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This study analyses the spatiotemporal distribution of land use and land cover
(LULC) in the United Arab Emirates (UAE) over the past 50 years (1972–2021)
using 72 multi-temporal Landsat satellite images. Three machine learning (ML)
classifiers, Classification and Regression Tree (CART), Support Vector Machine
(SVM) and Random Forest (RF), were tested, with RF finally chosen for its higher
performance. Spectral, spatial, topographic, and object aspect attributes were
extracted and used as input for the RF algorithm to enhance the classification
accuracy. A dataset comprising 46,146 polygons representing four LULC classes
was created, with 80% allocated for training and 20% for testing, ensuring
robust model validation. The algorithm was trained to develop a machine
learning model that classified the data into four LULC classes namely: built
areas, vegetation, water, and desert and mountainous regions, producing eight
thematic maps for the years 1972, 1986, 1992, 1997, 2002, 2013, 2017, and
2021. The results reveal the dominance of desert and mountainous regions,
with their coverage gradually declining from over 97% in 1972 to nearly 91%
in 2021. In contrast, built areas grew from less than 1% to nearly 6%, while
vegetation cover increased from 0.71% to 2.85%. Water bodies have exhibited
periodic fluctuations between 0.4% and 0.35%. These changes are attributed
to extensive urbanization, agricultural expansion, forest plantation programs,
land reclamation, and megaprojects. Accuracy assessment of the classified
maps showed high overall accuracy, ranging from 85.11% to 98.4%. The study
provides a unique long-term analysis of the UAE over 50 years, capturing key
developments from the 1970s oil boom through subsequent megaprojects at
the onset of the new millennium, leading to reduced reliance on oil. These
findings underscore the role of machine learning and geospatial technologies in
monitoring LULC distribution in challenging environments, and the results serve
as a vital tool for policymakers to manage land resources, urban planning, and
environmental conservation.
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1 Introduction

Producing accurate and timely land use and land cover (LULC)
maps is essential for urban planning, disaster risk assessment, and
natural resource management (Hasan et al., 2020; Issa et al., 2020a).
These maps support informed decision-making by analyzing the
spatial distribution and dynamics of LULC classes (Wang et al.,
2023). LULC mapping is also significant for monitoring temporal
and spatial variations among LULC classes driven by natural
or anthropogenic factors (Jain et al., 2021). For instance, it can
detect conversions of forests and barren lands to urban areas,
track expansion of agricultural land, and observe fluctuations in
water bodies. Such monitoring is crucial in rapidly developing
regions like the Gulf, which experiences some of the highest
rates of urbanization in the world. Urbanization, a global trend
impacting all regions, often results in economic challenges, climate
variability, and environmental degradation (Almulhim et al., 2022).
In the Gulf region, including Saudi Arabia, Kuwait, Qatar, Bahrain,
Oman, and the UAE, rapid urbanization fueled by oil exploration
has driven a high demand for skilled foreign workers. By 1985,
the foreign labor population reached 4.4 million, and by 2010,
expatriates outnumbered nationals in Kuwait, Qatar, and the
UAE, presenting unique demands on infrastructure and land use
(Ramadan, 2015). Planned urban growth is therefore essential to
managing these pressures, addressing environmental risks, and
sustaining economic growth in the Gulf. Among the Gulf nations,
the UAE and Qatar are particularly notable for reaching GDP levels
comparable to developed countries, ranking in the top thirty in the
World Competitiveness Report 2019 (Schwab, 2019). Saudi Arabia’s
Vision 2030 also targets economic diversification and tourism
promotion (Khan and Iqbal, 2020). The UAE, with one of the most
diversified economies among oil-reliant Arab nations, exemplifies
this trend. Drawing on the “Dubai model” inspired by Singapore,
the UAE has aimed to attract foreign businesses and establish
itself as a regional trade hub. Most other Gulf countries are also
reshaping their economies in patterns similar to the Dubai Model
(Henderson, 2007).

In the United Arab Emirates (UAE), diverse land cover
types include expansive deserts, coastal salt flats (sabkha), urban
areas, agricultural land, and water bodies. Understanding the
distribution and extent of these land cover types is vital for
addressing land use planning and resource management challenges,
especially in such a demanding, arid environment (Burt et al.,
2023). Multitemporal LULC maps can reveal urbanization patterns
to guide planned urban growth (Wang et al., 2020), identify
biodiversity hotspots to help preserve unique flora and fauna
(Tourenq and Launay, 2008), and assist in planning efficient water
use by exploring the potential for non-conventional water resources
(Valjarević et al., 2021) for sustainable agriculture and food security
(Shahin and Salem, 2015).

Satellite imagery is a valuable source of information for LULC
mapping, offering cost-efficiency and broad coverage over long
periods (Chen et al., 2021). This makes it particularly useful for
studying and mapping LULC classes at different time stations
(Gómez et al., 2016). Remotely sensed data is available in various
resolutions, from coarse to fine, each suited to different research
needs. For regional or local studies, high spatial resolution
data, such as GeoEye-1 and Quickbird, may be ideal but often

require purchase from commercial providers or specialized access
programs. Medium-resolution data, however, provides a valuable
balance between spatial detail and accessibility, making it widely
used in remote sensing (RS) applications for LULC studies
(Macarringue et al., 2022). Amongmedium-resolution data sources,
the Landsat and Sentinel-2 satellites are particularly notable. The
Landsat program, a collaboration between NASA and the United
States Geological Survey (USGS), has been collecting data since
1972, making it one of the most comprehensive archives for Earth
observation. Each Landsat mission has progressively enhanced its
imaging capabilities. The early Multispectral Scanner System (MSS)
on Landsat 1–5 had an 80 m spatial resolutionwith 6-bit radiometric
depth across four spectral bands (Goward et al., 2022). However,
Landsat 7 introduced a 15 m panchromatic band, and more recent
missions (Landsat 8 and 9) feature advanced sensors like the
Operational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS), which provide higher spectral and radiometric resolutions
(12–14 bits) and enhanced spatial accuracy (Goward et al., 2022).
This long historical archive makes Landsat particularly valuable for
temporal LULC analyses.

The European Union’s Copernicus Program, through its
Sentinel-2 constellation (Sentinel-2A and Sentinel-2B), also
offers a robust source of medium-resolution data. Launched
in 2015, Sentinel-2 captures imagery at a spatial resolution
of up to 10 m across 13 spectral bands, with a revisit
frequency of 5 days (ESA, 2022). This high temporal resolution
is particularly beneficial for contemporary monitoring, although
it lacks the historical depth of Landsat. Combining Sentinel-2’s
high revisit frequency with Landsat’s extensive temporal archive
can provide a comprehensive dataset for monitoring and analyzing
LULC changes.

Classifying RS data is challenging, prompting the application
of various methods that range from pixel-based to object-oriented
classification methods. In recent years, machine learning (ML)
classifiers have gained popularity due to their ability to handle high-
dimensional data andmap complex LULC classes (Dahy et al., 2021).
In recent years, machine learning (ML) classifiers have gained huge
popularity as an alternative to traditional methods (Aryal et al.,
2023). ML is a subtype of artificial intelligence that operates on
the fundamental concept of computer systems to make informed
decisions with reduced human involvement. ML is known for
its reliability in handling high dimensional data and accurately
mapping intricate LULC classes. Method based on the idea that
computer systems can learn from data to identify patterns and
make decisions with minimal human intervention. The strengths
of ML include the capacity to handle data of high dimensionality
and to map LULC classes with very complex characteristics.
There are three main types of ML methods for LULC mapping:
supervised learning, unsupervised learning, and semi-supervised
learning (Zhao et al., 2023). Supervised algorithms are trained
using tagged pixel samples and apply what they have learned
to predict the labels of new, unlabeled LULC data (Boori et al.,
2018). They use techniques like regression and gradient boosting
to predict labels for unlabeled LULC data (Ait Naceur et al., 2024).
Supervised algorithms, like random forest (RF) (Adam et al.,
2014; Thakur and Panse, 2022), support vector machine (SVM)
(Cardoso-Fernandes et al., 2020;Thakur and Panse, 2022), k-nearest
neighbor (kNN) (Kalpana and Nandhagopal, 2021; Thakur and
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Panse, 2022), and the artificial neural network (ANN) (Alshari et al.,
2023; Baig et al., 2022) use tagged pixel samples to predict
the labels of new, unlabelled LULC data (Khatami et al., 2016;
Talukdar et al., 2020). Despite their success in LULC mapping in
the UAE, ML classifiers face challenges like atmospheric conditions
and spectral confusion (Rogan and Chen, 2004), particularly in
desert areas, complicating the differentiation of LULC classes
(Stefanov et al., 2001).

The literature features numerous ML algorithms, each with
its own strengths and weaknesses. What may work well for one
environment or application may not suit others (Sarker, 2021).
ML algorithms, like RF and SVM, have also been used for LULC
classification and mapping in the UAE (Dahy et al., 2022). Despite
the growing interest in LULC classification and mapping using
satellite imagery in the UAE, there are still some challenges that
need to be addressed. For example, the accuracy of LULC maps
can be affected by various factors, such as atmospheric conditions,
sensor calibration, and image resolution (Rogan and Chen, 2004).
Additionally, spectral confusion of various materials, particularly in
desert areas, can make it difficult to distinguish between different
LULC classes (Stefanov et al., 2001).

To overcome these challenges, researchers have proposed
various approaches, including combining multiple satellite data
sources, using spectral indices, and incorporating ancillary data
like topographic information and soil data (Mulder et al., 2011).
Spectral indices expand training data and improve the classification
algorithm’s effectiveness (Deus, 2016; Ghosh and Behera, 2018;
Prasad et al., 2022). For instance, indices like the Normalized
Difference Built-up Index (NDBI) and Dry Bare-Soil Index (DBSI)
are particularly useful for distinguishing LULC classes prone to
misclassification, such as built-up areas and desert regions, by
addressing their spectral similarities. Additionally, the Normalized
Difference Vegetation Index (NDVI) was employed to enhance
the identification of vegetation and distinguish it from other land
cover types. Similarly, the Normalized Difference Water Index
(NDWI) was used to differentiate water bodies from built-up
areas and vegetation. These indices, along with other spectral
and topographic features, helped refine the model’s ability to
classify complex landscapes with high accuracy. Despite challenges,
satellite based LULC classification in the UAE offers valuable
information for land management, conservation, and climate
change monitoring. In the present research, various supervised ML
classifiers were assessed, selecting the RF classifier for its superior
performance, achieving 95% accuracy and a kappa coefficient
of 0.94, consistent with previous studies (Adam et al., 2014;
Dahy et al., 2022; Faheem et al., 2024; Thakur and Panse, 2022).
The study offers a novel approach through the first long-term
analysis in the arid UAE, spanning half a century, capturing key
anthropogenic activities from independence, including the 1970s
oil boom and the subsequent development of megaprojects at the
onset of the new millennium. Our goal is to produce accurate
LULC maps, providing insights into land use distribution patterns
and identifying urbanization, agricultural, and water distribution
hotspots. These maps serve as crucial tools for land registration,
urban planning, and environmental management, supporting
informed decision-making and promoting sustainable development
in the UAE.

2 Materials and methods

2.1 Study area

The UAE, located in the southeast of the Arabian Peninsula,
shares borders with Oman and Saudi Arabia. It boasts an
800 km coastline along the Arabian Gulf and the Gulf of
Oman, covering a land area of 83,600 km2. Positioned between
24° 08′ and 26° 04′ N latitude and 51° 35′ and 56° 22′ E
longitude (Figure 1). In 2017, the UAE had a total population
of 9,304,277, as reported by the Federal Competitiveness and
Statistics Authority.

The UAE experiences mild winters and hot, humid summers.
Summer temperatures reach an average of 41°C, while the average
winter temperature falls up to an average of 21°C (Salameh
and Touqan, 2023) Coastal cities of Dubai and Abu Dhabi
experience high humidity. The region’s climate, characterized by
high temperatures and low precipitation, contributes to its arid
nature. This arid climate results in limited freshwater resources and
a heavy reliance on desalination for water supply (Bolleter et al.,
2021). The topography features mountainous terrain and barren
deserts with loose sand and gravel and elevation ranging from 0
to 200 m. Geomorphology features sand dunes, inter-dunal sands,
coastal sabkhas, inland sabkhas and exposed rocks (Glennie, 2001).
Natural resources include petroleum, natural gas, and marine
resources. Main natural hazards are dust storms and common
sandstorms. Critical environmental challenges arise from limited
freshwater resources, necessitating large-scale desalination facilities.
Land conversions, driven by urban expansion, infrastructure
development, and desert greening supported by oil revenues,
have transformed the UAE into an urbanized state. Numerous
modern advancements, including megaprojects, entail reclaiming
land from the sea and modifying the LULC especially in the
coastal areas (Subraelu et al., 2022). Local authorities have invested
in large-scale greening projects, resulting in over 540 afforested
areas covering 2.42 km2 by 2017, primarily planted with date
palms (Al-Yamani et al., 2019).

2.2 Data

For this study, a total of 72 Landsat images were selected based
on data availability, image quality, and land cloud cover of less than
10%. These Landsat scenes represent the years 2021, 2017, 2013,
2002, 1997, 1992, 1986, and 1972, totalling eight datasets (Table 1).
The Collection 2 and Level 2 (C2, L2) product of Landsat-8 OLI,
Landsat-7 ETM+, and Landsat-5 TM images were used; while for
Landsat-1MSS images, the (C2, L1) products were used. All datasets
were downloaded in GeoTIFF format from theUSGSwebsite (Earth
Explorer, 2022).

In addition, 36 panchromatic band scenes (C2, L1) were used
for the years 2021, 2017, 2013, and 2017 to sharpen the 30-
m multispectral bands to 15 m. Since panchromatic bands were
unavailable for theMSS images and TM imagery prior to 1999, these
images were resampled to maintain consistent spatial resolution.
The study further utilized a Shapefile of the UAE boundary, which
includes maritime borders, and a 30 m spatial resolution Digital
Elevation Model (DEM) – ALOS DSM covering the entire UAE.
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FIGURE 1
Study area map of the UAE.

TABLE 1 Details of spectral Landsat bands used in the current study.

Sensor Year Bands Band width (µm) Resolution

OLI 2021, 2017, 2013 B3-Green
B4-Red
B5-NIR

B6-SWIR1
Panchromatic

0.53–0.59
0.64–0.67
0.85–0.88
1.57–1.65
0.503–0.676

30 m

15 m

ETM+ 2002 B2-green
B3-red
B4-NIR

B5-SWIR1
Panchromatic

0.52–0.60
0.63–0.69
0.76–0.9
1.55–1.75
0.515–0.896

30 m

15 m

TM 1997, 1992, 1986 B2-green
B3-red
B4-NIR

B5-SWIR1

0.52–0.60
0.63–0.69
0.76–0.9
1.55–1.75

30 m

MSS 1972 B4-Green
B5-Red
B6-NIR1
B7-NIR2

0.50–0.60
0.60–0.70
0.70–0.80
0.80–1.1

60 m

The processing tasks were conducted using ERDAS Imagine 2020
software package, and the resulting images were saved in (∗.img)
format of ERDAS.

2.3 Methods

Our study involves different steps leading to the creation of
eight high-quality LULC maps. Based on the visual investigation
of the eight colour composite images created (see 2.3.1 and

Supplementary Appendix A), knowledge of the researchers, and
previous studies, it was determined that our study area has four
major LULC classes: desert and mountainous areas, built areas,
vegetation, and water. Although the number of classes could be
increased for a deeper understanding (e.g., distinguishing between
sand and sabkha, or different types of vegetation-like palms,
dates, and agriculture); however, it was decided, at this stage of
the research, to focus on these four major classes for producing
significant LULC maps of the study area. The methodological
processes used in this study from data preparation to analysis are
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FIGURE 2
Flowchart of LULC time-series classification and mapping.

presented in Figure 2, while the details of these processes are given
in the subsequent sections.

2.3.1 Preprocessing
The acquired datasets underwent three pre-processing

procedures: stacking, pan-sharpening, and resampling. Firstly,
stacking involved the selection and combination of four equivalent
bands, namely, green, red, near infrared (NIR), and shortwave
infrared 1 (SWIR1) for each year from 1986 (TM) to 2021 (OLI).
For the year 1972 (MSS), the stacked bands were green, red,
NIR1, and NIR2. While relying on Landsat’s 30-m resolution for
consistency, pan-sharpening was used to achieve 15-m resolution
for selected years. Pan-sharpening was conducted by merging the
panchromatic band (band 8 at 15-m resolution) and the stacked
multispectral images using the hyperspectral color space (HCS)
resolution merge technique and the nearest neighbourhood (NN)
algorithm (Padwick et al., 2010). This procedure was only applied
to OLI and ETM+ scenes from 2002, 2013, 2017, and 2021 to
produce an enhanced image at 15 m spatial resolution. Finally,
resampling involved the use of the NN algorithm to resample
all scenes to a final pixel size of 15m × 15 m for consistency
across all years, including 1997 (TM), 1992 (TM), 1986 (TM),
and 1972 (MSS). After pan-sharpening and resampling, the scenes
for each year were merged to create mosaics covering the entire
study area (Supplementary Appendix A). Visual interpretation of
these mosaics enabled the identification of LULC classes for the
study area (see 2.3).

2.3.2 Deriving time-series indices layers
To match the four main classes identified in the study (built

areas, vegetation, water, and desert and mountains), four layers
of indices were generated for each scene. These indices include
the Normalized Difference Vegetation Index (NDVI) (Equation 1)
simplifies complex spectral information by creating a single
band using the normalized ratio of near-infrared (NIR) and
red-sensitive bands of the electromagnetic spectrum. NDVI is
particularly effective in distinguishing healthy vegetation from
stressed vegetation and differentiating vegetation from other land
cover classes (Huang et al., 2021). The Normalized Difference

TABLE 2 LULC class types identified to classify the Landsat
time-series images.

Class name Description

Built areas Built-up, transportation, marine construction

Vegetation Farms, occasional/seasonal vegetation, oases,
forests, artificial forest, urban vegetation,
grasses, parks, gardens, mangroves, and
wetland-vegetation

Water Deep water, shallow water, inland water and
lagoons

Desert and mountainous areas Sand dunes, sand sheets, barren lands and
sabkhas, exposed rocks and mountains, and
alluvial fans and soil

Built-up Index (NDBI) (Equation 2) highlights urban and built-
up areas by using the difference between the SWIR1 and NIR
bands (He et al., 2010). The Modified Normalized Difference
Water Index (MNDWI) (Equation 3) enhances the detection of
water bodies by suppressing noise from built-up and bare-soil
areas. Unlike the original NDWI, MNDWI uses the green and
shortwave infrared (SWIR1) bands instead of the NIR band, making
it more effective in urban and arid regions (Wang et al., 2018), and
the Dry bare-soil index (DBSI) (Equation 4) differentiates barren
land from other classes by emphasizing the spectral characteristics
of dry soil and sand, incorporating both the SWIR1 and green
bands (Rasul et al., 2018).

NDVI =
(NIR–red)
(NIR+ red)

(1)

NDBI =
(SWIR1–NIR)
(SWIR1+NIR)

(2)

MNDWI =
(green–SWIR1)
(green+ SWIR1)

(3)

DBSI =
(SWIR1–green)

(SWIR1+ green)–NDVI
(4)

2.3.3 Adding the indices and DEM layers to the
datasets

For each image, the derived indices’ layers, and the DEM
were added and stacked with their corresponding multispectral
image bands. This resulted in nine raster layers for each year’s
dataset: green, red, NIR, SWIR1, NDVI, NDBI, MNDWI, DBSI,
and DEM (except for MSS 1972, which had six raster layers:
green, red, NIR1, NIR2, DEM, and NDVI). These time-series (TS)
images were used as input to train the datasets and generate the
relevant attributes.

2.3.4 Classification scheme and training sets
Each image (72 images) was classified into four classes: built

areas, vegetation, water, and desert and mountainous areas. A full
description of each class is highlighted in Table 2 below.
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FIGURE 3
Distribution of the training sets (polygons) for the year 2021, as an example.

Careful consideration was given to the selection and collection
of extensive, representative training sets in the form of polygons
to accurately represent the four LULC classes. The number of
samples per scene varied as function of the abundance of the
four main classes in the scene as well as the percentage of the
scene within the boundary of the UAE. Thorough cleaning of
the training data was conducted to remove errors and outliers,
resulting in a total of 46,146 polygons (Figure 3). The training
sets were then divided into two groups: training samples (80%,
equal to 36,900 samples) to classify the images and testing
samples (20%, equal to 9,264 samples) to be used in the accuracy
assessment stage (see 2.3.7 and Supplementary Appendix B). The
geostatistical Analyst Tool in ArcGIS was utilized to randomly split
the samples. Lastly, the testing sample polygons were converted to
points by creating polygon centroids using the Data Management
Tools in ArcGIS.

2.3.5 Relevant attributes
To extract the object aspect (shape attribute) of the classes,

“compactness” layers were generated in the vector data model
and added to the datasets prior to conducting the classification.
The compactness layer represents the ratio of the perimeter of a
circle whose area is equal to that of the feature, to the perimeter
of the feature. By incorporating this aspect into our datasets
prior to conducting the classification, we aimed to improve the
discrimination between built areas and desert regions. This resulted
in ten layers used for the classification process, with seven layers
used for the 1972 MSS datasets. These layers were used to extract
four relevant attributes: spectral, spatial (textural), topographic
(elevation), and object aspects (compactness).

2.3.6 Classifying using ML-RF algorithm
In this study, the Classification and Regression Trees (CART),

SVM, and RF classifiers were tested. Ultimately, the RF classifier was
chosen for its higher accuracy and simpler implementation (Issa and
Sultan, 2024). The initial step involved using the training samples
to extract spectral (mean of Digital Number (DN) value), spatial
(variance of DN value), topographic (elevation), and object aspect
(compactness) attributes, which were then saved as shapefiles. The
RF algorithm was then trained on this data to create the machine
intellect before generalizing and performing the actual classification.
The final step involved conducting the actual classification to
produce thematic maps with the four defined classes. The spatial
model used for the classification was developed using the ERDAS
Imagine Spatial Modeler tool. Finally, the encoding depth of each
thematic map was reduced from 64 bit to 4 bit to facilitate further
processing steps such as accuracy assessment, mosaicking, and
subset analysis.

2.3.7 Accuracy assessment and mapping
After performing RF classification on each scene, we

conducted individual accuracy assessments for the scene. For this
purpose, a confusion matrix, using testing samples (see 2.3.4)
was created, allowing us to visualize the performance of the
classification algorithm by comparing predicted classes against
actual classes (Foody, 2002). Next, we created separate masks
for each class; by doing so, it became easier to identify and
address the misclassified pixels within that specific class. This
step allows for a more targeted and efficient manual correction
process, as the focus is narrowed down to one class at a time.
The key factors contributing to misclassifications were identified
as spectral similarities between built areas and desert, as well as
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FIGURE 4
Eight LULC maps of the UAE over the last 50 years.

between hill shade and water class, leading to inaccuracies in
the classification results. Subsequently, overall LULC maps were
generated for all the selected years based on the classification
outcomes. To create these maps, the classified scenes generated
for each year were mosaicked and cropped with the UAE land
borders, excluding the sea, to show the LULC classes within the
land borders.

3 Results

Eight thematic maps spanning 50 years, from 1972 to 2021,
covering the entire UAE mainland has been generated (Figure 4).
These TS maps correspond to the years 1972, 1986, 1992,
1997, 2002, 2013, 2017, and 2021, illustrating the spatial
distribution of key LULC classes: built areas, vegetation, water,
and desert and mountainous areas. These maps provide a
visual representation of LULC patterns in the region, which
can be valuable for applications such as informed spatial
planning projects.

Accuracy assessment is a crucial step in LULC classification
to validate results. A detailed description of accuracy
results, including the overall accuracy and Kappa statistic
for Landsat images across the study area over the years, is
presented in Supplementary Appendix C. The results show high
overall accuracy percentages ranging from 88.11% to 98.46%
and corresponding Kappa statistic ranging from 0.24 to 0.98,

indicating the reliability of the classification outcomes. Highest
overall accuracy and kappa statistic were observed in 2021 while
lowest in 1972.

Visual interpretation of LULC maps displays desert and
mountainous areas as the most prevalent LULC throughout the
study period. The maps also reveal significant spread of built areas
in the emirates of Abu Dhabi, Dubai, Ajman, and Sharjah due to
economic opportunities and land development. Green areas have
expanded in Dubai and Abu Dhabi, reflecting urban greening
initiatives and agricultural reforms. For instance, in Al Awir, Dubai,
a project was implemented to reduce water consumption by up to
70% during cucumber production (Al-Qaydi, 2016). Similarly, in
Al Dahara, Abu Dhabi drip irrigation system introduced, which
decreased the water usage by 75% and fertilizer application by 50%
compared to previous practices (Al-Qaydi, 2016). The water class
shows a decline in coastal areas resulting from coastal development
and megaprojects.

The charts presented in Figure 5 give a glance at the distribution
of LULC classes over the study period (1972–2021), showing the
land cover by class in the mapped years. The data reveals that
desert and mountainous areas have consistently covered more than
90% of the area, although there has been a persistent decline
in this LULC class over the years. Concurrently, the built area
has shown continuous growth, along with the vegetation class.
However, thewater class, which has remained consistently low at less
than 1% throughout the study period, is experiencing a reduction
over time.
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FIGURE 5
A statistical glance at the distribution dynamics of LULC classes over the study period.

4 Discussion

Despite being the largest class, desert and mountainous areas
have shown significant variations throughout the study period.

Initially covering nearly 97.81% of the total area in 1972, the
distribution has decreased to 97.13%, 96.48%, 95.30%, 93.46%,
92.14%, 91.53%, and 91.06% in 1986, 1992, 1997, 2002, 2013, 2017,
and 2021 respectively.The conversion of desert areas into built areas
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and vegetation is rapid primarily due to the availability of land;
typically, these conversions do not significantly harm the desert
ecosystem. However, threats such as excessive grazing lead to loss
of desert rangelands, soil erosion and compaction in certain regions
of the country (Abed and Hellyer, 2001; El-Keblawy and Alsharhan,
2003). The conversion of deserts to built areas is a common
trend among Gulf countries, as seen in Saudi Arabia’s Riyadh
(Alshammari et al., 2019) and Ibri in Oman (Mansour et al., 2022),
where the built environment has expanded at the cost of desert,
barren soil, and vegetation, raising concerns over water resource
depletion and environmental degradation. Excessive urbanization
also leads to the urban heat island phenomenon, observed in
cities like Dubai. Conversely, Al Ain, known as a garden city in
the UAE, maintains green spaces and parks to mitigate urban
heat. However, the villa-style housing, unlike taller buildings in
other urban centers, along with the city’s agricultural demands,
has led to high water consumption and significant groundwater
depletion (Mohamed et al., 2018).

The initial force behind the conversion of the desert into other
land covers and subsequent development began with the discovery
of oil reserves, which opened the doors for economic opportunities
and work. This was later followed by economic diversification
policies and the need to accommodate a rising population through
large numbers of immigrants, alongwith their food, water, and living
needs (M. Khan, 1981; Shihab, 2001).

The second most dominant class is the built area, which initially
occupied only 0.97% of the total area within the UAE’s land borders
in 1972, reaching 1.35% in 1986, 1.69% in 1992, 2.57% in 1997,
3.35% in 2002, 4.78% in 2013, 5.46% in 2017, and finally 5.8%
in 2021. The distribution of built areas has varied over the years.
The remarkable pace of development is attributed to oil revenue,
providing significant financial resources for infrastructure and
urbanization, making UAE one of the fastest growing nations inmid
20th century (Shihab, 2001). This financial influx has enabled the
country to not only keep pacewith but also outstrip the development
seen in many other nations. Urban growth, driven by planned
activities, was evident from 1972 to 1986, reflecting the early stages
of development and infrastructure expansion to accommodate a
growing population. By 1975, this percentage had risen to 69.5
percent, the highest among the GCC countries (Winckler, 1997).
Between 1986 and 1992, the UAE faced a decline in oil revenues
due to the fall in oil prices and the Gulf War, which affected its
economic growth and development plans. The UAE had to diversify
its economy and reduce its dependence on oil (Winckler, 1997).
The creation of free zones, designated economic zones with relaxed
administrative requirements and diminished conventional trade
impediments, has been another major driver of rapid development
in the UAE. One prominent example is Jebel Ali, which was
established in the 1980s and expanded in 1996 (Shayah and Qifeng,
2015). At the beginning of the new millennium, notable mega-
projects in Dubai, including the “Palm Islands” and “World Islands,”
alongside the development of waterfront cities, rose. The major
development projects of the UAE like construction and opening
of Burj Khalifa, Dubai, in 2010, also led to extensive development
projects in the surroundings too. The mega cities of the UAE have
been a source of attraction to economic opportunity seekers and
tourists, suchAlMaryahCentral, the Expo 2020Dubai, theMuseum
of the Future, and the Al Qana.

FIGURE 6
Distribution of LULC classes at key locations, including (A) Dubai City,
(B) the Liwa area, and (C) Al Wathba Lake and their surroundings. The
subfigures correspond to subsequent years.

The extensive coverage of desert and mountainous areas has
made it challenging to observe and visualize the distribution of
other classes.Therefore, specific hotspots (Figure 6) within the study
area have been selected, as example, to illustrate the distribution of
different LULC classes over the years.

A closer view of multitemporal maps shows that the distribution
of built areas in Dubai and Abu Dhabi becomes more prominent
over the years. For example, Dubai’s increase in built area
distribution has been fuelled by the political decision aimed
at economic diversification through real estate investments,
recognising finite nature of oil reserves. Unlike other cities, Dubai
has not encountered constraints related to physical boundaries
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or land ownership issues facilitating unrestricted urban growth
(Mishrif andKapetanovic, 2018).This unique combination of factors
makes Dubai an intriguing and significant location for studying the
distribution of built area over the mapping period, Figure 6A shows
the selected areas of Dubai city over the years.

Despite covering a small area, vegetation is considered a
prominent LULC class in the UAE. The area covered by vegetation
was 0.7% in 1972, 1.1% in 1986, 1.51% in 1992, 1.78% in 1997,
2.81% in 2002, 2.76% in 2013, 2.66% in 2017, and ultimately reached
2.85% in 2021. While the vegetation class shows an overall rise in its
distribution throughout the study area, some fluctuations occurred
in certain years, mainly caused by the seasonal fluctuations in
some vegetation classes. Since its inception, the UAE has embarked
on a journey to enhance greenery. The rise in vegetation cover
from 1972 to 1986 can be attributed to governmental initiatives
promoting agriculture and forestry, including land allocation for
vegetation and camping, and the provision of incentives (Khan,
1981). With its early development and economic growth, the green
areas of the UAE started facing pressure mainly because of the
increasing number of grazing animals, vehicle disturbance, camping,
beside other factors. Hence threatening the rangeland. To deal
with such issues, the Five-Year National Plan (1981–85) included
desertification control and resourcemanagement (Khan, 1981).This
led to a visible increase in vegetation for the Baynunah rangeland
in Abu Dhabi (Oatham et al., 1995). Additionally, the UAE’s
participation in international environmental agreements, such as the
1989 Vienna Convention and theMontreal Protocol, underscores its
commitment to environmental conservation (Cooperation, 2020).

Sheikh Zayed bin Sultan Al Nahyan, the founder of UAE, was
known for his strong connection with the people, as reflected in
his policies, including granting three parcels of land to each citizen
for residential, commercial, and industrial purposes. His vision
extended beyond economic growth; during his reign over Al Ain
city in 1946, he established an irrigation system and emphasized
the creation of large green spaces within cities (Hashim, 2018).
Recognizing the need to protect the environment and enhance
dependence on local food, the UAE authorities have implemented
programs like establishing of the Federal Environmental Agency
in 1993 and creating several protected areas and wildlife reserves.
Success in mangrove planting initiatives has been notable despite
previous reduction due to clearance and disease (MOCCAE, 2013).
The increase in vegetation area in the UAE between 1997 and
2004 can be attributed to the establishment of the Dubai Desert
ConservationReserve (DDCR) and the expansion of urban greenery
projects (Khafaga and Officer, 2009). The DDCR aims to restore the
desert ecosystem, while urban greenery projects enhance the quality
of urban areas. Both initiatives contribute to vegetation increase
and natural resources conservation. Amid global food security
concerns, UAE’s agricultural limitations prompt focus on imports
and local farming to address growing population needs (Al-Qaydi,
2016; Sadiku et al., 2024). Besides enhancing aesthetics, the overall
increase in country’s vegetation cover aids biodiversity conservation,
soil protection, and climate regulation. Vegetation plays a crucial
role in supporting ecosystem functions including carbon capture,
water regulation, and habitat provision (Issa et al., 2020b; Issa and
Saleous, 2014).

Despite being a predominantly arid region, the UAE has notable
vegetation hotspots, such as the Liwa Oasis. The Liwa Oasis is

shaped like a crescent and sits on top of a freshwater hill at
the edge of the Empty Quarter. It is one of the two shallow
and high-quality groundwater systems in Abu Dhabi Emirate.
The area surrounding the oasis is the main farmland of Abu
Dhabi’s Western Region (Fragaszy and McDonnell, 2016). Over the
years, vegetation cover has increased gradually in the Liwa Oasis.
However, this growth raises concerns about groundwater usage,
as intensive farming and forest plantation programs may strain
existing water resources. Figure 6B shows the temporal distribution
of LULC classes in the Liwa area and its surroundings. To ensure
a balance between local needs for food, economy, and culture,
and the preservation of the delicate natural resources, careful
planning and management are necessary to protect and sustain the
groundwater in Liwa.

Given the arid nature of the region, water coverage in the UAE,
coastal and inland waters within the land borders, is relatively
limited. The initial coverage recorded in 1972 was 0.42%, which
fluctuated over the year: 0.41% in 1986, 0.32% in 1992, 0.35%
in 1997, 0.38% in 2002, 0.32% in 2012, 0.35% in 2017, and
0.30% in 2021, reflecting a mixed trend. These fluctuations can
be attributed to factors such as land reclamation along the coast
and the emergence of artificial lakes. Some minor increases in
water coverage have been observed in years with heavy rainfall and
flooding events such as in 1997 (Yagoub andAl Yammahi, 2022).The
UAE’s coastal landscape shows both expansion and retreat due to
ongoing reclamation projects and natural processes (Subraelu et al.,
2022). assessed three decades of coastal dynamics, observing retreat
inAjman andUmmAlQuwain, while other emirates show extensive
coastal reclamation. Overall, this contributes to a gradual decline in
the UAE’s natural coastline. Changes in coastal waters are associated
with the construction of new islands such as Palm Jumeirah, which
is an artificial island in the shape of a palm tree, completed in 2006.
The development of coastal cities and land reclamation projects have
led to the loss of coastal waters within the land borders of the UAE
(Dahy et al., 2024; Sherif et al., 2023).

The inland water resources in the UAE are very small in
number and their replenishment depends on flash floods from
heavy rains (Sherif et al., 2023). While the UAE depends on
rain for both surface and groundwater recharge, the scarcity and
irregularity of rainfall pose significant challenges towater availability
and sustainability (Murad et al., 2007). In response, the UAE has
prioritized both conventional and unconventional water sources to
support sustainability. Unconventional sources like dew harvesting,
for instance, are being explored as alternatives to supplement the
water supply (Valjarević et al., 2021). assessed potential sites in the
UAE’s mountainous regions where dew collectors could capture
water for agriculture, offering a limited yet innovative source of
water for arid areas.

Considering the alarming water scarcity, the government of
the UAE has initiated multiple projects to ensure optimal use
and reduce water losses during irrigation. Farmers are being
trained in this respect. Besides, considerable investment has
been made in desalination projects to meet the rising water
requirements (Murad et al., 2007).

Additionally, artificial lakes, such as Al Wathba Lake, Zakher
Lake, and Al Qudra Lake, have been created in the UAE.
Figure 6C shows the LULC distribution of Al Wathba lakes and
its surroundings over the years. Al Wathba Lake, a watershed area
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which was seen dry during the initial years of mapping, while
in later years, multiple small lakes were created, which provide a
home to various species of birds. Due to its ecological significance,
Al Wathba Lake was declared the first Ramsar site of the UAE
(Saji et al., 2018). These lakes not only serve as recreational areas
but also provide habitats for various bird species. These lakes are
recharged from treated wastewater and desalinated water. Through
these approaches, the UAE is moving towards achieving sustainable
development and improving natural habitats (Saji et al., 2018).

It has been observed that the UAE has desert and mountainous
areas as prevalent land cover, which naturally hinders vegetation
growth and lacks water resources. Despite rapid urbanization,
land degradation, is primarily caused by over grazing and salinity
from excessive groundwater drilling (Abdelfattah, 2009). While
the expansion of built areas signifies economic progress, it also
presents risks to biodiversity, natural habitats, and exacerbates the
strain on already limited water resources. Conversely, the positive
trend of vegetation growth offers benefits such as enhancing food
security, reducing the reliance on food imports, and improving the
overall environmental quality of the country. However, the rise in
vegetation may introduce its own challenges, including increased
water demand, degradation of groundwater resources, and soil
quality issues. In terms of managing inland water resources, the
UAE has been proactive in creating artificial lakes that are sustained
with treated wastewater and seawater. Ensuring the sustainable
management of these artificial lakes is paramount to preventing
water pollution and upholding ecological equilibrium within the
region. Overall, the study findings can contribute to planned
development activities.

5 Conclusion

The study aimed to map the main LULC classes of the UAE
since its independence in 1971, covering a fifty-year study period,
using multi-temporal medium resolution Landsat satellite imagery.
This comprehensive timeframe allowed us to capture and analyze
the evolution of LULC patterns over nearly five decades. Our study
covers all anthropogenic activities carried out over the study area,
from the period of independence to significant events such as the
discovery of oil reserves and major development projects.

The desert area has gradually decreased over time, although
it remains the largest land cover class, covering more than 90%
of the total area. This decrease in desert areas is accompanied by
a simultaneous increase in the built areas, which is the second
largest land cover class in the UAE. This rise in urbanization
reflects the rapid development and transformation of urban centres
in the country, driven by factors such as rapid economic growth
led by the oil boom, attracting more migration, and the effect
of globalization. Vegetation has consistently increased, reflecting
the UAE’s commitment to greening, food security, and sustainable
practices. Water bodies within the UAE’s land borders have
fluctuated due to coastal reclamation, artificial island construction,
and water conservation measures. These findings underscore the
UAE’s balancing of development and environmental sustainability.

While the use of medium-resolution Landsat data posed
limitations, it was the only freely available source spanning the
entire study period, making it a crucial baseline for future research.

Higher-resolution datasets, such as Sentinel-2, could further refine
these findings.

The generated LULC maps serve as important documentation
for various purposes, including land registration, inheritance, urban
planning, and environmental management. They provide critical
information for decision-makers and stakeholders, promoting
informed decision-making and sustainable development practices
in the UAE. The findings provide valuable information for
policymakers and planners to effectively manage the country’s
resources while balancing development with environmental
sustainability. Continuous monitoring and conservation efforts are
essential to ensure the long-term wellbeing of the UAE.
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