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Stochastic inversion method
based on compressed sensing
frequency division waveform
indication prior

Minmin Huang, Leyi Xu, Yanhui Zhu, Ye He, Zhiye Li and
Ying Lin*

Nanhai East Petroleum Research Institute, CNOOC (China) Ltd., Shenzhen, China

The stochastic inversion method using logging data as conditional data and
seismic data as constraint data has a higher vertical resolution than the
conventional deterministic inversion method. However, it remains challenging
to reduce the randomness of the prior obtained through conventional random
simulation techniques and to enhance its accuracy. To address this, we propose
a stochastic inversionmethod based on compressed sensing frequency-division
waveform indication prior. This method fully considers the geophysical mapping
relationship between the observed seismic data and the parameters to be
inverted across different frequency bands. And the correlation coefficients
between the seismic data at the known points and the predicted points
are obtained by solving the low-rank system of equations through the
compressed sensing method. Consequently, pseudo-kriging simulation of well
data is performed based on the similarity between known and predicted
seismic waveforms, thus establishing prior information indicated by the seismic
waveforms. On this basis, the stochastic inversion results are solved using a
very fast simulated annealing method. Both model calculations and field data
inversion effects demonstrate that the compressed sensing frequency-division
waveform indication method effectively improves the accuracy of solving
prior information under a low-rank matrix. Ultimately, the proposed stochastic
inversion method based on compressed sensing frequency division waveform
indication prior enhances the inversion accuracy and provides advantages in
identifying underground oil and gas reservoirs.

KEYWORDS

compressed sensing, frequency divisionwaveform indication, prior information, seismic
stochastic inversion, elastic impedance (EI)

Introduction

Seismic waveforms are the most intuitive display of seismic signals and contain a
wealth of information. Early research on seismicwaveforms primarily focused on classifying
waveforms for seismic phase analysis using various similarity calculation methods.
Gao (2013) analyzed the seismic waveform characteristics of wells in different types
of reservoirs, established corresponding waveform databases, and explored comparison
methods for waveform structures. Zhou (2015) quantitatively described the seismic
waveform by normalizing the seismic waveform correlation coefficient, compared the

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1505682
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1505682&domain=pdf&date_stamp=2024-12-27
mailto:ying__lin@163.com
mailto:ying__lin@163.com
https://doi.org/10.3389/feart.2024.1505682
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1505682/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1505682/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1505682/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1505682/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Huang et al. 10.3389/feart.2024.1505682

“unknownwaveform”with the “knownwaveform” from awaveform
library to predict the distribution of high-quality oil and gas
reservoirs. Zhang et al. (2016) implemented seismic waveform
classification and seismic phase identification using supervised
artificial neural networks. Cai et al. (2018) introduced a semi-
supervisedK-means algorithm for distancemeasurements, combing
it with a semi-supervised dimensionality reduction algorithm to
classify waveform and generate seismic phase diagrams. Song et al.
(2022) proposed a dynamic sub-window matching method to
measure the similarity between waveforms of varying lengths,
thereby achieving seismic waveform classification. And then,
Lu et al. (2019) established the correspondence between reservoir
fluid types and seismic waveforms by applying the fast weight k-
nearest neighbor algorithm towaveform classification, thus realizing
the identification of slit-hole type reservoir fluids. Zhang et al.
(2020) combined continuous wavelet transform and convolutional
neural networks to develop a new waveform classifier. From
the perspective of seismic phase analysis, Xu et al. (2022)
compared the accuracy of reservoir prediction results obtained
via conventional seismic waveform classification method and
seismic texture attribute clustering. Their findings demonstrated
that seismic texture attribute clustering provides more reliable
waveform classification results. At the same time, a group of scholars
have achieved reservoir prediction by directly classifying seismic
waveforms.

After that, researchers began extending the classification
of seismic waveforms to the inversion field, leveraging the
similarities in seismic waveform features. Gao et al. (2017)
proposed a seismic waveform indication inversion method based
on seismic data, integrating sedimentary laws and seismic geology
to extract common information from logging curves when the
depositional environments are similar. This process fully embodies
the phase control concept and improves the computational
efficiency and prediction accuracy compared with traditional
methods. Subsequently, Chen et al. (2020) systematically expounded
the principle of seismic waveform indication inversion and
implemented it by establishing a mapping relationship between
seismic waveform structures and high-frequency logging curve
structures. Gu et al. (2021) utilized a preferred waveform similarity
method, considering AVO feature similarity and spatial distances
correlations between seismic trace sets, to achieve waveform-driven
multiparameter constrained high-resolution inversion. Building
on phase control, Shi S. Z et al. (2024) used the connection
between seismic waveforms and logging curves for vertical
mapping, integrating waveform indication inversion to characterize
lithological combinations in coal-bearing strata and distinguish
between sandstone and mudstone. Seismic waveforms contain a
variety of information on seismic kinematics and dynamics, which
are a comprehensive response to a variety of geologic information
such as geologic depositional effects, lithologic facies combinations,
reservoir properties, and fluids. Changes in seismic waveforms
reflect variations in lithologic combinations, as similar sedimentary
features often correspond to similar lithologic assemblages, which
in turn produce comparable seismic waveform characteristics.
Therefore, seismic waveform indication inversion is a viable
approach for identifying underground reservoirs. The key challenge
lies in establishing the intrinsic connection between seismic
waveforms and high-frequency logging information. To address

this, when establishing prior information, this paper establishes
prior information by dividing the frequency bands, and then
integrates the prior information of different frequency bands into
the prior information of the entire frequency band for inversion.

Studies by different scholars have demonstrated the applicability
of waveform indication methods in a priori information building
and inversion. However, the accuracy of prior information derived
from seismic waveforms depends critically on the precision of
the correlation coefficient calculations. This is particularly true
for low-rank matrices, where the accuracy of solving them needs
further improvement. Yu et al. (2024) addressed the challenge
of solving large sparse matrices by introducing an innovative
dimensionality reduction strategy based on the discrete cosine
transform, which reduces the problem to solving smaller matrices.
Similarly, Shi Y et al. (2024) employed a fast multi- Gaussian
inversion method to reduce the dimensionality of the core inverse
matrix, significantly alleviating the difficulties associated with
solving large matrix inverses in Bayesian linearized inversion.These
studies on largematrix solutions have also provided valuable insights
for this paper.

In addition, scholars have conducted extensive research on
inversion algorithms. Metropolis et al. (1953) first proposed
the concept of simulated annealing. Kirkpatrick et al. (1983)
used simulated annealing to find the optimal solution to the
combinatorial problem. Basu and Frazer. (1990) enhanced the
simulated annealing algorithm by incorporating the temperature-
dependent Cauchy or Cauchy model to generate new solutions.
Mosegaard and Vestergaard (1991) introduced the simulated
annealing method into seismic inversion and solved the seismic
trace inversion problem through global random optimization.
Srivastava and Sen (2009) employed a nonlinear optimization
method using fast simulated annealing to achieve optimal inversion
results by minimizing the objective function. Wang et al. (2021)
solved the inversion problem of elastic impedance based on a very
fast simulated annealing method, which effectively improves the
inversion efficiency. Scholars have also explored improvements to
simulated annealing, such as fast quantum annealing methods,
which further enhance computational efficiency (Zhao et al., 2018).
Based on previous research, this paper uses a relatively mature very
fast simulated annealing method to solve the inverse problem.

Compressed sensing frequency division
waveform indication modeling method

Changes in seismic amplitude indirectly reflect the spatial
variation of underground reservoir parameters. Since there exists a
certain geophysical mapping relationship between observed seismic
data and reservoir parameters (Li et al., 2022), the interpolation of
unknown reservoir parameters in the subsurface can be completed
by guiding known well information based on known observed
seismic data.The stochastic inversion method based on compressed
sensing frequency-division waveform indication prior draws on the
traditional geostatistical prior information construction method.
The core approach for building a priori information using seismic
waveform indication is as follows. The first point is to collect
statistics on the well-side seismic trace data of all wells and the
prediction parameter curves on the wells based on the data of
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FIGURE 1
Near angle elastic impedance model, synthetic seismic data, and different pseudo-well data. (A) Near angle elastic impedance model data, (B) Near
angle synthetic seismic data, (C) 1 pseudo-well extracted, (D) 3 pseudo-wells extracted, (E) 5 pseudo-wells extracted.

all wells in the work area. The second point is to solve the low-
rank equation group through the compressed sensing method to
obtain the correlation coefficient between the seismic waveform at
the point to be predicted and the seismic waveform at all sample
points of the well-side seismic trace. The third point is the unbiased

optimal estimation of well data with high-frequency components
using pseudo-Kriging interpolation methods. The final inverted
seismic waveforms are adjusted to match the original seismic
characteristics, including the more deterministic high-frequency
elastic parameters.
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FIGURE 2
Kriging simulation results of different pseudo wells and simulation results of this paper’s method. (A) Kriging simulation results for 1 pseudo-well, (B)
Simulation results of this paper’s method for 1 pseudo-well, (C) Kriging simulation results for 3 pseudo-wells, (D) Simulation results of this paper’s
method for 3 pseudo-wells, (E) Kriging simulation results for 5 pseudo-wells, (F) Simulation results of this paper’s method for 5 pseudo-wells.

Waveform indication modeling is based on the geophysical
mapping relationship between observed seismic data and
parameters to be inverted, utilizing the similarity of seismic
waveforms to simulate unknown underground model parameters
from selected well samples. Zhou et al. (2021) described the

modeling process of the parameters to be inverted using the ordinary
pseudo-Kriging interpolation formula:

Z(x0) =
n

∑
i=1

λiZ(xi) (1)
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FIGURE 3
Near angle seismic data and elastic impedance simulation results at different frequencies. (A) Low frequency near angle seismic data, (B) Low
frequency near angle elastic impedance simulation result, (C) Medium frequency near angle seismic data, (D) Medium frequency near angle elastic
impedance simulation result, (E) High frequency near angle seismic data, (F) High frequency near angle elastic impedance simulation result.

where, Z(x0) is the value at the interpolation parameter x0 to
be simulated. Z(xi) is the corresponding value at the predicted well
sample point xi selected by the well-side seismic data. λi is the
weight of Z(xi) at the point to be interpolated. n is the number of
participating wells.

Assume that the expected c and variance σ2 for any point p(x,y)
in a region are the same, and for any point p(x,y), we have:

E[p(x,y)] = E(p) = c

Δ[p(x,y)] = σ2
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FIGURE 4
Simulation results of elastic impedance at different angles and elastic impedance inversion results. (A) Near angle elastic impedance simulation result,
(B) Near angle elastic impedance inversion result, (C) Middle angle elastic impedance simulation result, (D) Middle angle elastic impedance inversion
result, (E) Far angle elastic impedance simulation result, (F) Far angle elastic impedance inversion result.

The unbiased estimation condition is:

E( ̂z0 − z0) = 0 (2)

The ordinary Kriging interpolation formula is:

̂z0 =
n

∑
i=1

λizi (3)
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FIGURE 5
Comparison of single trace inversion results. Blue is the inversion result, red is the real model and green is the simulation result of the model.

where, z0 is the seismic data at the point to be predicted.
̂z0 is the seismic data at the point to be predicted after Kriging

interpolation. zi is the seismic data at known points. Substituting
Equation 3 into Equation 2, there is:

E(
n

∑
i=1

λizi − z0) = 0

n

∑
i=1

λi = 1

The estimated variance is:

J = Δ( ̂z0 − z0) =
n

∑
i=1

n

∑
j=0

λiλjCov(zi,zj) − 2
n

∑
i=1

λiCov(zi,z0) + σ2

Let Cij = Cov(zi,zj), then we have:

J =
n

∑
i=1

n

∑
j=0

λiλjCij − 2
n

∑
i=1

λiCi0 + σ2 (4)

The correlation coefficient is:

rij =
Cij

√Δ(zi)√Δ(zj)
(5)

where, rij is the correlation coefficient between the seismicwaveform
of seismic data point zi and the seismic waveform of seismic data
point zj.Substituting Equation 5 into Equation 4, we have:

J =
n

∑
i=1

n

∑
j=0

λiλjrij√Δ(zi)√Δ(zj) − 2
n

∑
i=1

λiri0√Δ(zi)√Δ(z0) + σ2

=
n

∑
i=1

n

∑
j=0

λiλjrijσ
2 − 2

n

∑
i=1

λiri0σ
2 + σ2

Our goal is to find the set of λi that minimizes J, and J is a
function of λi. Therefore, the partial derivative of J with respect to
λi is calculated and set to 0, that is:

∂J
∂λi
= 0

The optimal λi obtained from the solution needs to satisfy
the

n
∑
i=1

λi = 1. Therefore, the new objective function can be
reconstructed:

W = J+ 2ϕ(
n

∑
i=1

λi − 1)

We solve the optimization problem through the above formula.
Whereϕ is the Lagrangemultiplier. Solving theminimumparameter
set ϕ and λ1,λ2,⋯,λn of W, we can get the minimized J under the
n
∑
i=1

λi = 1 constraint, that is:

{{{{{{{{{
{{{{{{{{{
{

∂[J+ 2ϕ(
n

∑
i=1

λi − 1)]

∂λk
= 0 k = 1,2,⋯,n

∂[J+ 2ϕ(
n

∑
i=1

λi − 1)]

∂ϕ
= 0

{{{{{{{{{{
{{{{{{{{{{
{

∂[
n

∑
i=1

n

∑
j=0

λiλjrijσ
2 − 2

n

∑
i=1

λiri0σ
2 + σ2 + 2ϕ(

n

∑
i=1

λi − 1)]

∂λk
= 0

∂[
n

∑
i=1

n

∑
j=0

λiλjrijσ
2 − 2

n

∑
i=1

λiri0σ
2 + σ2 + 2ϕ(

n

∑
i=1

λi − 1)]

∂ϕ
= 0

⇒
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FIGURE 6
Inversion result based on Kriging simulation and relative error comparison result. (A) Inversion result based on Kriging simulation, (B) Relative error
comparison result.

{{{{
{{{{
{

n

∑
j=1

λj(rkj + rjk)σ2 − 2rk0σ2 + 2ϕ = 0

n

∑
i=1

λi = 1
(6)

Due to rkj = rjk, Then Equation 6 becomes:

{{{{
{{{{
{

n

∑
j=1

λjrkj − rk0 +
ϕ
σ2
= 0 k = 1,2,⋯,n

n

∑
i=1

λi = 1
(7)

From Equation 7, we can get the equation group
for solving the weight coefficient:

{{{{{{{{{{
{{{{{{{{{{
{

r11λ1 + r12λ2 +⋯+ r1nλn +
ϕ
σ2
= r10

r21λ1 + r22λ2 +⋯+ r2nλn +
ϕ
σ2
= r20

⋮

rn1λ1 + rn2λ2 +⋯+ rnnλn +
ϕ
σ2
= rn0

Written in matrix form:

((

(

r11 r12 ⋯ r1n 1
r21 r22 ⋯ r2n 1

⋮
rn1 rn2 ⋯ rnn 1
1 1 ⋯ 1 0

))

)

(((

(

λ1
λ2
⋮
λn
ϕ
σ2

)))

)

=((

(

r10
r20
⋮
rn0
1

))

)

(8)
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FIGURE 7
Stanford near angle elastic impedance model, synthetic seismic data, and different pseudo-well data. (A) near angle elastic impedance model, (B) near
angle synthetic seismic data, (C) pseudo-well.

By performing an inverse operation on the matrix, the weight
of the seismic data at the known point at the point to be
predicted can be obtained. According to the geophysical mapping
relationship between the observed seismic data and the parameters
to be inverted, the weight λj obtained from this matrix replaces
λi in Equation 1, thereby completing the establishment of the
initial model.

Seismic reflections from reservoirs of varying thicknesses
correspond to specific dominant frequencies in the frequency
domain. Generally, high-frequency tuning energy reflects the
tuning response of thin layers, while low-frequency energy
corresponds to the tuning response of thick layers. The tuning
response of the wavelet varies with reservoir thicknesses, as
geological bodies of different thicknesses are associated with
distinct dominant frequencies.Therefore, whenmodeling waveform
indication, we first model by dividing the frequency bands
and establish elastic parameter models under different frequency
bands. These models in different frequency bands are integrated
in the frequency domain to obtain the final required elastic
parameter model.

Next, we simplify Equation 8,

let A =((

(

r11 r12 ⋯ r1n 1
r21 r22 ⋯ r2n 1

⋮
rn1 rn2 ⋯ rnn 1
1 1 ⋯ 1 0

))

)

, x =((

(

λ1
λ2
⋮
λn
ϕ
σ2

))

)

, b =

((

(

r10
r20
⋮
rn0
1

))

)

. Then Equation 8 can be written as:

Ax = b

However, when obtaining the matrix x containing weight
coefficients, A is a matrix with insufficient rank and very
small rank. It is extremely unstable when performing the
inverse operation, resulting in the obtained matrix x containing
the weight coefficients being inaccurate and unstable. As a
result, when modeling waveform indications, the modeling
results deviate significantly from the real data and the
modeling results are inaccurate. To address these modeling
discrepancies caused by an unreliable weight coefficient matrix,
we apply the compressed sensing method to obtain the weight
coefficient matrix. L1 regularized linear regression is expressed
as follows (Chen et al., 2022):

l(x) = (1/2) ∥ Ax− b∥22 (9)

When we solve Equation 9, we are also solving the
following equation:

minimize (1/2) ∥ Ax− b∥22 + λ ∥ x∥1
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FIGURE 8
Stanford near angle seismic data and elastic impedance simulation results at different frequencies. (A) Low frequency near angle seismic data, (B) Low
frequency near angle elastic impedance simulation result, (C) Medium frequency near angle seismic data, (D) Medium frequency near angle elastic
impedance simulation result, (E) High frequency near angle seismic data, (F) High frequency near angle elastic impedance simulation result.

At this point, we introduce the alternating direction method of
multipliers to solve:

{
minimize  f(x) + g(z)
subject to x− z = 0

(10)

where, f(x) = (1/2) ∥ Ax− b∥22, g(z) = λ ∥ z∥1. Based on
Equation 9 to Equation 10, we can derive:

xk+1 = arg minx(1/2) ∥ Ax− b∥22 +
ρ
2
‖x− z(k) + u(k)‖2

2
z(k+1)

= arg minz λ ∥ z∥1 +
ρ
2
‖xk − z+ u(k)‖2

2
u(k+1)

= u(k) + xk − z(k)

Derivation to zero for x update:

AT(Ax− b) + ρ(x− zk + uk) = 0
(ATA+ ρI)x− (ATb+ ρ(zk − uk)) = 0

xk+1 = (ATA+ ρI)−1(ATb+ ρ(zk − uk))

A soft thresholding is introduced to constrain the update of z:

xk+1: = (ATA+ ρI)−1(ATb+ ρ(zk − uk))
zk+1: = Sλ/ρ(xk+1 + uk)
uk+1: = uk + xk+1 − zk+1

Here ATA+ ρI is always reversible and since ρ > 0. S is the soft
threshold operator with the following formula:

Sλ/ρ(xk+1 + uk) =
{{{
{{{
{

xk+1 + uk − λ/ρ,xk+1 + uk > λ/ρ
0, |xk+1 + uk| ⩽ λ/ρ
xk+1 + uk + λ/ρ,xk+1 + uk < −λ/ρ

Therefore, a more accurate weight coefficient matrix can be
obtained by using the aforementioned compressed sensing method,
resulting in more reliable prior information.

Numerical example

To validate the effectiveness of the method in this paper, the
marmousi2 partial model is selected for testing. We take near angle
elastic impedance as an example for simulation. Figure 1 presents
the small-angle elastic impedance model data (Figure 1A), the
corresponding synthetic seismic data (Figure 1B), and the extracted
pseudo-well data. The pseudo-well data include one pseudo-well
(Figure 1C), three pseudo-wells (Figure 1D), and five pseudo-
wells (Figure 1E). Figure 2 shows the Kriging simulation results
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FIGURE 9
Simulation results and inversion results. (A) Kriging simulation results for Stanford model, (B) Simulation results of this paper’s method for Stanford
model, (C) Inversion result based on Kriging simulation, (D) Inversion result based on the paper’s method.

FIGURE 10
Stacked seismic data at different angles. (A) Near angle stacked seismic data, (B) Middle angle stacked seismic data, (C) Far angle stacked seismic data.

(Figures 2A, C, E) and the simulation results (Figures 2B, D, F) of
this paper’s method obtained using one pseudo-well, three pseudo-
wells, and five pseudo-wells, respectively. The red arrows indicate
the locations of oil-bearing reservoirs in the model data. From
the figures, it is evident that the simulation results improve as the
number of pseudo-wells increases, for both the Kriging method and

the method proposed in this paper. In the case of fewer pseudo-
wells, the Kriging method fails to capture the spatial variation
of the elastic parameters. However, even with a small number of
pseudo wells, the method in this paper is still able to effectively
utilize the seismic waveform information, leading to amore accurate
simulation of elastic parameters at oil-bearing locations. Moreover,
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FIGURE 11
Far angle seismic data and elastic impedance simulation results at different frequencies. (A) Low frequency far angle seismic data, (B) Low frequency far
angle elastic impedance simulation results, (C) Medium frequency far angle seismic data, (D) Medium frequency far angle elastic impedance simulation
results, (E) High frequency far angle seismic data, (F) High frequency far angle elastic impedance simulation results.

the simulated small-angle elastic impedance follows the trend of
the seismic waveform, which aligns with the spatial structural
characteristics of the underground medium. The relative errors of
Kriging’smethod are 0.25, 0.24, and 0.22 for the simulation results of
the oil-bearing layers at the red arrows under one pseudo-well, three
pseudo-wells, and five pseudo-wells, respectively. For the method
proposed in this paper, the relative errors are 0.21, 0.14, and 0.10,
respectively. These results demonstrate that the method in this
paper yields relatively smaller relative errors in comparison to the
Kriging method.

Based on the above method, the modeling effect of the
compressed sensing frequency division waveform indication
modeling method is further tested by taking the small-angle
elastic impedance model data and synthetic seismic data as
examples. We set the low frequency range to 0–20Hz, the medium
frequency range to 20–45Hz, and the frequency greater than 45Hz
as the high frequency range. Figure 3 presents the seismic data
corresponding to the near-angle seismic data for the low-frequency
(Figure 3A), medium-frequency (Figure 3C), and high-frequency

(Figure 3E) bands, along with the simulation results for the near-
angle elastic impedance in these frequency bands: the low-frequency
(Figure 3B), medium-frequency (Figure 3D), and high-frequency
(Figure 3F). As shown in the figure, the elastic impedance simulation
results of different frequency bands established by the frequency
division method are consistent with the spatial variation trends
of seismic data in different frequency bands. And it can better
simulate geological bodies of different thicknesses according to
the dominant frequencies corresponding to geological bodies
of different thicknesses. The results from different frequency
bands are integrated in the frequency domain to obtain the final
required elastic impedance simulation results. Next, we further
utilize the seismic data from different angles to obtain the elastic
impedance simulation results at those angles. Figure 4 displays
the simulation results for the near angle (Figure 4A), middle
angle (Figure 4C) and far angle (Figure 4E) elastic impedance,
following the integration process described in this paper.The elastic
impedance inversion results (Figures 4B, D, F) are obtained by
combining the obtained elastic impedance simulation results with
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FIGURE 12
Simulation results of elastic impedance at different angles and elastic impedance inversion results. (A) Near angle elastic impedance simulation result
for field data, (B) Near angle elastic impedance inversion result, (C) Middle angle elastic impedance simulation result, (D) Middle angle elastic
impedance inversion result, (E) Far angle elastic impedance simulation result, (F) Far angle elastic impedance inversion result.

seismic data at different angles. Comparing the inversion results
with the real model, the overall trend of the elastic impedance is
better inverted and the location of the oil-bearing layer is clearly
depicted. Figure 5 shows a comparison of the elastic impedance
inversion results for three different angles at a single trace, with the
red curve representing the real data, the green curve representing
the modeled results, and the blue curve representing the inversion
results. Although there are some perturbations in the inversion
results, which do not exactly match the model, they still fulfill the
requirements for accurate reservoir characterization. Therefore,
the model test confirms the validity of the method proposed in
this paper.

To further validate the advantages of this paper’s method, we
perform near angle elastic impedance inversion using the Kriging
simulation results from Figure 2E, and compare them with the
inversion results obtained using the method outlined in this paper
(Figure 4B). Figure 6A shows the inversion results based on the
Kriging simulation, and Figure 6B presents box plots of the relative
errors for both the inversion results from this paper and those based
on the Kriging simulation. As shown in the figure, the relative errors
of the red solid line (inversion of the method of this paper) are all

smaller than those of the blue solid line (inversion based on the
Kriging simulation). The mean relative error for the Kriging-based
inversion is 0.040, while the mean relative error for the proposed
method is 0.015. This quantitative analysis demonstrates that the
inversion results from the method in this paper exhibit improved
accuracy, which further confirming its effectiveness.

Complex model example

To further validate the applicability of this method to complex
models, we use the Stanford model for testing. This model is a
fluvial channel system containing deltaic deposits and meandering
channels. A section in the Stanford model is taken here for
testing. Figure 7A presents the near angle elastic impedance of
the real model, in which the oil-bearing reservoir shows a low
elastic impedance. Figure 7B displays the near angle seismic data
and Figure 7C shows the extracted pseudo-well data. We set the
low frequency range to 0–20Hz, the medium frequency range
to 20–45Hz, and frequencies greater than 45Hz for the high
frequency range. The simulation results for different frequency
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FIGURE 13
Histograms of well side trace inversion results and logging data at different angles. (A) Near angle elastic impedance histogram, (B) Middle angle elastic
impedance histogram, (C) Far angle elastic impedance histogram.

bands are further established. Figure 8 shows the seismic data for
the low (Figure 8A), medium (Figure 8C) and high (Figure 8E)
frequency bands, along with the near-angle elastic impedance
simulations for each frequency range: low (Figure 8B), medium
(Figure 8D) and high (Figure 8F). The simulation results for
different frequencies are consistent with the trend of seismic
waveform changes at the corresponding frequencies. These results
are integrated to obtain the full frequency band simulation,
which is then compared with the full-frequency results obtained
using the Kriging method. Figure 9A shows the full frequency
band elastic impedance simulation results from the Kriging’s
method and Figure 9B presents the corresponding results from the
proposedmethod.We calculate the relative errors for the oil-bearing
layers based on the two inversion results. For the simulation of oil-
bearing reservoir segments, the mean relative error for the Kriging’s
method is 0.21, while the mean relative error for the proposed
method is 0.13.

The inversion is further performed based on the two simulation
results, respectively. Thus, the inversion results based on the
Kriging method (Figure 9C) and the inversion results based on

the proposed method (Figure 9D) are obtained. A comparison
of the two inversion results shows that the proposed method
more clearly delineates the boundaries and distribution of the
reservoir. Additionally, when comparing the mean relative errors
between the calculated inversion results and the real model, the
relative error of the proposed method (0.055) is smaller than
that of the Kriging method (0.083). Therefore, this complex
model test further verifies the feasibility and advantages of
this method.

Field data applications

We conduct the test using field data from a work area in
southern China. Figure 10 displays the near angle (Figure 10A),
middle angle (Figure 10B) and far angle stacked seismic data
(Figure 10C) of the field data. The method proposed in this paper
is evaluated using far angle elastic impedance simulations as an
example. For this field data test, we also set the low frequency
range as 0–20Hz, the medium frequency range as 20–45Hz, and the
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frequency greater than 45Hz as the high frequency range. Figure 11
shows the low- (Figure 11A), medium- (Figure 11C), and high-
frequency (Figure 11E) seismic data corresponding to the far angle
seismic data, as well as the results of the far angle elastic impedance
simulations for low- (Figure 11B), medium- (Figure 11D), and
high-frequency (Figure 11F). It can be observed that the trends
of the far angle elastic impedance simulation results at different
frequencies are consistent with the trends of the seismic data
at different frequencies. The far angle elastic impedance at low,
medium and high frequencies is well simulated. However, the low-
frequency seismic data at shallow depths exhibit a low signal-
to-noise ratio, leading to less continuity in the elastic impedance
simulation results at shallow locations. Therefore, the continuity of
the simulation results under waveform indication is also limited by
the continuity and signal-to-noise ratio of seismic data. Improving
the continuity of the simulation results should be considered as the
first step to improve the signal-to-noise ratio and continuity of the
seismic data.

The elastic impedance simulation results at different frequencies
are integrated in the frequency domain to obtain the final elastic
impedance simulation results at three angles. Figure 12 presents the
elastic impedance simulation results for the near angle (Figure 12A),
middle angle (Figure 12C) and far angle (Figure 12E), respectively.
Among them, the elastic impedance simulation results at different
angles are all calculated from the corresponding seismic data at
different angles. The final elastic impedance inversion results are
obtained by further inversion using seismic data from various
angles. Figure 12 also shows the elastic impedance inversion results
at near angle (Figure 12B), middle angle (Figure 12D) and far angle
(Figure 12F). In these inversion results, the black curve represents
the elastic impedance curve from the logging data, and the black
elliptical box indicates the location of the gas-bearing reservoir.
According to the previous statistical analysis of the logging data,
the elastic impedance at the gas-bearing reservoir location shows a
low value. From the inversion results, it is evident that the elastic
impedance inversion results from three different angles exhibit low
values at the gas-bearing reservoir location. And the inversion
results match well with the logging curve and exhibit good lateral
continuity. Figure 13 displays thewell side trace inversion results and
logging data histograms at different angles. The histograms reveal
that both the well side trace inversion results and the logging curves
are consistent with the Gaussian distribution, and the distribution
trend and distribution pattern are consistent. At the same time,
we also calculate the relative errors between the well data and the
inversion results. Among them, the relative error average for the
small-angle, medium-angle, and large-angle elastic impedance are
0.020, 0.018 and 0.026, respectively. The relative errors between the
three-angle elastic impedance inversion results and the well data are
all small.This also indirectly illustrates the accuracy of the inversion
results. Therefore, the field data test effectively demonstrates the
accuracy and applicability of the proposed method.

Discussion

The stochastic inversion method based on compressed sensing
frequency division waveform indication prior proposed in this
paper has contributed to improving the accuracy of low-rank

matrix solution, refining the precision of prior information and
enhancing the accuracy of inversion results. Compared with the
existing methods in the literature, the proposed method effectively
mitigates the instability of matrix solving and improves the accuracy
of constructing the prior information of oil-bearing layer by
introducing the compressed sensingmethodwhen dealingwith low-
rankmatrices. In addition, the frequency divisionmodelingmethod
can better simulate reservoir characteristics, especially improve
the recognition ability of complex reservoirs. This approach has
a significant advantage in addressing the issue of inaccurate prior
information, which is common in traditional seismic inversion
methods under complex geological conditions.

Most existing waveform indication prior information
construction methods depend on simple waveform similarity
or traditional kriging interpolation techniques. For example, the
waveform indication modeling methods proposed in the work of
Zhou et al. (2021) and Yang et al. (2023). However, these methods
are unstable during low-rankmatrix solving, leading to inaccuracies
in the prior information and thus affecting the inversion accuracy.
This paper introduces the compressed sensing method to effectively
reduce the instability of the calculation when solving the low-rank
matrix and improve the accuracy of the prior information. The
effectiveness of this method has been validated through both model
data testing and field data inversion. Especially in the case of a small
number of pseudo wells, the compressed sensing method can still
effectively improve the accuracy of constructing prior information
of the oil-bearing layer through waveform information, thereby
improving the inversion accuracy.

While waveform indicated inversion methods have also been
proposed by Shi Y et al. (2024), Chen et al. (2020), and Zhou et al.
(2021). However, they did not fully consider the role of different
frequency bands of seismic data in the inversion. The proposed
method utilizes multi-frequency band modeling technology to
establish the prior information of seismic waveform indications.
This innovation further improves the accuracy of the inversion
results. Especially in the integration of low-frequency and high-
frequency information, the proposed method is able to fully exploit
the seismic waveform characteristics under different frequency
bands. It overcomes the inadaptability of the traditional method
to frequency selection, particularly when dealing with strata
of different thicknesses. Complex model testing and field data
inversion also verified the effectiveness of multi-frequency band
modeling technology.

Despite the theoretical and applied advantages of the method
in this paper, there are some limitations. Firstly, the compressed
sensing method in this paper mainly relies on the Lagrange
multiplier optimization method. Although this resolves the
instability issue associated with solving low-rank matrices, it
introduces high computational complexity, particularly in large-
scale field applications. To address this challenge, future work could
explore more efficient compressed sensing algorithms or solution
strategies based on nonlinear optimization to further improve
the computational efficiency and applicability of the algorithms.
Secondly, while frequency division modeling can improve the
inversion accuracy, it is still a challenge to choose the appropriate
frequency band for frequency division modeling. Especially in
different geological conditions, the choice of frequency bands may
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have an impact on the inversion results. Therefore, future studies
should further explore how to adaptively select frequency bands
according to specific geological characteristics to optimize the
inversion effect.

Overall, this paper provides an efficient and accurate seismic
inversion method by combining compressed sensing, frequency
division waveform indication modeling, and fast simulated
annealing algorithm. This method not only breaks through the
limitations of traditional methods and improves the mapping
accuracy between seismic waveform information and underground
reservoir parameters, but also provides strong technical support for
field oil and gas exploration.

Conclusion

In this paper, we propose a stochastic inversion method based
on compressed sensing frequency division waveform indication
prior. This method can fully consider the mapping relationship
between the observed seismic data and the parameters to be
inverted in different frequency bands through the frequency
division method, enabling simulation results that accurately reflect
variations in geological bodies of different thicknesses. A more
accurate correlation coefficient can be obtained by combining the
pseudo-Kriging modeling method with the compressed sensing
method. This improves the accuracy of pseudo-Kriging modeling
under waveform indication and further improves the simulation
accuracy of oil and gas-bearing layers. High quality inversion results
are achieved by incorporating more accurate prior information
with stochastic inversion methods. Both model and field data
demonstrate that the proposed method improves the simulation
accuracy of hydrocarbon-bearing reservoirs compared to existing
methods, with improvements in both qualitative and quantitative
analysis. Furthermore, the combination with stochastic inversion
provides higher resolution inversion results.This method accurately
characterizes reservoir boundaries and indicates the distribution of
underground gas reservoirs. Additionally, the method is not limited
to the prediction of elastic impedance, it can also be applied to
predict parameters such as P-wave velocity, S-wave velocity and
density by combining different reflection coefficient equations to
establish prior information and inversion.
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