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The investigation into the complex mechanical properties of frozen calcareous
clay undermulti-factor interaction holds significant importance for the reliability
and durability of engineering in cold regions. This study investigates the
strength properties of frozen calcareous clay under different interaction
levels by designing a four-factor, four-level orthogonal test that incorporates
temperature, confining pressure, dry density, and water content. The study
aimed to assess the sensitivity of each factor to failure stress, and establish an
intrinsic model based on the Duncan-Chang model considering temperature,
confining pressure, and water content. The results indicated that the stress-
strain curves exhibit strain-hardening characteristics across various interaction
levels. These curves can be divided into elastic and elastic-plastic phases, with
the slope of the elastic phase and the stress value at the inflection point
increasing with decreasing temperature and increasing confining pressure.
When the confining pressure is maintained constant, the failure stress is
negatively correlated with temperature. When the temperature is maintained
constant, the failure stress is positively correlated with confining pressure.
Sensitivity analysis shows that the influence of each factor on failure stress is
as follows: temperature > confining pressure > dry density > water content.
Additionally, the influence of temperature and confining pressure on failure
stress is markedly greater than that of water content and dry density. The
evolution of unfrozen water content follows three stages: sharp reduction, rapid
reduction, and slow reduction. Verification against experimental data confirmed
that the modified constitutive model effectively reflects the stress-strain
relationship of frozen calcareous clay under the interaction of multiple factors.
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1 Introduction

The strength and deformation of permafrost are critical
mechanical characteristics of soil that significantly affect
engineering designs in cold regions (Shi et al., 2024; Long et al., 2024;
Hai et al., 2024). Permafrost is a four-phase system comprising solid
mineral particles, ice crystals, liquid water, and gas. Its strength is
influenced by factors such as temperature, soil type, and stress state
(Hu and Wang, 2013; Xu et al., 2020). It is worth noting that the
deformation of permafrost directly impacts the stability and safety
of engineering structures subjected to freeze-thaw cycles (Xu et al.,
2017; Kong et al., 2017). Therefore, in the engineering design of
cold regions, it is crucial to accurately evaluate the strength and
deformation of frozen soil to ensure the reliability and durability of
the project (Bai et al., 2018; Tatsuoka et al., 2008; Lu et al., 2019).
This evaluation holds significant engineering importance for the
design and construction of projects in these regions (Duriez and
Vincens, 2015; Ni et al., 2018; Hoyos et al., 2014).

The mechanical properties of permafrost are influenced by
various factors (Horpibulsuk et al., 2007; Ma et al., 2021; Liu
and Carter, 2003), prompting extensive research under different
conditions. Temperature, a crucial factor in the formation and
stability of permafrost, significantly impacts its mechanical
properties (Cudmani et al., 2022). As temperature decreases, water
within the soil body freezes into ice, reconstructing the soil’s
microstructure and markedly increasing its strength and stiffness.
Confining pressure is another critical factor affecting themechanical
properties of permafrost (Sun et al., 2022). Increased confining
pressure enhances particle contact and alters the pore structure
within the soil, influencing its mechanical response. Under high
confining pressures, permafrost exhibits more complex non-linear
strength and deformation characteristics. Additionally, dry density,
an indicator of soil compactness, directly affects the contact area and
force between soil particles, thereby determining the mechanical
properties of permafrost (Li et al., 2023). Water content also plays a
significant role in the mechanical behavior of frozen soils (Wu et al.,
2021). Adequate water content can form an effective ice cementation
network during freezing, enhancing the strength and stability
of permafrost. Conversely, excessive water content can increase
pore water pressure and diminish the mechanical properties of
permafrost. These factors not only act independently but also
interact synergistically to determine the mechanical behavior of
permafrost.

With the rapid advancements in measurement and analysis
methods, substantial improvements have been made in
understanding the mechanical properties of cryogenic soil under
various environmental conditions. Researchers have focused on
detailing the complex deformation and failure mechanisms of
these soils. Despite these efforts, achieving a comprehensive and
predictivemodel for the deformation, strength, and failure behaviors
of cryogenic soil remains a critical challenge. Formulating a precise
constitutive relation equation and failure criterion is essential for
this task. Suebsuk et al. (2010) developed a generalized constitutive
model that can be applied to disturbed clay, natural state clay, and
artificially reshaped clay. This model integrates plastic behavior
to clarify how structural factors influence the direction of plastic
strain during both hardening and softening phases. Yang et al.
(2010) carried out triaxial compression tests on frozen sand,

examining themechanical properties of soil under various confining
pressures and water contents. They introduced a nonlinear Mohr-
Coulomb criterion to analyze the strength of frozen sand and
derived generalized values for the internal friction angle and
cohesion based on experimental data. Liao et al. (2016) revealed
the significant impact of soil composition, particularly salt content,
on its mechanical properties. By applying a generalized nonlinear
strength theory, Liao developed a strength criterion for frozen
soil layers that accounts for variations in salt content. Through
conventional triaxial testing, Liao proposed a modified hydrostatic
pressure expression using the critical strength function from the
modified Cam clay model’s meridian plane.

In summary, previous studies have explored the mechanical
properties of frozen clays under variations in single or limited
independent variables, establishing constitutive relationship
equations and damage criteria. However, there is a notable lack
of research on frozen calcareous clay under multifactor interactions.
Given the complexity of the mechanical properties of frozen soils in
diverse and variable natural environments, the current practice
of analyzing each factor in isolation using the control variable
method is limited. This approach provides a relatively one-sided
understanding of the mechanical properties of permafrost under
multifactor interactions and fails to meet the stringent requirements
formaterial durability in the extreme and variable conditions of cold
region projects.

The purpose of this study is to elucidate the complexmechanical
properties of frozen calcareous clay under multifactor interactions
to provide a robust theoretical foundation and technical support
for the safety and durability of engineering projects in cold regions.
Consequently, a four-factor, four-level orthogonal test was designed
to investigate calcareous clay under the interaction of temperature,
confining pressure, water content, and dry density. This test aims
to examine the evolution of failure stress and the influence of each
factor under different interaction levels. Additionally, an ontological
model of frozen calcareous clay based on the Duncan-Changmodel,
incorporating temperature, confining pressure, and water content, is
proposed to predict its stress-strain relationship under multifactor
interactions.

2 Experimental materials and test
methods

2.1 Testing materials

The calcareous clay (CC) used in the test was sourced from a
deep layer (420–430 m) of a coal mine in the Lianghuai mining
area, northern Anhui Province, China. It was transported to the
laboratory in sealed packaging. The basic physical and mechanical
properties of the undisturbed soil samples are shown in Table 1.
Following standard provisions (China Planning Press, 2019), the
undisturbed soil was dried naturally. After drying, the soil was
placed in an oven at 105° C for 12 h A crusher. The dried and
processed lumpy soil is crushed once by a crusher. However, the
particle size of the crushed soil did not meet the test requirements,
necessitating secondary crushing. After the second crushing, the
soil was sieved through a 0.5 mm sieve to obtain the desired
particle size for the experiment. The crushing process is shown
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in Figure 1. The particle size distribution was measured using
a laser particle size analyser (BT-2001) (He et al., 2024), with
results presented in Figure 2. The analysis revealed that the particle
size distribution of the calcareous clay primarily ranged from
0.5 to 450 microns, with a significant concentration between 25
and 180 microns. The cumulative content curve of the particle
size distribution indicates a relatively stable slope, demonstrating
a uniform texture and consistent particle size range within the
calcareous clay. This uniformity is beneficial to ensure that the
prepared sample has a consistent texture and is isotropic.

2.2 Test scheme

2.2.1 Orthogonal design
This study employed an orthogonal experimental designmethod

to investigate the influence of temperature, pressure, moisture
content, and dry density on calcareous clay. Each factor was set at
four different levels, resulting in a total of 16 experimental groups,
as outlined in Table 2. Each group of samples is configured with
four influencing factors, which we denominate as ‘multi-factor
interaction’. In each group of samples, one factor is maintained
constant, while the remaining factors are varied. The term
‘interaction level’ is employed to designate any set of experimental
conditions.The dry density for each sample was calculated using the
following expression (Wu et al., 2023):

ρd =
m1

v
(1)

m =m1 +m1 ×ω (2)

wherem1 is the mass of dry soil in a single specimen, g; ρd is the dry
density of soil, g/cm3; v is the sample volume, cm3;m is the mass of
sample, g; ω is water content, %.

2.2.2 Specimen preparation
The mass of dry soil and water required for each group of

samples was calculated using Equations 1, 2. The dry soil and
water were mixed evenly and placed in a sealed bag for 24 h
to ensure uniform moisture content throughout the soil samples.
Subsequently, the wet soil is filled into the 50 mm × 100 mm
internal mold in five increments and compacted. During the first
four compacting processes, complete compaction is not required.
Instead, it is only necessary to ensure that sufficient space is
left for the inclusion of subsequent layers of soil. Simultaneously,
the surface of each layer of soil is scarified to enhance the
bonding between the layers. The objective is to physically facilitate
the interlocking of soil particles, thereby enhancing the overall
structural stability (Zhang et al., 2021). Prior to the preparation of
the samples, the molds were cleaned and an even layer of petroleum
jelly was applied to their inner surfaces. This was done in order
to facilitate the removal of the specimens from the molds during
the demolding process. Post-compaction, the specimens and molds
were sealed with cling film and placed in a cryostat at −20°C
for 1 hour before demolding. Once demolded, the specimens were
further sealed with cling film and frozen in the cryostat at −20°C for
24 h, followed by placement in a cryostat at the target temperature
for an additional 24 h.
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FIGURE 1
Test flow chart of drying and crushing of calcareous clay.

FIGURE 2
Particle size distribution of calcareous clay after crushing.

Figure 3 illustrates the microstructural characteristics of the
calcareous clay post-sampling. Scanning electron microscope
(SEM) analyses revealed no significant differences under varying
conditions; hence, only the results for a sample with a dry
density of 1.86 g/cm³ and a moisture content of 20% were

analyzed. The texture of the unfrozen calcareous clay after
preparation was uniform, with tightly bound soil particles and
small pores, indicating high-quality sample preparation. In contrast,
the frozen calcareous clay appeared relatively loose with tiny
cracks, likely caused by the expansion force during the freezing
of pore water into ice. Given that the SEM scans at 500 µm
represent a magnification by a factor of 1,000, and the locations
of the photographs were selectively chosen to highlight the
most significant changes, the specimens were kept at negative
temperatures during the test, and the ice filled these cracks.
Therefore, the effects produced by the cracks after freezing can be
considered negligible.

2.2.3 Testing procedures
Figure 4A illustrates the configuration of the low-temperature

rock (soil) triaxial test system (ZTCR-2000, Changchun
Development Test Instrument Co., Ltd., China), indicating
that the test setup comprises a computer processing system,
a low-temperature geotechnical triaxial test control system, a
low-temperature geotechnical triaxial test machine, a hydraulic
oil circulating pump, and an alcohol refrigerant circulating
pump. A schematic diagram of the triaxial test system is
presented in Figure 4B. It can be noted that the computer processing
system is utilized to regulate the control system of triaxial test for
low-temperature rock and soil. This system has the capability to
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TABLE 2 Orthogonal experimental design table.

Sample number Temperature/°C Confining pressure/MPa Water content/% Dry density/(g/cm3)

A-1 −5 0.5 15 1.66

A-2 −5 1 17.5 1.86

A-3 −5 1.5 20 1.76

A-4 −5 2 12.5 1.56

B-1 −10 0.5 12.5 1.76

B-2 −10 1 20 1.56

B-3 −10 1.5 17.5 1.66

B-4 −10 2 15 1.86

C-1 −15 0.5 17.5 1.56

C-2 −15 1 15 1.76

C-3 −15 1.5 12.5 1.86

C-4 −15 2 20 1.66

D-1 −20 0.5 20 1.86

D-2 −20 1 12.5 1.66

D-3 −20 1.5 15 1.56

D-4 −20 2 17.5 1.76

FIGURE 3
Scanning electron microscopy of calcareous clay samples after drying. (A) Unfrozen calcareous clay samples. (B) Frozen calcareous clay samples.

control the hydraulic oil circulating pump, which can provide the
necessary axial and confining pressures for the low temperature
rock and soil triaxial testing machine. Additionally, the alcohol
refrigerant circulating pump is employed. The pump is furnished
with an independent control switch, enabling the operator to
decide whether to activate it flexibly in accordance with the actual
requirements. The low temperature rock and soil triaxial testing

machine is provided with axial and circumferential strain gauges
and a geotechnical sensor located above the chamber for measuring
the axial pressure. During the test, the axial pressure and the
resulting axial and circumferential strain data of the specimen will
be transmitted to the computer processing system in real time and
displayed in the form of stress-strain curves. This greatly facilitates
the testers’ monitoring and analysis of the specimen’s current status.
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FIGURE 4
Low Temperature Geotechnical Triaxial Test System. (A) Configuration of low temperature geotechnical triaxial test system. (B) The schematic diagram
of the working principle of low temperature geotechnical triaxial test system.

Before initiating the test, the temperature in the test chamber
was adjusted to the target level, and the sample underwent a 2-
h pre-cooling period. Following this, the sample was loaded into
the chamber, and a prestress of 100 N was applied to secure it.
The sample was then frozen for an additional 6 h to ensure it
reached the target temperature at the commencement of the test.
The stress path diagram for the triaxial test is presented in Figure 5,
with preloading as the initial point. During both the preloading
and freezing stages, only the 100 N prestress was applied to the
specimen. Subsequent to the freezing stage, hydrostatic pressure

was increased to achieve the target confining pressure, maintaining
equal axial and confining pressures, thus ensuring a deviatoric stress
of 0 MPa. After reaching the target pressure, it was stabilized for
30 min. Finally, axial loading was applied at a rate of 0.3 mm/min
until the specimen failed (Coal Industry Press, 2011). Figure 6
illustrates the comparison of specimens before and after the test.
It can be observed that the specimen experienced significant axial
compression, resulting in a radial deformation characterized by
an “hourglass” shape, with pronounced wrinkles appearing at
both ends.
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FIGURE 5
The stress path diagram and the stress change of the specimen during the triaxial test.

FIGURE 6
Comparison of changes of calcareous clay samples before and
after test.

3 Test result analysis

3.1 Relationship between deviatoric stress
and axial strain

The stress-strain curves of frozen calcareous clays at various
temperatures are depicted in Figure 7 (In the figure σ1 − σ3 is
the deviatoric stress and ε1 is the axial strain). These curves

exhibit strain-hardening characteristics across different interaction
levels (Wu et al., 2017). Specifically, at −5°C and −10°C, the
curves demonstrate weak hardening behavior, while at −15°C and
−20°C, they exhibit general hardening behavior. The transition
from weak to general hardening with decreasing temperature can
be attributed to the gradual transformation of liquid water in the
soil into solid ice crystal particles. This transformation enhances
both the strength and strain-hardening characteristics of the soil
body due to the increased cementing effect of the ice crystal
particles (Shi et al., 2020).

Figure 8 schematically illustrates the microstructure and
mechanical behavior of frozen calcareous clay (In the figure σ3
is the confining pressure). Under axial and confining pressure,
frozen calcareous clay experiences extrusion and friction between
soil particles. During the freezing process, the transformation
of liquid water into ice diminishes its lubricating effect. The
formation of cementing ice tightly binds adjacent soil particles
together, enhancing cohesion. Additionally, the presence of
pore ice acts similarly to the addition of aggregates to cement,
significantly increasing the strength of the calcareous clay
(Wu et al., 2024; Wu et al., 2022).

The deviatoric stress-axial strain curves of frozen calcareous
clay exhibit distinct elastic and elastoplastic phases, which can be
elucidated through the following analysis: Initially, under the applied
hydrostatic pressure for 30 min, the pore space within the sample
undergoes compaction. Concurrently, the presence of cemented ice
fosters a dense structure among soil particles. During this phase,
the specimen’s deformation modulus is substantial, leading to a
rapid increase in preload with axial strain, characterized by a linear
relationship. This behavior, which may originate from the presence
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FIGURE 7
The deviatoric stress-axial strain curves of frozen calcareous clay at different temperatures. (A) T=−5°C. (B) T=−10°C. (C) T=−15°C. (D) T=−20°C.

of intact cemented ice and pore ice, reflects elastic properties.
As axial strain continues to increase, the preload and axial strain
exhibit non-linear growth. The slope of the curve, representing the
deformation modulus, gradually diminishes and stabilizes, without
exhibiting a distinct peak throughout the curve. At this stage, the
internal cemented ice and pore ice within the specimen undergo
compression or even disintegrate, leading to the gradual formation
and expansion of internal cracks (Wu et al., 2020). Consequently,
the specimen becomes damaged, the deformation modulus
gradually decreases, and its resistance to deformation weakens
(Zhang et al., 2024).

Figure 7 reveals that during the elastic phase, both the slope
(modulus of elasticity) and stress value at the inflection point
(Junction of elastic and elastoplastic phases) demonstrate an
increasing trend with decreasing temperature and increasing
confining pressure. This phenomenon may be attributed to
several factors: Firstly, the decrease in temperature reduces
the content of unfrozen water, thereby increasing the presence
of cemented ice and pore ice. Consequently, the effects of
cementation and “replacement” are amplified, leading to an
augmentation in the specimen’s deformation modulus. Secondly,

the rise in confining pressure intensifies the external load on
the specimen (Zhang et al., 2023). Microscopically, the pore
space experiences further compaction due to the elevated
confining pressure, resulting in closer contact between soil
particles and increased compression and friction. Macroscopically,
the specimens endure greater confining pressures, enhancing
confinement and thereby augmenting their ability to resist
deformation.

3.2 Sensitivity analysis of various factors on
failure stress

Considering the strain-hardening nature of the stress-
strain curves in this test, the deviator stress at an axial
strain of 15% serves as the failure stress for analysis
(China Planning Press, 2019). Figure 9A compares the results
at different temperatures, indicating a gradual increase in the
specimen’s failure stress as temperature decreases, a trend that is
pronounced. Under identical temperature conditions, the failure
stress of the specimen exhibits a positive correlation with confining
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FIGURE 8
Microstructure and mechanical behavior of frozen calcareous clay particles.

pressure. Notably, at 5°C, the peak deviatoric stress of A-2 surpasses
that of A-3. Analyzing A-2 and A-3 specimens reveals that A-2
has a dry density of 1.86g/cm3 and a moisture content of 17.5%,
while A-3 has a dry density of 1.76g/cm3 and a moisture content
of 20%. Although A-2 exhibits higher dry density compared to
A-3, its moisture content is lower. The discrepancy in failure
stress between A-2 and A-3 may originate from the fact that
at 5°C, some free water within the specimen remains in liquid
form despite freezing. It should be indicated that liquid water,
while possessing a lubricating effect, weakens the cementation
and “replacement” effect of ice, consequently diminishing the
specimen’s strength. However, the increase in dry density increases
the number of soil particles in the specimen, reduces porosity,
enhances effective contact area between particles, and intensifies
extrusion and friction, thereby significantly improving compressive
strength. Hence, at this temperature, the impact of water content
on sample compressive strength is minimal compared to dry
density.

In Figure 9B, at a moisture content of 17.5%, the failure stress
of C-1 surpasses that of B-3, despite B-3 having higher confining
pressure and dry density. This may be attributed to C-1 being at
−15°C, where nearly all free water freezes and the process of bonded
water freezing initiates. At this temperature, the lubricating effect
of liquid water diminishes significantly, while the cementation and
“replacement” effects of ice are greatly enhanced. This substantial
enhancement in ice cementation and “replacement” significantly
increases the compressive strength of the specimen.This observation

aligns with the general hardening nature of the stress-strain curve at
−15°C, underscoring the significant impact of temperature on failure
stress magnitude.

Analysis of Figures 9B,C reveals a disordered distribution of
failure stress under constant dry density and moisture content
conditions. This suggests that while dry density and moisture
content exert some influence on failure stress, their impact
is almost negligible compared to temperature and confining
pressure.

The test data acquired from orthogonal experiments (Jiang et al.,
2021) are typically subjected to sensitivity analysis for data
processing. This involves averaging the extreme differences in
the target value influenced by each factor, thereby identifying the
primary factors affecting the target value through the difference
between the maximum and minimum test values (Deng et al.,
2023). The sensitivity analysis results, presented in Table 3,
indicate that temperature exhibits the most substantial effect
on failure stress, with an extreme difference value of 2.99 MPa,
while moisture content has the least impact, registering an
extreme difference value of 0.78 MPa. The sensitivity ranking
of each influencing factor on failure stress is as follows:
temperature > pressure > dry density > moisture content.
This hierarchy underscores that the influence of temperature
and pressure on failure stress far surpasses that of moisture
content and dry density. Thus, the pronounced effect of
temperature and pressure on failure stress aligns with the
earlier analysis.
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FIGURE 9
The failure stress histogram of frozen calcareous clay under various factors. (A) Temperature. (B) Moisture content. (C) Dry density.

4 Modified Duncan-Chang
constitutive model of frozen
calcareous clay

4.1 Determination of unfrozen water
content calculation formula

Alterations in the unfrozen water content of permafrost,
representing the phase transition between solid and liquid water
directly affect the soil’s mechanical properties (Pardo Lara et al.,
2021; Wen et al., 2012). To investigate this phenomenon, an NMR
test system was employed in this study to measure the unfrozen
water content of the samples under the specified orthogonal test
conditions. It was ensured that the temperature had reached the
designated level and had stabilized for a minimum of 2 hours
before conducting the measurements. The NMR test system setup
is illustrated in Figure 10.

Figure 11 depicts the evolution of unfrozen water content
concerning temperature, delineated into three distinct phases: (1)
From 0°C to −2.7°C: Sharp Decrease Phase - As the temperature
drops below the freezing point of the calcareous clay, the free

water within the soil undergoes a rapid phase transition and rapid
freezing.This abrupt changemanifests as a sharp decline in unfrozen
water content. (2) From −2.7°C to −11.5°C: Rapid Decrease Phase
- Within this temperature range, any remaining free water in the
soil continues its freezing process, leading to a significant reduction
in unfrozen water content. (3) From −11.5°C to −25°C: Slow
Reduction Stage - At this juncture, the free water in the soil is
predominantly frozen, while the phase transition of bound water
commences. Bound water, tightly adhering to soil particles due
to capillary action, electrostatic adsorption, and surface tension,
encounters difficulty in freezing (Wen et al., 2012). Consequently,
the unfrozen water content diminishes gradually at a slower pace.
In summary, the progressive decrease in temperature prompts the
gradual freezing of free water within the soil, while the freezing
of bound water occurs with greater resistance, resulting in the
observed evolution of unfrozen water content across the described
phases.

The quantity of unfrozen water content within permafrost
significantly influences its strength, making the investigation of
unfrozen water content essential (Chen et al., 2021; Zhang et al.,
2020). To estimate the unfrozen water content, this study employs
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TABLE 3 Sensitivity analysis of failure strength.

Sample number Temperature/°C Confining
pressure/MPa

Water content/% Dry
density/(g/cm3)

Breaking
stress/MPa

A-1 −5 0.5 15 1.66 1.86

A-2 −5 1 17.5 1.86 3.38

A-3 −5 1.5 20 1.76 3.18

A-4 −5 2 12.5 1.56 4.52

B-1 −10 0.5 12.5 1.76 3.30

B-2 −10 1 20 1.56 3.89

B-3 −10 1.5 17.5 1.66 4.44

B-4 −10 2 15 1.86 5.55

C-1 −15 0.5 17.5 1.56 5.26

C-2 −15 1 15 1.76 5.50

C-3 −15 1.5 12.5 1.86 5.54

C-4 −15 2 20 1.66 5.68

D-1 −20 0.5 20 1.86 4.96

D-2 −20 1 12.5 1.66 4.86

D-3 −20 1.5 15 1.56 7.35

D-4 −20 2 17.5 1.76 7.74

R 2.99 2.03 0.78 1.05

the empirical formula introduced by Xu et al. (2001). The
amount of unfrozen water content can be calculated using the
Equation 3:

ωu = ωT f
bT−b (3)

where ωu is the unfrozen water content at -T°C, %; ω is the initial
water content, %; T f is the absolute value of the freezing temperature
of the sample, °C; T is the absolute value of temperature, °C; b is the
test constant.

According to the NMR test results, the starting freezing
temperature of calcareous clay was identified as −0.8°C.
The measured data were subjected to fitting, and the fit is
illustrated in Figure 12. The fit appears to be satisfactory, with
a correlation coefficient of R2 = 0.97687. This high value
suggests that the formula can effectively depict the relationship
between the unfrozen water content of calcareous clay and the
temperature and initial water content. Consequently, it can provide
more accurate predictions of the unfrozen water content of
calcareous clay.

ωu = 0.80.54945ωT−0.54945 = 0.8846ωT−0.54945 (4)

4.2 Modified Duncan-Chang constitutive
model

The Duncan-Chang model (Dong et al., 2023) employs
hyperbolic equations to describe the stress-strain behavior of soil.
The model can be mathematically expressed as follows:

σ1 − σ3 =
ε1

λ+ vε1
(5)

where λ and v are experimental constants. Through coordinate
transformation, Equation 5 can be rewritten in the form below:

ε1
σ1 − σ3
= λ+ vε1 (6)

Equation 6 can be considered the primary function of
ε1/(σ1 − σ3) and ε1. Using this functional form, the orthogonal
test data can be analyzed and sorted in a secondary analysis to
derive the relevant parameters λ and v. The sorting results are
presented in Figure 13.

Figure 13 reveals that the parameters’ linear fit correlation
coefficients R2 exceed 0.9, indicating a significant linear
fit correlation. In Equation 6, the parameter v represents
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FIGURE 10
Configuration of nuclear magnetic resonance test system.

FIGURE 11
The evolution law of unfrozen water content of frozen calcareous clay
with temperature under different water contents.

FIGURE 12
Formula fitting of unfrozen water content of frozen calcareous clay.
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FIGURE 13
Parameter fitting of Duncan-Chang model at different temperatures. (A) T=−5°C. (B) T=−10°C. (C) T=−15°C. (D) T=−20°C.

TABLE 4 The fitting results of parameters v and λ.

Confining pressure

Temperaturemets −5°C −10°C −15°C −20°C

v λ v λ v λ v λ

0.5 MPa 0.40434 1.85361 0.2643 0.58672 0.17691 0.50178 0.17403 0.53485

1 MPa 0.22696 0.89906 0.24994 0.15103 0.19025 0.092 0.20388 0.0501

1.5 MPa 0.27674 0.543 0.19707 0.38472 0.17 0.20297 0.11809 0.25754

2 MPa 0.21791 0.08104 0.17736 0.05883 0.16315 0.30348 0.11841 0.20022

the slope of the straight line and λ is the intercept of
the straight line on the vertical axis. The values of these
parameters obtained from the fit are collated and presented
in Table 4.

Table 4 indicates that the parameters v and λ vary with changes
in confining pressure and temperature. The temperature affects the

unfrozen water content within the sample, so it is assumed that the
relationship between the parameters v and λ, the confining pressure,
and the unfrozen water content can be expressed as Equations 7, 8:

v = f(σ3,ωu) (7)
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FIGURE 14
Parametric equation fitting of the Duncan-Chang model. (A) Fitting formula of parameter v. (B) Fitting formula of parameter λ.

λ = g(σ3,ωu) (8)

where f(σ3,ωu) and g(σ3,ωu) are functional relations related to
confining pressure σ3 and unfrozen water content ωu.

The specific values of the unfrozen water content of the samples
at four temperatures were calculated using Equation 4. These values
were then fitted to the parameters v and λ by combining the data in
Table 4.The results of this fitting process are illustrated in Figure 14.

It is observed that the binary nonlinear fitting correlation
coefficients of parameters v and λ exceed 0.9, indicating a significant
nonlinear fitting correlation. The fitted expressions are as follows:

v =
0.5039− 0.04621σ3 − 0.33883ωu + 0.03993ωu

2 + 0.12461σ3ωu

1+ 0.38433σ3 − 0.92555ωu + 0.18341σ3
2 + 0.10091ωu

2 + 0.44398σ3ωu
(9)

λ = 5.54723
9.73223− 2.7894ωu + 28.35811σ3 − 2.05817σ3ωu

(10)

According to Equation 4, ωu is a function of initial water
content ω and temperature T. Accordingly, the relationship between
parameters v, λ and confining pressure, temperature, initial water
content can be expressed as Equations 11, 12:

v = F(σ3,T,ω) (11)

λ = G(σ3,T,ω) (12)

where F(σ3,T,ω) and G(σ3,T,ω) are functional relations that are
related to the confining pressure σ3, temperature T, and initial water
content ω.

Introducing Equation 4 into Equation 9 and Equation 10, yields
the following expression:

v =
0.5039− 0.04621σ3 − 0.29973ωT−0.54945 + 0.03125ω2T−1.0989 + 0.11023σ3ωT−0.54945

1+ 0.38433σ3 − 0.81874ωT−0.54945 + 0.18341σ32 + 0.07896ω2T−1.0989 + 0.39274σ3ωT−0.54945

(13)

λ = 5.54723
9.73223− 2.4675ωT−0.54945 + 28.35811σ3 − 1.82066σ3ωT

−0.54945 (14)

5 Discussion

The relationship between the parameters (v, λ) of the Duncan -
Changmodelandtheconfiningpressure,temperature,andinitialwater
contenthasbeendeducedabove.Thepredictionmodel for thestrength
of frozen calcareous clay under the influence of multiple factors can
be established by combining Equations 13, 14 with Equation 5. To
verify the precision of the model, the predicted curve is compared
with the experimental results, as depicted in Figure 15. It can be
noted that the experimental results are largely in accordance with
the theoretical predictions. Only when the temperature is - 15°C
and the confining pressure is 2 MPa does the correlation coefficient
show a slight decline below 0.9. This deviation occurs because the
deviatoric stress exhibits a quadratic increase when the axial strain
reaches around 7%, causing the stress-strain curve to diverge from the
expected hyperbolic shape. In light of the above - mentioned content,
the veracity of the constitutive model of frozen calcareous clay based
on the Duncan - Chang model, with the consideration of confining
pressure, temperature and water content, is verified.

In previous research, the control variable method has usually
been adopted for the analysis of this problem. The method of
separately analyzing each factor by controlling variables one
by one is inadequate for comprehensively understanding the
strength characteristics of frozen calcareous clay under the
interaction of multiple factors (Wang et al., 2017; Li et al., 2019;
Fan et al., 2021).

Accordingly, this paper utilizes the design method of the
orthogonal test to establish 16 groups of test conditions that
represent multi - factor interaction levels, aiming to conduct a
comprehensive exploration of the strength characteristics of frozen
calcareous clay under different interaction levels. The utilization of
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FIGURE 15
Comparison between theoretical curve and experimental data. (A) T=−5°C. (B) T=−10°C. (C) T=−15°C. (D) T=−20°C.

this research method has significantly enhanced our understanding
of the strength characteristics of frozen calcareous clay, thereby
laying a solid foundation for the construction of strength prediction
models. The strength prediction model established in this study is
of great significance in terms of the scientific rigour and accuracy of
engineering design in cold regions.

However, due to time limitations, the range of factors
investigated in this study is relatively narrow. We intend to expand
the scope of the research in the future to include a larger number
of factors that may affect the strength of frozen soil. The objective
of this expanded research is to identify the key factors with the
most significant impact and to modify and optimize the existing
prediction models accordingly, aiming at achieving higher accuracy
in predicting the strength of frozen soil in the natural environment.

6 Conclusion

This study employed a four-factor, four-level orthogonal test
design to conduct conventional triaxial tests on calcareous clays,
considering variables such as temperature, confining pressure,

water content, and dry density. The research focused on the non-
linear relationship between deviatoric stress and axial strain under
different interaction levels and assessed the sensitivity of each factor
to failure stress. From the experimental data, a theoretical formula
for unfrozen water content was derived, leading to the development
of a constitutive model for frozen calcareous clay based on the
Duncan-Chang model.Themain achievements of this article can be
summarized as follows:

(1) The deviatoric stress-axial strain curves at different interaction
levels all display strain-hardening characteristics. As the
temperature decreases, the curves gradually shift fromaweakly
hardening type to a generally hardening type. The curves can
be divided into elastic and elastic-plastic phases. Moreover,
the slope of the elastic phase and the stress value at the
inflection point show an increasing tendency with decreasing
temperature and increasing confining pressure.

(2) When the confining pressure is maintained constant, the
failure stress is negatively correlated with temperature. When
the temperature is maintained constant, the failure stress
is positively correlated with confining pressure. Sensitivity
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analysis shows that the influence of each factor on failure stress
is as follows: temperature > confining pressure > dry density >
water content. Additionally, the influence of temperature and
confining pressure on failure stress is markedly greater than
that of water content and dry density.

(3) The evolution law curve of unfrozen water content can be
divided into three phases: a sharp reduction phase, a rapid
reduction phase, and a slow reduction phase. An intrinsic
model of frozen calcareous clay considering temperature,
confining pressure, and water content was constructed based
on the Duncan-Changmodel, with the unfrozen water content
calculation formula acting as a link. The established modified
constitutive model was verified by experimental data, showing
its effectiveness in reflecting the stress-strain relationship of
frozen calcareous clay under the influence of multiple factors.
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