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As the demands for hydrocarbon exploration continue to rise, the identification
of thin sand bodies becomes significantly important for subsequent petroleum
exploration and development efforts. However, traditional inversion techniques
struggle with complex subsurface structures because of the low frequency
seismic data. To characterize the architecture of hydrocarbon reservoir precisely,
a novel seismic inversion method is applied to improve the resolution of seismic
data for a high interpretation accuracy. In this study, we take the X Oilfield in
Eastern China as an example, adopted a novel approach combining spectral
decomposition with convolutional neural networks (CNNs) within a genetic
algorithm (GA) framework for inversion. The CNNs are adept at recognizing and
interpreting the spatial configurations in the data, thereby establishing a high
correlation between seismic attributes and sand body distributions. GA helps
CNNs to get an optimal solution in a fast speed. The results reveal that the
model's sand thickness predictions closely match the actual measurements at
wells, with a new horizontal well's alignment with the predicted output reaching
an accuracy of 85.1%. Compared to traditional seismic inversion methods, our
method requires less data. This approachmay find awider application, especially
at offshore oilfields with few wells data and low quality seismic data.

KEYWORDS

attributes fusion, hydrocarbon reservoir, genetic inversion, convolutional neural
network (CNN), Bohai Bay Basin

1 Introduction

Interpreting seismic data is crucial for mapping out the distribution of reservoir
properties and understanding the structure of reservoirs. Techniques in seismic inversion
that merge multi-variate stochastic models of rock physics (which connect reservoir
characteristics to their elastic properties) with geophysical data are designed to predict
various reservoir attributes, such as the layout of sedimentary facies, porosity, and fluid
distributions, through mathematical methods (Tounkara et al., 2023; Xie et al., 2023;
La Marca et al., 2023). However, the link between seismic information and reservoir features
is often ambiguous, hindered by the seismic waves’ limited resolution, the reservoirs’
significant heterogeneity, and the inaccuracies in numerical forward simulations, whichmay
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overlook factors like attenuation and noise (Alabbad et al., 2021;
Jeong et al., 2017; Lubo-Robles et al., 2023).

Seismic reservoir prediction methods primarily analyze seismic
data and comprehensively utilize rock physics, well logging data,
and geological information to explore the properties, distribution,
and characteristics of underground reservoirs as much as possible,
holding a crucial position in the exploration and development
of petroleum (De Ruig and Hubbard, 2006; Doyen, 2007).
Generally, seismic reservoir prediction methods can be divided
into two main categories (Mukerji et al., 2001a; Bosch et al., 2010;
Xie et al., 2023): seismic attribute analysis methods and seismic
inversion methods (Ulvmoen and Omre, 2010).

Seismic attribute analysis techniques utilize seismic attributes
that reflect different geological information to describe the
geological characteristics of reservoirs. In the methods of seismic
attribute analysis, researchers began to pay attention to the
amplitude and polarity of seismic reflections as parameters for
identifying oil and gas reservoirs after the seismic attribute
extraction technique was introduced (Oliver et al., 2008; Liu et al.,
2023). Subsequently, through continuous research anddevelopment,
seismic attributes have evolved into a series of analysis techniques
ranging from classification, extraction, to optimization, such as
predicting hydrocarbon potential through the extraction of feature
attributes, calculating reservoir parameters from multidimensional
attributes; in recent years, with the rapid development of artificial
intelligence, the advantage of fitting parameters adaptively through
artificial neural network algorithms has been applied to extract
rock physics relationships from seismic data, outputting reservoir
attributes (Samakinde et al., 2020). However, the core of such
methods is to establish a mathematical relationship between
attributes and the reservoir, where the results of the reservoir are
highly uncertain and lack geological information constraints.

Geophysical inversion methods, fundamentally, are reverse
problems that infer causes from results. Broadly speaking, seismic
inversion encompasses all seismic interpretation work; from a
technical methodological perspective, seismic inversion is based on
the kinematic and dynamic parameters of seismic motion. It involves
the process of transforming seismic data into reservoir characteristics
using the statistical relationship between attributes and known
geological information, which is currently a key technology in seismic
reservoir prediction. Bosch and others have divided geophysical
inversion methods into two types (Mukerji et al., 2001b; Bosch et al.,
2010; Xie et al., 2022): sequential or hierarchical methods and
Bayesian-based joint simultaneous inversion. Traditional sequential
or hierarchical methods transform elastic properties into statistical
clustering attributes (probability maps), then used as soft data for
geological statistical modeling (Rowbotham et al., 1998; Feng et al.,
2019a). Soft data can be considered as an approximate form of
data that converts seismic data into probabilities through empirical
formulas or fitting formulas to implement regional constraints on the
modeling process; in reality, this constraint is based on probability
estimates, causing seismic data to lose a lot of seismic information
and introducing significant uncertainty into reservoir prediction,
which does not reflect the actual underground situation. The joint
simultaneous inversion method calculates elastic parameters and
reservoir properties at the same time and provides joint uncertainty.
The Bayesian framework provides rock physics relationships,
combining reservoir properties, elastic parameters, and geological

statistical models to establish a priormodel that aligns with geological
knowledge. By calculating the likelihood function to compare the
synthetic data established by forward modeling with the actual
observed data, the final posterior distribution obtained conforms to
geology, well data, and seismic data (He et al., 2023; Kamenski et al.,
2024). Through rock physics relationships, the inversion results more
closely match the actual underground conditions, greatly preserving
the original seismic data information.

Improving seismicdata resolution, integratinggeological patterns,
and incorporating an optimization algorithm can lead to improved
seismic inversion results. Spectral decomposition is employed to
generate various dominant frequencies seismic amplitude attributes,
thereby enhancing data resolution (Sinha et al., 2005). By using
the genetic algorithm (GA), which is based on the biological
principles of natural selection, recombination, and mutation of
chromosomes (Holland, 1975), this process can be optimized by
reducing computation times and producing more precise results.
Additionally, Convolutional Neural Networks (CNNs) have proven to
be highly effective in extracting features from training sets (Xie et al.,
2023). The use of CNNs can lead to more accurate modeling of
geological patterns like the distribution of sand bodies, which can
be identified from both well interpretations and seismic data.

Our initial approach involves enhancing the quality of seismic
data through spectral decomposition. The identification of sand
bodies is done by using log interpretation results and attributes
from post-stack seismic inversion, which act as quality control
factors for training inputs. Finally, a CNN is employed to establish
the nonlinear connections between seismic attributes and rock
characteristics, with the genetic algorithm further enhancing the
training process and improving the model’s accuracy.

2 Methodology

We introduce a new method that combines spectral
decomposition with a convolutional neural network-enhanced
genetic inversion technique. By spectral decomposition, seismic
attributes can be extracted across multiple frequencies, and
attributes from higher frequencies provide a higher level of
resolution. The improved resolution is particularly beneficial in
identifying thin sand bodies, due to the shorter wavelengths
and oscillation periods of high-frequency seismic waves, which
provide superior spatial detail. The foundation for constructing
an improved training dataset for genetic inversion is this
attribute, which acts as a data pre-processing step to eliminate
unnecessary information.

The core of ourmethod lies in the CNN-based genetic inversion,
which is adept at discerning the complex, nonlinear relationships
within seismic attributes. The strength of convolutional neural
networks is utilized in this approach to recognize and understand
patterns, and the genetic algorithm component is employed to refine
and optimize the network’s performance. After optimizing, these
trained networks are deployed to predict reservoir characteristics.

There are four parts to the method, which begin with spectral
decomposition and finish with the use of trained networks for
reservoir prediction. The systematic approach of this structured
workflow ensures the enhancement of seismic data interpretation
and reservoir prediction accuracy.
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Initially, we align seismic data with well logs using a time-
depth relationship, acknowledging the inherent resolution disparity
between the two data types which prevents a straightforward match.
To bridge this gap, we engage in a correlation study comparing
frequency-decomposed seismic data against sand thickness
measurements obtained from log interpretations. The technique
of extracting seismic volumes (Marfurt and Kirlin, 2001) at various
peak frequencies is used to selectively highlight sand bodies across
different temporal thicknesses. The tuning effect is taken into the
consideration, a phenomenon that influences how these sand bodies
are represented in seismic data due to interference patterns that arise
at certain thicknesses (Widess, 1973; Widess, 1983).

In the next step, we utilizewell-logging and core data to delineate
sand bodies. Core samples offer a high-resolution result that is
pivotal for accurate sand identification, facilitating detailed analyses
of how these sand bodies correlate with various well log readings
like density (DEN), gamma ray (GR), and differential transit time
(DT). When core samples are not available, the best alternative,
typically gamma ray (GR) logs in well log, is employed for this
interpretative work (Wood, 2024). Then, the insights obtained from
interpreting these sandbodies are used as benchmarks to validate the
integrity and relevance of the training dataset used in convolutional
neural networks (CNNs), ensuring thatmachine learningmodels are
trained on accurate and representative data.

For the last phase, we integrate the processed seismic attributes
(FDSVs) as input data into the convolutional neural network (CNN).
The CNN is then tasked with identifying and learning the unique
patterns within these attributes, guided by pre-provided labels
that categorize the data into sand and mud based on previous
interpretations. Through the training process, the CNN develops a
predictivemodel, thoughwe have to recognize that thismodelmight
initially represent just a local optimum.

To improve the predictive model and potentially overcome the
limitations of finding only a local optimal solution, we introduce
a genetic algorithm (GA) to find the global optimal solution.
The GA adjusts the neural network’s weights and thresholds by
multiple iterations, aiming for a more globally optimal solution.
This iterative enhancement ensures the network model evolves and
improves over time.

Upon achieving an optimized neural network model through
this process, we apply it to predict the spatial distribution of sand
bodies base on GR value. The output from this optimized model is a
continuous volume that distinctly marks the zones identified as GR
value, providing a clearer mapping of the reservoirs rock physical
properties to wells log.

2.1 Spectral decomposition

In the context of geophysics and seismic data analysis, spectral
decomposition is a mathematical method used to transform seismic
signals from the time domain into the frequency domain. This is a
summary of the principle as follows:

Among the various spectral decomposition techniques available,
the Short Time Fourier Transform (STFT) (Goyal and Pabla, 2015)
and the Continuous Wavelet Transform (CWT) (Gabry et al., 2024)
are two of the most frequently utilized methods. The STFT employs
wavelets of a fixed length, which can result in compromised vertical

resolution at higher frequencies.TheCWTemployswavelets that are
relatively short in length and have a fixed number of cycles, which
leads to good temporal resolution but can result in poor frequency
discrimination when the number of cycles is lower.

The Generalized Spectral Decomposition (GSD) (Li et al., 2019)
method offers a hybrid approach that merges the strengths of both
STFT and CWT techniques, enabling enhanced control over both
vertical and frequency resolution. A set of natural parameters that
can be adjusted allows for customized wavelet design between the
STFT and CWT approaches to achieve this superior control.

The GSD volume attribute implementation methodology can be
summed up in the following steps:

2.1.1 Wavelet design
Customized wavelets can be generated through the use of

three key parameters in wavelet computation: frequency, number
of cycles, and phase. The original wavelet is then scaled so that it
reaches a peak amplitude of one (1.0) in the frequency domain.
The custom wavelet is then applied to the input seismic data for
decomposition using correlation or filtering using convolution.

2.1.2 Convolution
The initial wavelet is convolved with the input seismic data in

the first step. This convolution effectively functions as a band-pass
filter, allowing the part of the signal that matches the wavelet to pass
through to the output while diminishing the other frequencies.

2.2 CNN-based genetic inversion

The inversion method proposed in this paper is divided
into two parts: Convolutional Neural Networks (CNNs) and
Genetic Inversion techniques. CNNs are capable of automatically
detecting and extracting critical features without manual
intervention. This feature extraction is facilitated through multiple
convolutional and pooling layers, enabling the network to
incrementally learn features from simple to complex. This process
significantly enhances the model’s accuracy in prediction and
classification tasks.

2.2.1 Convolution neural network
The CNN architecture (Figure 1) comprises an input layer, some

convolutional layers, some pooling layers, and a fully connected
layer (often referred to as the output layer). More details can be
seen as the online tutorials (http://cs231n.github.io/convolutional-
networks/). The input layer refines input data (here are seismic
volume across various domaint frequencies. The core component of
CNN is the convolutional layer, which includes both the convolution
kernel and an activation function (in this case, the rectified linear
unit (ReLU (Glorot et al., 2011)). The CNN uses convolutional
kernels to extract feature maps and employs the activation function
to model the nonlinear relationships between the input (training
data) and the output (label data).

The input x is transformed into the output y through a
network of neurons, which act as computational units following
the convolution and pooling layers. The convolution operation is
especially advantageous in image classification tasks because of its
ability to examine the spatial structures within the input image. For

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1498164
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1498164

FIGURE 1
The structure of CNN.

FIGURE 2
Location map of the X oilfield in Liaoxi Uplift, China.

a 2-dimensional CNN, the convolutional layer applies a 3×3 filter ω,
and the related equation is given as follows:

hku,v(xu,v) = f(
Ni

∑
i=1

Nj

∑
j=1

wk
i,jxu+i,v+j + b) (1)

In Equation 1, h(x) represents the output of the convolutional
layer,N denotes a series of constants, and wk

i,j is anNi ×Nj filter after
the k-th training step (where k (k =1, … , Nk)). Initially, the filter
is typically initialized using a Gaussian distribution. The parameter
xu,v denote the input with u,v being the pixel coordinates, and b
refers to the bias associatedwith the neuron.Where we use the ReLU
activation function f(∗) defined as f(x) = max (0,x).

The objective of training a CNN is to determine the optimal
weights (w) and biases (b). Typically, reaching the optimal solution
demands extensive computational power. Moreover, there is a
possibility that the CNN might converge to a local optimum instead
of the global one.

2.2.2 Genetic algorithm
Genetic Algorithms (GAs) are a type of heuristic search

algorithm that mimics the process of natural selection and genetics.
Genetic algorithms have a unique problem-solving approach that
has resolved various complex optimization and search challenges
across multiple domains. Genetic algorithms are capable of global
search, preventing them from stagnating at local optima. This
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FIGURE 3
Section of initial seismic data in line P3-U30 (red line in location map). The purple curves represent the GR log and black lines are surfaces (1, 4-1, 9,
and 15), the blue line is the boundary of the oil field.

capability allows the algorithm to find superior solutions, especially
in scenarios where the solution space is extensive or the optimal
solutions are not apparent. Genetic algorithms are adaptable to
changing environments and can dynamically adjust their search
strategies (Liu et al., 2023). They operate effectively in the
absence of a clear analytical solution, making them suitable for
complex problems characterized by nonlinearity, multimodality,
and discontinuities. Genetic algorithms can also be integrated
with other optimization methods to create hybrid algorithms,
leveraging the strengths of each to enhance the efficiency and
quality of solutions. In this paper, the genetic algorithm can be
run by three steps:

(1) Selection: This stage mirrors the concept of natural selection,
where individuals exhibiting the least error are chosen. For
our study, we derive a fitness function using seismic data and
interpretations of sand at well locations, calculated via a least-
squares error approach. Individuals, each consisting of a set of
weights, are initially selected at random. Those with the best fit
form the inaugural generation.

(2) Crossover: In this phase, a collection of weights, termed a
chromosome, undergoes a crossover, during which different
weight combinations exchange segments. This process
facilitates the creation of new optimized combinations,
analogous to the random gene swapping seen in natural
evolution.

(3) Mutation: To avoid convergence to local minima, mutations
are introduced once the error function stabilizes. During this
phase, weights are randomly altered, controlled by mutation-
specific parameters such as the probability of mutation and
the number of mutations involved. Typically, the mutation rate
is considerably lower than that of crossover, and it requires
significantly less time compared to the neural network’s
training duration.

This entire process is repeated until the weights (individuals)
are iteratively refined to meet a minimal threshold defined by the

loss function. Employing Genetic Algorithms (GA) significantly
expedite the neural network training phase and circumvent potential
local optima.

3 Application

3.1 Geological background of the X oilfield

The research area is located in the Liaodong Bay area of eastern
China, approximately 50 km northwest of Suizhong City. The
average well spacing in the research area is about 150–350 m. The
main oil-bearing stratum is the lower part of the Dongying group,
featuring a northeastern-oriented faulted anticline. The eastern side
transitions to the Liaozhong Depression with a slope, and the
western side is bounded by the Liaoxi No.1 fault adjacent to the
Liaoxi Depression, constituting an oil and gas reservoir in a buried
hill anticline (Figure 2). Vertically, the lower part of the Dongying
group is divided into four oil groups: Zero, I, II, and III. This
paper mainly considers oil groups I and II, with the reservoir depth
ranging from −1,175 to −1,605 m above sea level. The formation
thickness is about 350 m, subdivided into 14 sub-layers and 38
individual layers (Zhang et al., 2018). The surface 1, 4-2, and 9 are
typical lithological interfaces (the interface is widely developed, with
different lithologies above and below, and the physical properties
of rocks vary greatly), the seismic response feature is evident to
distinguish the time-depth relationship Figure 3.

Within the targeted stratigraphic section of the study area,
the reservoir lithology is primarily composed of fine sandstone,
followed by medium sandstone, with siltstone and coarse sandstone
being relatively less common. The main depositional microfacies
include lacustrine delta front sand bodies, developing sedimentary
microfacies such as mouth bars, distributary channels, and beach
sands. The water flow is from west to east of the ancient Suizhong
river system (Zhang et al., 2022; Feng et al., 2019b). The sand bodies
are continuously distributed and present lobe-shaped, sheet-like, or
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FIGURE 4
Seismic attributes correlation after frequency decomposition. (A) The frequency spectrum of various seismic volumes; (B) seismic section with a
dominant frequency of 25 Hz; (C) seismic section with a domain frequency of 40 Hz; (D) seismic section with a dominant frequency of 50 Hz. All
sections come from Figure 3.

finger-like patterns. Vertically, they are interbedded with each other,
resulting in good connectivity.

The field includes a total of 684 wells, with 227 horizontal wells.
Initial seismic data exhibits an effective frequency ranging from

10 Hz to 41 Hz, with a peak at 30 Hz, as indicated in Figure 4. Post-
stack seismic data undergoes processing with a 90° phase shift. The
sampling for vertical sections is every 2 ms, and the distance between
traces is 25 m. Focusing on the third layer, cited studies (Xue et al.,
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FIGURE 5
Person correlation coefficient heatmap showing the relationships between the 18 seismic attributes in 4 dominant frequency.

2021) classify it as part of a deltaic depositional system noted
for its extensive channel sands. Data from 30 horizontal wells in
this third layer serve as an effective dataset for neural network
training. The processed seismic data, with its 90° phase shift,
reveals that areas displaying lower seismic amplitudes correspond
to lower GR values. Conversely, the majority of thinner strata with
low GR values demonstrate no significant reactions in the initial
seismic attributes.

3.2 Spectral decomposition

Initial seismic readings indicate a prevalent frequency range
between 16 and 30 Hz, which is insufficient for dependable seismic
analysis. By employing spectral decomposition, we gather seismic
data across various frequencies. This approach enables us to fine-
tune the resonance impact by integrating data from different
frequencies (Zeng, 2017). For Ricker wavelet, the maximum

resolution for vertical thickness determination is determined by
the Rayleigh criterion (Ricker, 1953; Kallweit and Wood, 1982), the
equation is shown as follows.

hmax =
λd
4
= VT

4
= V

4 fd
= V

4(1.3 fp)
(2)

In this context, fp stands for the peak frequency (the
maximum frequency), V indicates the stratum average velocity,
and fd refers to the dominant frequency. Within the X
oilfield, the thickness of the majority of sand bodies in
the target formation is below the vertical seismic resolution
threshold (for 30 Hz frequency seismic data at 2,200 m/s wave
velocity in this region), leading to significant uncertainties in
seismic interpretation.

To improve the resolution of seismic data, we proposed a
method based on spectral decomposition. In general, matching
pursuit decomposition (MPD) is well-regarded for its effectiveness
in precisely extracting high-frequency components (Durka et al.,
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FIGURE 6
Comparison diagram between different dominant frequency seismic attributes (after 90°conversion) and well logs (the location of well V7
are seen as Figure 3)

1996; Wang et al., 2016). MPD-based spectral decomposition
is the ideal solution because the initial seismic data often lacks
enough high-frequency details. In our approach, MPD-based
spectral decomposition extracts three frequency-decomposed
seismic volumes (FDSVs) with distinct bandwidths: 25 Hz
amplitude attribute with a bandwidth of 10–40 Hz, 40 Hz
amplitude attribute with a bandwidth of 20–60 Hz, and 50 Hz
amplitude attribute with a bandwidth of 20–80 Hz (as illustrated
in Figure 4). Equation 2 can help you tune thickness values for the
respective FDSVs, with 31.3 m, 19.56 m, and 15.65 m as the desired
thickness resolution.

Our analysis reveals that the 25 Hz frequency-decomposed
seismic volume (FDSV) shows a stronger correlation with the well
log DT (see Figure 5), while the 50 Hz FDSV aligns more closely
with the well log SP. This observation confirms that frequency
decomposition techniques are effective in extracting critical high-
frequency information from initial seismic data. Additionally, the
higher-frequency FDSVs display more detailed architectural features
and exhibit better alignment with well logs. Thus, these results
underscore the potential of frequency decomposition method
in improving subsurface interpretation through seismic attribute
analysis.
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FIGURE 7
Correlation between inversion result, initial seismic data, and reservoir architecture section. (A) Inversion result, the blue dashed lines represent
boundaries of sand bodies in zone 3-2; (B) initial seismic data, yellow lines are the surfaces of zone 3-1 and zone 4-1, white dashed lines are the sand
body boundary; (C) architecture section interpreted by production result and well-log, different colors represent different sand bodies.

3.3 Facies interpretation

It is necessary to establish labels before the network training
phase. Given the uncertainty of underground conditions, obtaining
reliable lithological labels may be challenging. The labels for
distinguishing sand and mud are defined using core, logging, and
seismic data, and GR curves are particularly sensitive to lithological
changes. Core is used to identify lithology by correlating logging
curves with lithology data to select the most suitable logging
curve for distinguishing sand and mud. As shown in Figure 6,
the correlation between sand bodies and DT is weak, making
traditional seismic impedance inversion ineffective.On the contrary,
the GR value shows a strong correlation with sand, making it
a valuable parameter for labeling. In this study, GR curves were
used as labels for the training set, while FDSV was used as the
training dataset.

3.4 Inversion results

In our test, 300 wells are employed as labels of the learning set,
while 20 horizontal wells serve as the test set. The CNN parameters
are configured as follows: amedian filter with a 3 × 3 × 3 convolution
kernel, and the hidden layer is composed of 3 convolutional layers,
and the network depth is set to 3 (corresponding to the 3 frequencies
FDSVs). The correlated threshold value is established at 0.85, with
an iteration decay rate of 0.01. The maximum number of iterations
is set to 20,000.

For optimal inversion results and faster convergence in the
genetic algorithm, the time window value should closely match
the actual seismic wavelet (52 Hz, which is 1.3 times the peak
frequency of 40 Hz). Both the in-line and cross-line half ranges
are set to 1, while the resample parameter is 3, and the vertical
range is 50.
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FIGURE 8
Correlation relationship analysis between sand thickness (m) and GR
value (API) at wells.

Using the proposed approach, the inversion results exhibit a
strong correlation with the original seismic data and reveal more
detailed, refined features. Obtaining high-resolution seismic data is
essential before interpreting seismic data. We compare a 90°phase
conversion and GR genetic inversion result in a same section profile.
From a simple vision, the original seismic data can be divided into
three matrix sand body, the inversion result can be described as five
matrix sand body, and the mud layers are recognized by inversion
attributes value. Due to the uncertainty of seismic data, it is not
a convincing interpretation by attributes value. We have to prove
the inversion attributes can be sensitive to rock features. In general,
geologists describe the architecture by geological patterns and well
logs, but there is an uncertainty between wells. The interpretation
results or facies of well logs are used to verify the inversion attribute,
when the attribute value is consistent to the result or facies, the
inversion attributes can be used as the indicator of facies or oil/water
interpretation.

By integrating seismic and well data, the CNN-based genetic
inversion method allows for the high-resolution characterization of
sand bodies using well data. There are some uncertainties between
wells, here a horizontal well is utilized as a test set. Although the
thin interbeds are not perfectly characterized, the thick sand bodies
in wells are confirmed by the inversion attributes, as shown in
Figure 7. Despite this, the method offers a promising improvement
in characterization of thin sand bodies, with a resolution that is
significantly higher than the initial seismic data. According to the
predicted sand thickness, the R2 value of 0.7309 compares well
to actual measurements (Figure 8). Due to overlap between test
and training sets and the inclusion of well-interpreted data in the
training data, the high correlation coefficient may be overstated.
The correlation of thin sand thickness (for sands less than 10 m
thick, which were not part of the training set) demonstrates that
the proposed method enhances inversion quality and accurately
predicts sand body distribution, which is valuable for gas field
development.

The well intersects two channel sand bodies, which differs
from the sand interpretation depicted in Figure 9A. Two channel
sand bodies are intersected in the well, which is in contrast
to the sand interpretation displayed in Figure 9B. The inversion
result captures significant geological patterns of the channel, with
predicted sand bodies closely aligning with the actual data from the
horizontal well (Figure 9C). 32,370 sampling points were provided

by the well log curve, which spans 1 km and samples at 0.125-
m intervals. The predictions and the points were compared, and
it was found that 85.1% (25,419/32,370) of them matched the
predictions. The method’s effective reduction of uncertainty in
seismic inversion attribute interpretation can be demonstrated
through this high accuracy.

4 Discussion

This study proposes a novel seismic inversionmethod combined
with GA and CNN for predicting the hydrocarbon reservoirs.
GA plays an optimal algorithm for fast computing speed, the
CNN extract the potential information from seismic attributes and
hydrocarbon reservoirs parameters. Inmarine oil field, fewwells and
low-quality seismic data make reservoirs prediction difficult. The
inversion process can integrate more high-resolution information,
which make insufficient data acquire lower uncertainty. When the
proposed method is applied to other areas, the training set must
be re-built, the FDSVs with different frequency have to be selected
after a sand thickness analysis. The label attribute should be the well
log with the optimal indicator, for example, the GR curve represent
the fraction ofmud or sand, the impedance indicates the density and
velocity of rocks. After the selection ofwell log and seismic attributes
in training set, the proposed method can be as a tool to run, the best
result will be acquired in some minutes.

Compared to the general GA inversion, the CNN is used to
extract the nonlinear relation through convolution and activation.
Traditional neural networks fail to consider the spatial relation
(relation with spatial locations), leading to the seismic inversion
result lacking the features of geo-body (Xie et al., 2023a). Then,
we use spectral decomposition to generate multiple frequency
range seismic attributes, and supply for the reservoir interpretation.
Based on the generated attributes and CNN, the high frequency
information is added in the low-resolution data from marine oil
fields, being an effective way to improve the quality of initial seismic
data. Different from conventional seismic inversion, our proposed
method calculates a better attribute based on machine learning. It
is unnecessary to evaluate the wavelet for seismic impedance, while
a precise wavelet is too difficult to acquire. The proposed method
overcomes the bias from statistical parameters, and improves the
correlation between wells data and seismic data. Genetic algorithm
makes the inversion process fast, and CNN digs the potential
relation between wells data and seismic data for better prediction
of hydrocarbon reservoirs.

In statistical seismic inversion, Bayesian inversion uses statistical
modeling methods, such as sequential indicator or multi-point
statistical modeling, to generate forward models. The seismic
response for each model iteration is calculated and compared
with the initial seismic response, and a loss function (see
Likelihood Function, Jeong et al., 2017) measures the difference.
The model is updated iteratively until the loss function reaches
a threshold. Although this approach yields promising results, it
often requires numerous iterations and significant computational
time. Additionally, acquiring variogram functions and training
images can be challenging (Xie et al., 2023b), which may
result in models that fail to fully capture natural patterns
(Wang et al., 2022a; Wang et al., 2022b). However, advancements in
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FIGURE 9
Inversion prediction section and bars interpretation result. (A) Facies map and section location (colors represent bars develop in different times); (B)
inversion attribute of C32-E32 section and well logs, blue is GR curve, the green represents sand; (C) sand bodies interpretation section and
wells location.

big data and high-performance computing are promising solutions
for these challenges.

Recent studies have shown the potential of generative
adversarial networks (GANs) in inversion algorithms
(Laloy et al., 2018; Xie et al., 2022). GANs can quickly extract
complex image features and replicate learned patterns, delivering
high-quality inversion results. Despite these advantages, the impact
of multi-frequency seismic attributes in GANs is not fully explored.
Compared to conventional neural networks, GANs offer significant
benefits, and combining them with genetic inversion could further
enhance inversion quality and speed.

A key limitation of this method lies in conditioning well data.
Since well data is the most accurate source of information, the
method prioritizes seismic data and translates a hydrocarbon-
sensitive attribute based on well-seismic correction. However,
due to the limited resolution of initial marine seismic data, some
uncertainty in seismic data remains inevitable. Alternatively,
geological modeling can predict hydrocarbon reservoirs by
assigning values to spatial grids. This method treats well
data as “hard” data while using seismic data as “soft” data
to guide interpolation, preserving well data at 100% and
using seismic data to fill in inter-well information. Integrating
CNN-based inversion with geological modeling could help
reduce hydrocarbon reservoir prediction uncertainties. In
the future, machine learning algorithms and big data could
enable the inclusion of additional hydrocarbon knowledge and
insights, improving predictive accuracy and potentially lowering
development costs.

Another limitation is the method’s current disregard for faults.
Faults significantly influence sand body responses, and their
inclusion could support amore continuous interpretation of channel
sands.Given themany geological factors that affect seismic response,

machine learning applications in this field must incorporate expert
geological knowledge for quality control. The next step will involve
integrating geological expertise with machine learning algorithms.

When applying this method to other oilfields worldwide, it
is essential to consider the specific conditions of the research
area. For instance, in mature oilfields with dense well networks
(average spacing of 50–300 m), the well data typically have
higher resolution than the horizontal resolution of seismic data.
Additionally, ample production data reduce uncertainty between
wells. In such cases, the inversion results from the proposed
method can serve as soft data to decrease hydrocarbon prediction
uncertainty, while well data remain critical for reservoir prediction.
In offshore oilfields, data scarcity and low-quality seismic data are
common due to challenging marine acquisition conditions. These
limitations complicate prediction efforts, making the proposed
method a promising approach to address low-resolution data
issues. Similarly, deep reservoirs face similar challenges, including
significant drilling costs and increased seismic noise due to depth,
resulting in fewerwells and lower-quality seismic data.Theproposed
method offers a practical solution to improve reservoir prediction
in such scenarios.

5 Conclusion

This study proposes a novel seismic inversionmethod combined
with GA andCNN for predicting the hydrocarbon reservoirs. In this
method, the CNN is used to extract the nonlinear relation through
convolution and activation. Traditional neural networks fail to
consider the spatial relation (relation with spatial locations), leading
to the seismic inversion result lacking the features of geobody. The
spectral decomposition generates multiple frequency range seismic
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attributes, and supply for the reservoir interpretation. Based on
CNN, the low-resolution data from marine oil fields is added the
high frequency information, being an effective way to improve the
quality of initial seismic data.The result shows that these sand bodies
can be accurately predicted, and their predicted volumes accurately
reflect seismic and well data at the specified target level. Also,
there is a significant correlation between horizontal well logging
and these predictions. Using this method, a significant amount
of seismic data and related information can be integrated more
effectively. Compared to traditional seismic inversion methods, this
approachmay find awider application, especially at offshore oilfields
with few wells data and low quality seismic data. In the future,
researchers plan to improve deep learning models to recognize
geological patterns more accurately and increase processing speed
by utilizing high performance computing and parallel computing.
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