt welding develops above the anticlines
of subsalt units. The subsalt units mainly consist of thrust sheets
and the main difference is the number and scale of thrust sheets.
Generally, the interval and scale increase from the west to the
east. Specifically, the interval of thrusts is about 2 km in the
western zone, 3–4 km in the central zone, and over 6 km in the
eastern zone.

According to the seismic profiles, the thickness of the subsalt
Mesozoic units increases from the basin to the orogenic.The eastern
zone develops the least thrusts in the subsalt units. The clear
reflection shows that the thickness of the subsalt unit increases from
4 km to 5 km, with the location moving 10 km toward the orogenic
belt (Figure 3C). Besides, the thickness of the subsalt units also
increases along the strike. The seismic profile along the strike shows
that the thickness of subsalt Mesozoic units increases from about
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FIGURE 4
Seismic profile along the strike showing the construction of pre-kinematic strata, syn-tectonic strata, and the varied thickness of Mesozoic stratigraphy
below the salt layer.

0.5 km in the western zone to 2 km in the central zone, and then to
2.5 km in the eastern zone (Figure 4).

4 Methodology

The discrete element method (DEM) is a particle-based
numerical method that simplifies natural structure into an
assemblage of balls. The balls move to follow Newton’s equations
under the compression or extension of boundaries. The DEM
method has been detailly introduced by Morgan (2015) and has
been widely used to investigate the deformation of fold-and-
thrust belts in previous studies (Morgan, 2015; Wang et al., 2022;
Zhang et al., 2013).The Version of DEM used in this study is ZDEM
(Li et al., 2021), which is developed according to the RICEBAL
(Morgan, 2015) and the open-source code TRUBAL (Cundall and
Strack, 1979).

The models consisted of balls with radii of 60 m and 80 m.
The bulk mechanical properties of the numerical material
are determined according to the interaction of particles. The
models in this paper contain two types of materials, the

clastic sediments and the salt layer. The clastic sediments are
represented by the bonded balls, and the particle properties
of the balls are based on the natural data and previous
studies (Table 1) (Morgan and Bangs, 2017). The salt layer
is mechanically weak and flows like a fluid (Hudec and
Jackson, 2007). The unbonded particles are used to represent
it, as previous studies demonstrate similar ductile behaviors
during deformation when the friction coefficient is zero
(Dean et al., 2015; Maxwell, 2009).

Common particle properties: shear modulus 2.9E09 Pa,
Poisson’s ratio 0.2, Time step 0.05 s, Wall velocity 1 m/s, Local
damping coefficient 0.4, Gravitational acceleration 9.8 m/s 2.

5 Numerical simulation

5.1 Model setup

This paper’s main focus is on the influence of subsalt layer
thickness on the deformation of salt-bearing fold-and-thrust
belts. The model setup is based on the Kuqa fold-and-thrust
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TABLE 1 Particle properties and interparticle bond properties in the DEM simulation.

Friction
coefficient

Density
(kg/m3)

Viscosity
(pa·s)

Young’s
modulus

(Pa)

Shear
modulus

(Pa)

Tensile
strength

(Pa)

Cohension
(Pa)

Clastic sediments 0.3 2,500 — 2.0E08 2.0E08 4.0E07 8.0E07

Upper
detachment (salt)

0.0 2,200 108−10(c) — — — —

Basal detachment 0.2 — — — — — —

FIGURE 5
Model setup of numerical simulations. Model M contains three models without syn-tectonic sedimentations, and model S contains three models with
syn-tectonic sedimentations.

belt and contains two detachments. A 1 km thickness consisting
of unbonded balls is used to simulate the salt layer, and the
bottom boundary with a friction coefficient of 0.2 represents
the basal detachment. The initial model length is 100 km, and
the thickness of suprasalt units is 2 km. Three models are
derived with the same model setup except for the thickness
of the subsalt units. The subsalt thickness is 5, 7, and 9 km,
respectively (Figure 5).

Two model suites have been derived in this paper. The model
suite M does not consider the influence of the syn-tectonic
sedimentation, and the model suite S contains the syn-tectonic
sedimentations (Table 2). The syn-tectonic sedimentations were
added after each 2 km of shortening. The total shortening is 30 km,

TABLE 2 Variation of the subsalt units and syn-tectonic sedimentation in
different models.

M-1 M-2 M-3 S-1 S-2 S-3

Suprasalt units/km 2 2 2 2 2 2

Subsalt units/km 5 7 9 5 7 9

Syn-tectonic
sedimentation

No No No Yes Yes Yes

and 15 layers were deposited as growth strata. The balls in syn-
tectonic layers had the sameproperties as clastic sediments (Table 1).
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FIGURE 6
The evolution process of Model M-1. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.

Each syn-tectonic layer had a thickness of 2 km generation and was
approximately 1 km after sedimentation under gravity. A remove
line was settled for each stage and the balls above the line were
removed to simulate the natural growth strata that have an increased

thickness from low to high. The removed line had a constant angle
of 3.67° and a 0.4-km height increase at the next stage. Then,
balls of syn-tectonic sedimentary layers were also bonded as clastic
sediments (Table 1).
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FIGURE 7
The evolution process of Model M-2. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.

5.2 Model results

In model suite M, the evolution in all three models shows some
similar features (Figures 6–8).Thetight thrustsdevelopinthesuprasalt
units and the subsalt units. The deformation propagation is longer in

thesuprasaltunitscomparedwiththesubsaltunits.Differentstructural
features also appear in suprasalt and subsalt units. Suprasalt units in
Model M-1 mainly develop pop-up structures, while Model M-2 and
M-3mainly develop imbricated thrusts. Subsalt units showdifferences
in the scale and number of thrusts.
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FIGURE 8
The evolution process of Model M-3. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.

In model suite S (Figures 9–11), the suprasalt units show quite
different features from themodel suiteM. Twomain folds form in the
suprasalt units, and the depocenter migrates toward the moving wall
from model S-1 to S-3, with the thickness of subsalt units increasing.

This reveals the deformation propagation speed toward the foreland.
The difference in subsalt units also appears in the scale and number of
thrusts. To better analyze themodel results, quantitative investigations
were carried out in the subsequent discussion.
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FIGURE 9
The evolution process of Model S-1. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.
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FIGURE 10
The evolution process of Model S-2. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.
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FIGURE 11
The evolution process of Model S-3. The (A–F) represents the geometry at the shortening of 0, 6, 12, 18, 24, and 30 km, respectively.

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1494093
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2024.1494093

FIGURE 12
Deformation front propagation as the shortening increases of the models. (A) Model series without syn-tectonic sedimentation. (B) Model series with
syn-tectonic sedimentation.

6 Discussion

6.1 Influence of thickness on the
deformation of the subsalt structural
wedge without syn-tectonic sedimentation

Previous studies suggest that the deformation front propagation
in structural wedge is episodic (Bigi et al., 2010). Analog modeling
further proposes alternant front propagation in a model with
changed layer thickness (Zhang et al., 2019). The numerical
simulation shows that buried structural wedges also have similar
features in the deformation front propagation (Figure 12A).
The deformation front in M-1 is farther than M-2 when the
shortening is from 9 km to 12 km. An obvious difference also
exists between the previous analog modeling (Zhang et al.,
2019) and the numerical simulation in this paper. The
deformation front always changes when a new fault forms in
the numerical simulation, which barely happens in the analog
modeling. Numerous reasons may lead to this divergence,
the different methods, tapered stratigraphy, and buried
structural wedges.

The increased initial thickness of the subsalt wedge causes
the increased scale of thrust sheets. This can be identified in the
different parts within one model or in different models with varied
thicknesses (Figure 13). For example, four fault-related folds develop
in the subsalt units ofmodelM-1, the fold aboveF2near thehinterland
is about 6 km wide while the fold above F4 near the foreland is about
2 km wide. As for the different models, the width of the fold above F3
is about 2 km, 4 km, and 10 km in M-1, M-2, and M-3, respectively.

The increased initial thickness of the subsalt wedge causes the
increased intervals of thrust sheets.The distance between the F2 and
F3 is about 4 km in model M-1, 10 km in model M-2, and 14 km in
model M-3. Besides, the increased thickness also forms fewer faults
or fault-related folds, four thrust-related folds formed in M-1, but
only three thrust-related folds formed in M-2 and M-3.

Furthermore, the distortional strain distribution shows that the
thick layer thickness tends to forman intact fold,while the fold formed
in a thin layer region contains more secondary faults (Figure 13).
For example, the fold along F3 contains three backthrusts and two
secondary thrusts inmodelM-3, while no secondary fault develops in
the fold along F2. ComparedwithM-3, theM-1 andM-2 also develop
more secondary faults in the thrust-related folds.
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FIGURE 13
Structural geometry and distortional strain of six models at the shortening of 30 km. The red indicates the top-to-right sense of shear, and the blue
indicates the top-to-left sense of shear.
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FIGURE 14
Comparison between the deformation front propagation between (A) model M-1 and S-1, (B) model M-2 and S-2, and (C) model M-3 and S-3. This
reveals the varied influence of syn-tectonic sedimentation on the deformation propagation when the initial thickness of buried structural
wedges changes.

6.2 Influence of syn-tectonic
sedimentation on the evolution of subsalt
structural wedge

The comparison between the deformation propagation process
of models with and without the syn-tectonic sedimentations shows

that the syn-tectonic sedimentation can restrict the deformation
propagation (Figure 12). The deformation front is closer to the
moving wall in all three models with syn-tectonic sedimentation.
Our model results further show that the strength of restriction
seems to vary with the increase of the total shortening and initial
thickness. As for the total shortening, the restriction influence
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of syn-tectonic sedimentation on the deformation propagation
appears at the shortening of 9 km in model S-1, 13 km in model
S-2, and 12 km in model S-3 (Figure 14). The reduced amount
of deformation front keeps increasing in general. The restriction
influence of syn-tectonic sedimentation on the deformation front
is much stronger in the model with a thick initial thickness. The
reduced amount of deformation front is about 5 km in model
1, and 2 km in model 2, and increases sharply to about 18 km
in model 3 (Figure 14).

The comparison between the deformation propagation process
of models with and without the syn-tectonic sedimentations
shows the divergence. Model S-2 shows an increased deformation
front compared with S-1, while the S-3 shows a decreased
deformation front compared with the S-2 and S-1 since the
shortening reached 14 km (Figure 12). This phenomenon reveals
the overlaid influence of increased initial thickness and syn-
tectonic sedimentation on the deformation propagation. The
increased thickness can promote deformation propagation,
while the syn-tectonic sedimentation restricts it for buried
structural wedges. From Model S-1 to S-2, the deformation
front increases representing the promotion of the increased
thickness is larger than the restriction of syn-tectonic
sedimentation. The deformation front withdraws from Model
S-2 to S-3 largely, which suggests that the restriction influence
increases faster than promotion when the initial thickness
increases.

6.3 Implications for the structural variation
of the kelasu structural belt

By comparing the model results with the Kelasu structure,
the thickness variation of the Mesozoic units has a significant
influence on the variation of the fault systems in the buried
subsalt structural wedge. Narrow imbricated thrust sheets
develop in the western zone of the Kelasu structural belt. The
intervals between thrust sheets keep increasing, toward the
central zone and eastern zone of the Kelasu structural belt. The
influence of the thickness on the deformation not only exists
along the strike but also along the direction of deformation
propagation.The thrusts near the orogenic belts typically have larger
intervals and scales.

A remarkable phenomenon is that the thick syn-tectonic
sedimentation can impress the deformation propagation in the
subsalt structural wedge. Critical wedge theory and previous
analog modeling containing one basal detachment suggest that
the increased layer thickness can produce a further deformation
front. In our models, the subsalt structural deformation is restricted
in the region near the hinterland in the M-3 which has the
largest thickness, but propagates farther to the foreland in M-1
which has the least thickness (Figure 13). The Kuqa fold-and-
thrust shows similar features as revealed by our models (Figure 3).
The deformation propagation range increases sharply from the
western zone to the central zone and then decreases slightly
to the eastern zone. However, the faults near the foreland
in the eastern zone have minor displacement compared with
the western and central regions. Based on the numerical
simulation results, we suggest that the thick syn-tectonic

sedimentation restricts the subsalt deformation propagation in the
eastern region.

6.4 Limitations

The evolution of the Kuqa depression is affected by many
factors including the pre-existing salt diapir, paleo-uplift, and
basement faults. This paper only focuses on the influence of the
initial thickness of the subsalt wedge. Other factors have not been
considered in the models, which could cause the difference between
the model results and natural geometries. In addition, although the
syn-tectonic sedimentation is included in models, the process is
simplified. The erosion does not occur in our models. Besides, the
influence of the uplift rate on the sedimentation rate has not been
considered in the models. Themodel suite S has the same process of
syn-tectonic sedimentation.

7 Conclusion

Based on the seismic interpretation and numerical simulation,
we conclude as follows:

(1) The influence of thickness on the buried structural wedge
shows similar features with and without syn-tectonic
sedimentation. The increased thickness leads to enlarged
intervals of thrusts, larger thrust anticlines, and fewer thrusts
in both cases.

(2) The deformation front exhibits an inconsistent trend
when the thickness variation is accompanied by syn-
tectonic sedimentation. The increased thickness can
promote deformation propagation, while the syn-tectonic
sedimentation restricts the propagation of buried structural
wedges. Our model results suggest that the dominant factor
varies with the thickness increasing. The deformation front
increased from the thin model to the medium model, which
represents the advantage of propagation. The deformation
front decreased from the medium model to the thick model,
which represents the changed domination from propagation
to restriction.

(3) Comparing the model results with the structural features of
the Kelasu structural belt, we suggest that the increasing initial
thickness of the buried wedge controls the structural variation
from west to east. Fewer thrust faults form in the eastern zone
with larger intervals. Due to the restriction influence of the
syn-tectonic sedimentation on the deformation propagation,
the deformation front of the buried structural wedge in the
Kelasu structural belt is an arc shape in the map view from
west to east.
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