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Evaluation of fractured
carbonate reservoir and
prediction of favorable areas in
the eastern area of Amu Darya
Right Bank

Yang Li*, Xiaodong Cheng, Leyuan Fan, Liguo Sun, Jiapeng Wu
and Jiao Wei

China National Logging Corporation, Beijing, China

Fractured carbonate reservoirs are significantly developed in the eastern
area of the Amu Darya Right Bank. However, their types, distributions, and
fracture characteristics remain unclear. This uncertainty complicates reservoir
prediction and hampers exploration and development processes. Given the
strong correlation between fracture development and productivity, analyzing
fractures is crucial. Comprehensive evaluation and prediction methods for
fractured reservoirs are essential for advancing the oil and gas industry. Based
on core and geological data analyses, it finds that these reservoirs exhibit low
porosity and low to ultra-low permeability. By employing conventional logging
alongside specialized methods, such as electrical imaging, nuclear magnetic
resonance, and far detection logging, fractures and their effectiveness can
be identified and evaluated, clarifying the characteristics of reservoir spaces.
Constrained by the results from core and logging analyses, seismic single
attribute analysis techniques is applied to predict fractures in the HX block of
Amu Darya. To mitigate the limitations of single-attribute analysis, utilize a well-
supervised BP neural network method for comprehensive fracture prediction.
This multi-attribute approach increases the fracture prediction probability from
less than 70%–72.7%. By integrating geological understanding and well logging,
and considering the influence of lithology and structure on the reservoir,
synthesize the fracture prediction results to optimally select favorable areas.

KEYWORDS

fractured reservoir, fracture effectiveness, control factors, single attribute prediction,
neural network, favorable area selection

1 Introduction

Increasing attention was gathered on the fractured reservoirs coming from
advancements in tight reservoir exploration (Panza et al., 2016; Felici et al., 2016).
In the eastern area of the Amu Darya Right Bank, fractured carbonate reservoirs
represent a crucial type characterized by strong heterogeneity, causing significant
challenges for reservoir studies. Fractures is enhancing permeability and playing a
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FIGURE 1
Structural map of eastern area of Amu Darya Right Bank.

critical role in hydrocarbon migration, considered as primary
reservoir spaces (Aydin, 2000). Improving fracture identification
and evaluation, as well as achieving effective fracture prediction, is
essential for comprehensive evaluation and optimal area selection.

Seismic analysis is the main method for fracture prediction
in the petroleum industry, divided into post-stack and pre-stack
techniques (Jian et al., 2024), such as pre-stack anisotropy and pre-
stack elastic parameter inversion (Wang et al., 2014; Zhang et al.,
2015), and post-stack seismic single attribute prediction of fractures
(Zhang et al., 2024). Since pre-stack technology has not yet achieved
large-scale, robust application effects, this paper’s prediction is
based on post-stack seismic attributes analysis. Techniques like
seismic coherence analysis, curvature analysis, ant tracking, and
seismic texture interpretation are effective for detecting fractures
(Blumentritt et al., 2006; Chopra and Marfurt, 2007; Ganguly et al.,
2009; Chen et al., 2015; Zhang et al., 2023; Gui et al., 2023), showing
practical applications in imaging carbonate fractured reservoirs,
fault identification and description, and fluid detection. However,
the fracture development is often complicated. The seismic analysis
is controlled by the quality of seismic data, and the seismic
recognition is limited for small-scale fractures. Single seismic
attributes are being impacted by factors such as reservoir and fluid
properties, and leading to reduction in prediction accuracy. To
address these issues, we analyze core and well logging data and
employ a BP neural networkmethod to improve prediction accuracy
through nonlinear modeling and its learning capabilities.

In this paper, using geological, well logging and seismic data
analysis comprehensively, to recognize and identify the fracture
effectiveness, as well as predict fracture distribution with higher
probability. The systematic research methods can be applied in
similar fractured carbonate reservoirs to help oil and gas exploration
and production.

2 Geological background

The Amu Darya Basin is located in the southeastern Turan
Platform, described as a Mesozoic superimposed basin consists of
several large structural units, such as the Kopettag Depression,
Central Karakam Rise, Chardju Terrace, and Beshkent Depression
(Xu et al., 2009; Wang, 2019). It is surrounded by folded mountains,
trending northwest, about 1,000 km long and 400–500 kmwide.The
southwest part of the study basin is steep and narrow, while the
northeast part is a gentle structural terrace. The right bank of the
AmuDarya locates in the northeastern part of theAmuDarya Basin,
bounded by the Amu Darya River to the southwest and the borders
of Turkmenistan and Uzbekistan to the northeast, belonging to the
Lebap Province of Turkmenistan (Guo et al., 2019; Chai et al., 2024).
The structural map of the study area is in the eastern area of Amu
Darya Right Bank, showing in Figure 1.

The Amu Darya Basin has undergone four main tectonic
movements: the Pre-Permian basement development, Permian-
Triassic rifting, Jurassic-Paleogene Eocene post-rift depression, and
Oligocene-Neogene compression uplift and reformation (Xu et al.,
2009). Structural belts primarily exhibit a northeast-southwest
trend, and the local structure is complex due to previous reverse
faults and compressional folds. A thick gypsum rock layer from the
Late Jurassic period serves as a sedimentary cap, dividing the area
into upper and lower exploration series. Underneath this layer is the
focused layer of this study, the Middle to Late Jurassic Callovian-
Oxfordian carbonate rock. This set of strata develops five sets of
layers from top to bottom: XVhp, XVa1, XVz, XVa2, and XVI
(Xu et al., 2018), with the main gas-producing layer being XVhp,
followed by XVa1 and XVa2, shown in Figure 2. Affected by the
regional tectonic compression of the Himalayan orogeny, this area
has been continuously subjected to reverse thrust compression from
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FIGURE 2
Lithology, stratigraphy and sequence structure map of Amu Darya
formation.

the Gissar direction in the southwest since the Neogene. Through
that tectonic motion, a foreland thrust-fold belt is formed, as well as
a series of gas-bearing thrust structures. The sub-salt fault system is
mainly composed by some reverse faults and strike-slip faults, with
the main directions being near northeast and near northwest.

3 Reservoir evaluation

3.1 Petrological characteristics

XRD analysis indicates that calcite is the predominant mineral
in the Callovian-Oxfordian carbonate rocks, and the content range
is 91%–99.5%, with an average content value of 97.2%. The content

of clay is very low, with a maximum of 1.9%. Thin section analyses
reveal diverse limestone types, including bioclastic sandy limestone,
micritic bioclastic limestone, bioclastic sandy micritic limestone,
algal clump-bearing bioclastic micritic limestone, bioclastic micritic
limestone, etc. To analyze the influence of lithology on reservoir
development systematically, nearly 300 thin slices were re-analyzed.
Following Dunham’s classification, we categorize the limestones
into grainstone, packstone, wackestone, and marlstone (Table 1a).
The porosity value of reservoir ranges from 0.0% to 18.2%,
averaging 1.86%. In the porosity distribution histogram (Table 1b),
the main peak is <2.0%. The permeability value ranges from 0 to
3121.148mD, averaging 14.2 mD. In the permeability distribution
histogram (Table 1c), the main peak is located at 0.001–0.01 mD,
accounting for 46.5% of all samples. And samples with <0.1 mD
account for 79.3% of all samples. Therefore, the reservoir porosity
is low, and permeability is low to ultra-low.

3.2 Fracture identification and
effectiveness evaluation

Both fractures and vugs are developed in the fractured carbonate
reservoirs. Fractures serve as the main reservoir space, (Ma, 2020),
while vugs are mainly residual pores. Therefore, how to identify
fractures and evaluate the effectiveness has significant influence in
the study of such reservoirs. Observing the thin slices and cores,
it is found that the fractures mainly include diagenetic fractures
and structural fractures (Figure 3), with structural fractures being
predominant. Most of these are open fractures. Meanwhile, some
fractures are completely or partially filled, through which the
effectiveness of the fractures is reduced distinctly.

Evaluating fracture effectiveness—openness, extension, and
connectivity—is challenging. Currently, there are many methods
for identifying fractures, but methods for evaluating fracture
effectiveness are limited. Combining conventional logging with
imaging data is effective for identifying fractures and vugs
(Qi et al., 2018; Liao et al., 2023).

The fracture development degree and effectiveness can be
determined by using the positive and negative differential
characteristicsandthedifferencemagnitudebetweendeepandshallow
lateral resistivity logging.

In fractured reservoirs, different fracture angles produce varying
logging responses, allowing us to distinguish fracture types using
electrical imaging logging. When the fracture angle is 45°, the dual
laterolog shows the maximum negative difference. When the fracture
angle is 90°, it shows the maximum positive difference. By using
electrical imaging logging analysis, the natural fractures and induced
fracturescanbedirectlydistinguished.Natural fracturescanbedivided
into vertical fractures, high angle fractures and horizontal fractures
according to the fracture angle.The vertical open fracture is shown as
a black near-vertical line, the high angle open fracture is shown as a
thick dark sine curve, and the low angle open fracture is shown as a
thin continuous dark sine curve. The induced fractures are generally
dark in color and have clear features, but the continuity is poor, and
they are oftenparallel to the secondary feathery fractures.The imaging
data is used for fracture picking analysis, and the fracture parameters
are calculated according to the fracture picking results.The secondary
porosity can be evaluated by combining with the porosity spectrum
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TABLE 1 Petrological characteristics of study area.

a. Lithology classification table

Dunham’s classification scheme

Grainstone Marl content <10%, grain support

Packstone Marl content >10%, grain support

Wackestone Grain content >10%, marl support

Marlstone Grain content <10%, marl support

b. Porosity histogram of study area c. Permeability histogram of study area

characteristics.Through core calibration and comprehensive analysis,
it is believed that the fracture openness and fracture porosity can be
calculated through fracture picking, as well as the average porosity
and standard deviation curves can be calculated through the porosity
spectrum, which can be used as sensitive parameters or curves to
analyze the permeability of fractured reservoirs. For nuclearmagnetic
resonance logging (CMR), the T2 spectrum has obvious response
in fracture-developed sections, with the presence of back-end signals
>960 ms,whichcanbeusedasanauxiliarymeans forreservoir fracture
identification.Theopenfracturespassingthroughtheboreholehavean
impact on the propagation characteristics of stoneley waves and shear
waves, which are reflected in array sonic logging and can be used for
fracture identification.The above-discussedmethods for determining
fracture effectiveness are limited by detection depth and can only
identify fracturedevelopmentnear theborehole.Therefor, it is difficult
to study lateral changes in the reservoir or the outward extension
and development of borehole fractures. By using electrical imaging
characteristics, referring to array sonic waveform characteristics,
dispersion characteristics, and the fracture development situation
around the well provided by far detection imaging (Wei et al., 2021),
the development and effectiveness of fractures and vugs within a 10 m
range around the well can be comprehensively evaluated.

In Figure 4, it is the 3452–3454 m interval logging responses
of well H-X2, which shows low gamma-ray values indicating pure
lithology. The dual laterolog values decrease and the separation
amplitude is large, and the porosity curve does not change
significantly. In the static electrical logging imaging, the black color
indicates large fracture aperture. The porosity spectrum is wide
and shifted backward. The stoneley waves have interference stripes,
and both the longitudinal wave and stoneley wave amplitudes are

attenuated. The nuclear magnetic resonance T2 spectrum shows a
spectrum display around 100ms. In the sonic far detection image,
reflected waves are obvious and extend spatially.

3.3 Fracture characteristics

Through geological and multi-method logging identification
analysis, it is concluded that fractures in the study area generally
develop in an east-west direction, with some wells having a NE
direction. Overall, they can be divided into two fracture sets: NW
or NWW-trending and NE-trending sets (Figure 5). Combining the
analysis of singlewell structural fracture orientation and the structural
position, it is believed that the current maximum principal stress
direction is near east-west, with slight variations in different areas,
mainlyNW-SE orNWW-SEE.The currentmaximumprincipal stress
directionisbasicallyconsistentwiththefractureorientation, indicating
thatthestressdirectionhasnotchangedmuchsincefractureformation,
inheriting the regional compression direction since the Neogene.The
open fractures interpreted fromloggingarebasically consistentwithor
at an acute angle to themaximumprincipal stress direction, indicating
that the current maximum principal stress direction is favorable for
the preservation and opening of open fractures (Zhang, 2023).

3.4 Controlling factors of fractures

3.4.1 Influence of lithology
Analysis of fracture width and length-area ratio (ratio of total

fracture length to thin section area) in fractured thin slices reveals that
grainstones have the smallest fracture length-area ratio and width,
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FIGURE 3
Thin slice and core analysis diagram.

with averages of 196.2 m/m2 and 0.066 mm.Marlstones have a wider
distribution range of fracture length-area ratio and width, but their
length-area ratio and width are generally the largest among the four
lithologies, with average length-area ratio and width of 675.8 m/m2

and 0.22 mm (Figure 6A). Among the thin slices analysis, structural
fractures can account for 40% in wackestones and marlstones, while
only about 20%or even less in grainstones andpackstones (Figure 6B).
This indicates that the fracturedevelopment intensity isgenerally lower
in high-energy grainstones and packstones compared to low-energy
wackestones and marlstones.

3.4.2 Influence of structure
The fractures development and distribution is influenced by

structural situation and fold occurrence (Nelson, 2001; Mickael et al.,
2012; Watkins et at., 2018). Through the analysis of fault activity
intensity and well fracture density, it shows that the greater the fault
displacement, indicating the stronger the fault activity, the greater the
fracture development intensity or density (Figure 7A). Through the
analysis of the relationship between the fracture density and distance

of wells to themain fault, it shows that the closer to themain fault, the
greater the fracture development density (Figure 7B). Therefore, the
fault activity intensity significantly impacts fracturedevelopment—the
stronger the fault activity and the closer to the fault, the higher
the fracture intensity.

In thrust-fold belt, fold occurrence controls fracture intensity
and orientation (Price, 1966;Watkins et al., 2015).TheHX block is a
typical thrust-related anticline structure. Using 3D Move structural
restoration and simulation software (Di et al., 2016), simulate and
calculate the maximum principal strain of the top and bottom
reflection layers of the carbonate rocks in the HX block (Figure 8).
Simulations show greater fracture development in high-strain areas
like fold hinges and forelimbs.

4 Prediction of fracture areas

In fracture development zones, abnormal changes are caused
in the amplitude, frequency, phase, and other characteristics of
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FIGURE 4
Integrated interpretation results map of H-X2 well (3452–3454 m).

seismic wave reflection. Therefore, selecting sensitive mathematical
methods, combining with analysis of anomaly of seismic wave
amplitude, frequency, phase, and other attributes, can predict the
fracture development situation. There are many commonly used
seismic attributes, such as volume curvature, coherence, principal
component analysis, seismic tensor, edge detection, texture, ant
tracking, etc.

4.1 Single attribute prediction

Taking the HX block as an example, this paper summarizes a
seismic multi-attribute fracture prediction method, which can be
applied to the entire east part of the right bank of the Amu Darya.
Based on seismic and well logging data, fractures can be recognized
by seismic attributes study. Combined with logging interpretation of
fractures, preferred seismic attributes of different scales are selected
to comprehensively predict fracture distribution.

Curvature attribute is a common seismic attribute for predicting
fractures. Curvature indicates the degree of structural deformation,
as well as identifies the curvature characteristics caused by
structural deformation such as folds and faults (Dun et al.,
2013). There are many types of curvature attributes, such as
maximum curvature, minimum curvature, positive curvature,
average curvature, Gaussian curvature, etc. Because each curvature
algorithm is different, curvature attribute can reflect certain
geometric characteristics of the area seismic body from different
aspects (Song, 2014; Saleh and Marfurt, 2006; Zhu, 2013).

Seismic coherence refers to the measurement of the similarity
degree of waveform, amplitude, frequency, phase, and other
seismic attributes between adjacent seismic traces. It is known
that coherence technology is a useful method for discontinuity
detection of seismic wave axis. Different coherence attributes
reflect the interruption of coherent axis, which can identify
large-scale faults in the study area. This method is quite useful
when faults with clear fault displacement especially. Therefore, the
extension morphology and distribution pattern of fractures and
faults development areas can be clearly identified through coherence
attribute analysis.

The ant body attribute initially sets the corresponding search
range and direction, through which the ant signal will recognize the
exist of faults or fractures. The ant signal has maximum deviation
of 15% from the search direction when estimating faults. The
principle of ant tracing such as search radius, search direction,
step length, and stop search time is determined by different
parameters.

The likelihood attribute is based on similarity algorithms.
Discontinuities in seismic reflections usually correspond to the exist
of faults. The stronger the discontinuity of reflection, the lower
the similarity, and the more obvious the fault. The maximum fault
probability attribute value can be calculated by scanning different
fault dip angles and azimuths. Then the resulting fault probability
body is refined in order to gain fault or fracture prediction results.

Figure 9 shows 4 kinds of seismic attribute profiles in HX
block randomly selected from multiple attributes. Figure 9A is
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FIGURE 5
Fracture rose diagram of wells.

the strike curvature attribute profile. Different curvature attributes
all can reflect the bending deformation of rock layers caused
by structural activity, in which yellow and red indicates fracture
development. The H-X4 well is located near a fault and is greatly
affected by structural activity. Therefore, different curvatures
identify high values of the strata near this well, reflecting strong
deformation of formation around the well. Figure 9B shows
the conventional coherence attribute profile of four wells. The
large faults or fractures are reflected in the coherence attribute
profile in dark color. In Figure 9C, the ant body attribute
reflects faults as well as fractures near the wellbore in blue and
black region, representing good prediction results. In Figure 9D,
the likelihood attribute in colored areas shows reflections near
the faults, while the reflections become more random away
from faults.

4.2 Multi-attributes prediction

Using single seismic attributes can predict fractures from
a single perspective. Referring to the multi-solution and
uncertainty of seismic data (Dong et al., 2004), the correlation

and prediction accuracy between seismic attributes and fractures
are different. In order to achieve better analysis of different
attributes, a neural network method is used for multi-attribute
analysis.

In this paper, a BP (Back-Propagation-Network) neural network
method is applied for seismic multi-attribute fracture prediction.
In BP network, each node is only connected with the adjacent
layer nodes, and the nodes between the same layer are not
connected. If the number of hidden layer nodes is large enough, it
could approximate any complex nonlinear mapping. Through the
iterative process of information forward propagation and error back
propagation, the weights of each layer are constantly adjusted, and
the neural network continues to learn and train until the network
output error is reduced to an acceptable degree, or the pre-set
learning times. In this paper, the neural network is trained by
combining seismic attributes and well log fracture characteristics
to establish a neural network training set. Then learning from
the set, the connection weight coefficients between internal nodes,
thresholds on the nodes, and their non-linear relationships within
network can be determined. After that, combining the single
attribute optimization results, use the existing seismic attributes as
input data. The neural network calculates the input data based on
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FIGURE 6
Characteristics of fractures in different rocks (A). Distribution range of structural fracture parameters of different types of limestone flakes. (B).
Characteristics of fracture development in different types of limestones.

FIGURE 7
Relationship between fault characteristics and fracture density in HX block (A). Relationship between fault distance and fracture density in HX block (B).
Relationship between fracture distance and fracture density.

the non-linear relationships obtained during training, and gain the
fracture prediction results in the end.

After pre-processing of post-stack seismic data, training data
and input attribute preparation are carried out, through the coherent
andmaximum positive curvature pickup binary pointsets of drilling
calibration: Fractures and non-fractures include 9909 defined points

for green fractures and 7972 defined points for pink non-fractures,
accounting for 40% of the total test data (Figure 10A). In the
process of network training, an intermediate layer (hidden layer)
is set up. Through the quality control of training results, 49,100
iterations are made to determine the good prediction effect,
as shown in Figure 10B. After neural network learning, highly
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FIGURE 8
Simulation of the maximum principal strain of the top and bottom reflector of HX block (A). top horizon stress reflection (B). bottom horizon stress
reflection.

correlated attributes are used as input data, such as curvature and ant
body, to calculate and obtain the final fracture prediction attribute
body. In the Figures 10C,D, it shows the top surface maps of 50%,
and 90% fracture prediction probability bodies in yellow area. The
higher the probability, the smaller the predicted fracture distribution
area, and the higher the prediction accuracy. Fractures are most
developed near faults. In the HX block, the fracture distribution is
mainly parallel to the fault zone.What’s more, the existing well all in
the fracture development zones.

To reflect the effectiveness of seismic fracture prediction directly,
and confirm the advantage of multi-attribute prediction, analyze the
relationship of seismic attribute and logging fracture attribute. The
accuracy of seismic fracture can be reflected by the above result
semi-quantitatively. The correlation coefficient between relatively
better seismic single attributes, such as maximum curvature,
coherence, and frequency, and fracture density is less than70%.
Figure 11A shows the intersection diagram of coherence attribute
value and fracture density with the coherence coefficient is 68%.
The intersection diagram of the BP neural network calculated
attributes and the fracture density is shown in Figure 11B, and
the correlation coefficient is 72.7%, which significantly improves
the coincidence rate compared with the prediction of a single
attribute.

5 Discussion

5.1 Verification of prediction

Using the ant body attribute as an example (Figure 12A), the
prediction results of fractures by seismic single attributes and well
logging are compared. As shown in the figure, the H-X2 well
imaging data identifies many fractures, and the well has good gas
content and productivity. The ant body attribute detects high-angle
fractures developed near this well in the target layer, which is
consistent with production situation. Though the H-X1 well was

only drilled to the top of XVhp formation, its good productivity
indicates a high probability of fracture development.Meanwhile, the
ant body predicts fractures developed at the top of this well. The
H-X3 and H-X4 wells' imaging data recognize few fractures, with
poor gas content and low productivity. The ant body attribute only
identifies a few indistinct micro-fractures in the target formations of
these wells. Through the compare of the four wells, it is known that
he correlation between ant body fracture prediction andwell logging
identification is good, compounding prediction expectation.

Figure 12B shows a cross-well neural network fracture
prediction profile in theHXblock,withwell logging analysis fracture
results (green and purple) and seismic prediction results (yellow).
It shows consistency between seismic and well logging fracture
development distribution for all four wells, directly demonstrating
the reliability of well supervised neural network fracture prediction
results. This method reduces the uncertainty of single attribute
prediction, improves fracture prediction accuracy, and provides a
basis for well site deployment and reservoir development analysis in
the study area.

In addition, production data can reflect the effectiveness of the
reservoir directly.Therefore, oil test or well test data is one important
method to verify the fracture prediction results. The test data of
HX area are shown in Table 2. H-X1 and H-X2 Wells are high
gas production wells, with 74.71 × 104m3/d and 96.04 × 104m3/d.
H-X3 and H-X4 Wells have low gas production and slight gas
production after acidification. It is confirmed that gas production is
positively correlatedwith the predicted fracture development degree
in HX block.

5.2 Prediction of favorable areas

The HX block is a typical structural gas reservoir with no
obvious gas-water boundary. The reservoir gas content is controlled
by the structure location, degree of reservoir development, especially
fracture intensity. The gas saturation is high in higher structural
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FIGURE 9
Fracture prediction profiles of seismic single attributes (A). Strike curvature attribute profile (B). Coherent attribute profile (C). Ant body attribute profile
(D). likelihood attribute profile.

locations, aswell as low saturation in lower locations.Meanwhile, the
reservoirs have high fracture intensity and high gas test production.

Combined analysis of geology, structure, well logging, and stress
with the fracture prediction results, fracture development zones

in the HX block are classified. It is shown that the high strain
fracture development zone is the optimal area. Figure 13 shows
the distribution map of favorable zones for fractured reservoirs
in the HX block. The area near fault zones is the first-class
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FIGURE 10
Calculation and prediction of fractures by neural network method (A). Training data define facture points (green) and non-fracture points (pink) (B).
Quality control of training (C). 50% fracture prediction probability body (D). 90% fracture prediction probability body.

FIGURE 11
Correlation diagram between seismic attribute and fracture (A). Intersection diagram of coherence attribute and fracture density (B). Intersection
diagram of BP calculated attribute and fracture density.
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FIGURE 12
Verification diagram of well-combined-seismic prediction results of fractures (A). Well and seismic contrast analysis of fractures of HX block (B). Profile
of wells predicted by supervised neural network fracture in HX block.

(level I) area, the forelimb area is the second-class (level II)
area, and the backlimb area is the third-class (level III) area. Oil
and gas potential gradually decreases in three levels. Meanwhile,
the new H-X01D and H-X02D wells are located in the first-
class reservoir area. According to the well test result (Table 2),
the two wells are both high-production, which is consistent with
the predicted distribution of the favorable areas. Combined with
the prediction conditions, it is useful to determine the next well
drilling plan.

6 Conclusion

The lithology of fractured reservoirs in the eastern right
bank of the Amu Darya Basin can be divided into four main

categories: grainstone, wackestone, packstone, and marlstone.
Fractured carbonate reservoirs in the eastern Amu Darya Right
Bank are characterized by low porosity and permeability, with
fractures serving as primary reservoir spaces. Using conventional
logging combined with imaging, nuclear magnetic resonance, far
detection logging, and other special logging techniques, the fracture
identification and effectiveness evaluation can be achieved. Fracture
development is influenced by lithology and structural factors. In
high strain areas (such as hinge zones and forelimbs), structure
is a significant influence in fracture development. While in low
strain areas (such as backlimb), lithofacies dominates fracture
development.

Using the discontinuity attributes of seismic can help recognize
the geological features of many reservoir elements. Seismic single
attributes such as curvature, coherence, ant body, and likelihood are
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TABLE 2 Well test data of HX block.

well Top (m) Bottom (m) Glib (mm) Measure Gas (104m3/d) Water (m3/d)

H-X1 3303 3361 11.11 74.71 4.43

H-X2

3365 3470

12.7 96.04 4.083510 3534

3570 3591

H-X3
3630 3686 14 Microgas /

3432 3572 12 After acid 8.2 9.69

H-X4

3756 3900 4.76 After acid 0.64 10.15

3626 3698
14 Before acid 1.41 /

56 After acid 4.91 12.94

H-X01D 3466 3939 12 92.21 14.16

H-X02D 3431 4095 12 89.39 16.04

FIGURE 13
Distribution map of favorable zone for fracture prediction in HX block.

selected for fracture prediction. Based on geological andwell logging
analysis of reservoir fractures, use well supervised BP artificial
neural network algorithm to achieve fracture prediction. In this
method, seismic single attributes are trained and learned to select
advantageous attributes.Then use them as input data for calculation
to obtain fracture prediction probability bodies. Meanwhile,
through geological andwell logging calibration of seismic prediction
results, it is confirmed that well-seismic fracture development

characteristics are consistent, and the fracture prediction results are
reliable. This method provides valuable guidance for future well
drilling plan and exploration in this area. According to the results
of geology, structure, well logging, stress and fracture prediction,
the favorable area is determined. The first-class area is near the fault
zone, the second-class area in the forelimb of the reverse fault and
the third-class area in the backlimb area.The oil and gas potential of
the three regions is gradually reduced.
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