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Introduction

Soreghan et al. (2023) defended earlier work done from 2008 and onwards by different
coauthors (e.g., some of the following quoted by Soreghan et al. (2023), and others not
quoted; Sweet and Soreghan, 2008; Sweet and Soreghan, 2010; Soreghan et al., 2008;
Soreghan et al., 2014; Soreghan et al., 2022; Keiser et al., 2015; Sweet and Brannan, 2016;
Smith et al., 2018), on interpretations of glaciation in the Late Paleozoic tropics, as an answer
to comments by Molén (2023a).

Soreghan et al. (2023) wrote “… the intent of our paper was to present and integrate a
wide variety of data to assess consistency with an upland glacial influence”, i.e., to start with
a former interpretation and then present data in such a way that they are not at odds with
this interpretation.The twomain geological features advanced as proxies for glaciation were
patterned ground and surface mictrotextures.

Patterned ground: polygonal network of clastic wedges

Many geological processes may create clastic wedges and polygons, with a surficial
appearance similar to frost-created features, like wetting and drying, (non-freezing)
thermal contraction, in gilgai, sedimentary compaction, gravitational loading, small scale
tectonics, flexure over an uneven surface, volume change during cementation, in sheeting
joints, and almost any volume change in sediments, and it is not always clear cut
how to interpret different features (e.g., Butrym et al., 1964; Everett, 2006; Van Vliet-
Lanoë et al., 2004; Van Vliet-Lanoë, 2005; Dixon, 2009; Van Loon, 2009; Superson et al.,
2010; Robinson et al., 2017; Molén, 2023b). Such processes have on occasions been
misinterpreted as permafrost features (e.g., Butrym et al., 1964; Eyles and Clark, 1985).
As permafrost undergoes degradation, significant changes occur that impact the formation
and appearance of these fissures, necessitating a nuanced understanding of how to
differentiate between those found in non-frozen sediment and those present in perennially-
frozen sediment (e.g., French, 2018). But, the papers referred to by Soreghan et al.
(2023) do not document such detailed data, and therefore the data presented here is
also more general.

True ice wedges are commonly 1) V-shaped vertically 2) arranged in polygonal
patterns, 3) filled from above (and display vertical lamination), 4) associated with
deformations in the flanking sediments, and 5) display vertically standing stones,
if stones are present (Butrym et al., 1964). Soreghan et al. (2023) acknowledge
that their interpretation of their documented polygonal network of sand wedges is
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FIGURE 1
Fountain formation in (A, B) Red rocks park and (C, D) Manitou springs. There is a good dirt road passing the research area in Manitou Springs, and the
polygons can even be seen on google earth. (A) Example of evidence of movement (streaks of sediments, channels and/or small scale tectonics/flows)
in the sediments (N 39 40′21.54″, W 105 12′21.71″). (B) A small area of sand injections. (N 39 40′19.49″, W 105 12′27.35″. Scale is approximately 1 m).
(C) Details showing the irregular and very different sizes of the sand injections/polygons, which here is similar to, but not as varied, as other similar
structures that are visible along the dirt road. The irregular appearances were not much discussed in the work by Soreghan et al. (2022) nor Sweet and
Soreghan (2008). (D) Mosaic of the complete outcrop pictured by Soreghan et al. (2022) plastered on top of the Google Earth view. (Arrow is north.
Matching errors, including on the meter stick, is because the area is not perfectly flat. N 38 51′51.66″, W 104 53′53.70″) (Photographs by Edmond W.
Holroyd, III).

controversial, but they defend their interpretation as of probably
periglacial origin, referring to studies by Sweet and Soreghan
(2008). Except for the above five criteria, which were only in
part documented, other features were documented by Soreghan
(references as of above) which are at odds with a periglacial
interpretation of the sand wedges.

The features (Soreghan et al., 2022, Soreghan et al., 2023; Sweet
and Soreghan, 2008) refer to are incipient (Figure 1), in general
outside of the range of freeze and thaw polygons, and present in
superimposed horizons. In Quaternary periglacial areas, polygon
diameters may be between 1 and 59 m, wedge depth 0.25–80 m,
and wedge width 0.1–10 m, or more (Eyles and Clark, 1985;
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FIGURE 2
Typical glaciogenic surface microtextures, i.e., fractures displaying
steps that have been irregularly abraded (arrows showing larger
abraded areas, A1), on a grain transported by a thin mountain glacier,
probably not more than 50–250 m in thickness, Okstindene,
Västerbotten County, Sweden (Molén, 2014).

Murton, 2013; Bertran, 2022), while those documented by Sweet and
Soreghan (2008) were 15–78 cm in diameter, 13–61 cm in depth,
and 3–22 cm in width. But polygons and ice- and sand wedges do
of course always start as small and incipient. A longer or more
severe climatic deterioration discussed but not suggested in this area
by Soreghan et al. (2022), would induce structures more similar
to those close to Pleistocene alpine glaciers or inland ice caps.
Furthermore, smaller wedge polygons often occur in finer material
(Murton, 2013; Andrieux et al., 2016; Bertran, 2022), and not in
coarse sandstone and granule conglomerate as is the case for the
structures documented by Sweet and Soreghan (2008). Areas of
smaller polygons,more similar in size to those documented by Sweet
and Soreghan (2008), may be a subdivision within larger polygons
(Bertran et al., 2014; Andrieux et al., 2016; Bertran, 2022). However,
the structures documented by Sweet and Soreghan (2008) are not a
subdivision of larger polygons.

Except for the size, Quaternary examples are still different in
appearance compared to those documented by Sweet and Soreghan
(2008), i.e., the latter do not display clear deformations in flanking
sediments nor vertical lamination - and only in one locality the
sediments are interpreted to be eolian which may not preserve
evidence of vertical lamination. Laminae in the host sediment
(where present) “commonly are truncated and rarely bent upward
at wedge walls” (p. 198, Sweet and Soreghan, 2008), and there is
only one presented example of upward bentwedgewalls. Quaternary
polygons andwedges commonly display both vertical and horizontal

lamination, embedded strata of organic material, and commonly
upturned and downturned laminae in the wedge walls (Murton,
2013; Andrieux et al., 2016; Bertran et al., 2018; Wolfe et al., 2018;
Bertran, 2022). Undeformed strata, which are the most prevalent
appearance in the areas studied by Sweet and Soreghan (2008),
would be rare and difficult to explain if present in permafrost areas
(Murton, 2013), but Sweet and Soreghan (2008), p. 201) refer to
special conditions “… that the hosting stratum was massive and/or
lacked high water content” in their complete research area. Also,
at least some of their documented “frozen-ground” fractures are
tapering off upwards (Sweet and Soreghan, 2008; Soreghan et al.,
2014), similar to structures produced by soft sediment tectonics
(Butrym et al., 1964). There is no undulation or slumping in the
sediments next to the wedges, which is a common feature of
frozen ground (Sweet and Soreghan, 2008).

To summarize, features of wedges and polygons mentioned by
Soreghan et al. (2022), are:
∗Thin, notwideningmuch upwards (Sweet and Soreghan 2008,
Figures 10A–B; Soreghan et al., 2022; Figure 5C).
∗Some become wider downwards (Sweet and Soreghan,
2008, Figures. 6A–B, 10D; Soreghan et al., 2022, Figure 5B),
which indicate sand injections from below and not frost
phenomena (Butrym et al., 1964).
∗Some display an appearance of dessication fractures, and are
also bent (Sweet and Soreghan, 2008; Figures 6C–F).The latter
may indicate slight horizontal movement of the sediments, and
display similarities to cuspidate injectites and hydrofractures
produced by horizontal movement of unconsolidated granular
material (Philips, 2006; Festa et al., 2016). Dessication fractures
may originate in sediments with <10–15% clay (Cordero et al.,
2021; Wang et al., 2023), and liquefaction only in sediments
<14% clay (Światek et al., 2023), i.e., displaying a similar clay
content as the sediments documented by Sweet and Soreghan
(2008) of <14%.
∗The appearance of the sections are “spasmodic” wherever
they are visible in the areas, i.e., displaying many kinds of
thick and thin injections and not a more regular pattern
(e.g., Figures 1C, D), which would not be if the features were
slowly produced by freeze and thaw phenomena (Sweet and
Soreghan, 2008, Figure 10G). The appearance of these and
the complete outcrop is similar to features originating by
hydrofracturing, which could be a result of deposition from
sediment gravity flows (Mandl et al., 1987; Philips, 2006;
Denis et al., 2010; Pisarska-Jamroźy et al., 2024).

Quartz grain surface microtextures

The SEM work on surface microtextures by Soreghan et al.
(2022), Soreghan et al. (2023) uses the correct definitions, but
selectively use only parts of a classification scheme, and do not refer
to the combination of surface microtextures necessary for a correct
identification. Apparently single surface microtextures, whatever
size or number of ocurrences on single grains, appear to have
been recorded as a basis for their interpretations, not using overall
descriptions of the surfaces and statistics (Mahaney, 2002; Molén,
2014). Single occurrences of small scale surface microtextures
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commonly have little value and may be misidentified. The problems
with this were clearly outlined byMolén (2014) referring to operator
variance that sometimes differed between 0% and 100% detection
on the same samples, even though the researchers still had the same
interpretations of the depositional environment. (Soreghan et al.,
2022) and other papers by the same group, e.g., Sweet and Soreghan,
2008) commonly mark surface microtextures on only a few grains,
but the entire grain surfaces show, e.g., solitary fractures or those
typical of weathered grains released from bedrock and no abrasion,
i.e., these grains had to have been missed by any nearby glaciers
because they acquired no irregular abrasion. They showed typical
non-glaciogenic grains but proposed (probable) nearby glaciers
(e.g., Sweet and Soreghan, 2010; Keiser et al., 2015). They provided
no evidence of regular (fluvial) or irregular (glacial) abrasion (e.g.,
different kinds of “edge rounding”) and therefore misidentified
grains that commonly originate from release frombedrock or simple
fracturing without providing evidence of glaciation or (glacio-)
fluvial abrasion (e.g., Sweet andBrannan, 2016; Soreghan et al., 2014;
Soreghan et al., 2022; Smith et al., 2018). A typical glaciogenic quartz
sand grain is shown in Figure 2.

The assertion by Soreghan et al. (2023), that for the method
by Molén (2014) to be relevant it “requires observation of the
entire grain surface” goes against their own observations where they
actually have pictured “entire” grain surfaces (i.e., what is shown
by SEM), and also against the work of most published SEM work
on surface microtextures (e.g., Mahaney, 2002; Molén, 2014; Molén,
2017; Molén, 2023b; Molén and Smit, 2022). Their assertion, shown
from their microphotographs, that apparent ocurrences of only
single small scale surface microtextures have to be documented, and
commonly minute evidence of abrasion, goes against the work by
Mahaney (2002), Molén (2014) and others (e.g., Ma et al., 2024).
Soreghan et al. (2023) also missed the Molén (2014) reference in
their reference section.

Conclusion

The Fountain Formation (which is the formation displaying
patterned ground), close to Denver, Colorado, United States,
displays evidence of injection of sand, including clastic dikes. The
areas displaying geologic features with appearances superfically
similar to polygons and ice wedges are insignificant. There is
evidence of sedimentmovement, and on occasions thesemovements
have induced fracturing of the beds and imposed sediment injection.
The polygons are in general a direct match to different appearances

of non-glacial soft sediment structures, e.g., small scale tectonically
induced structures, displaying possible indications of sediment
gravity flowdeposition, and in detail they only superficially resemble
permafrost structures.

The surface microtextures in the area display evidence of, e.g.,
release from bedrock but not from glaciation.

Soreghan et al. (2023) stated that their work may present “the
most widely held views in this area of research, drawn from extensive
outcrops.” Although their interpretations of geological features are
perhaps the most widely held views of other areas, their study
concerns only a small area with no extensive outcrops, and the
geological features from that area display no evidence of glaciation.
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