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The occurrence of class-imbalanced datasets is a frequent observation in
natural science research, emphasizing the paramount importance of effectively
harnessing them to construct highly accurate models for rockburst prediction.
Initially, genuine rockburst incidents within a burial depth of 500 m were
sourced from literature, revealing a small dataset imbalance issue. Utilizing
various mainstream oversampling techniques, the dataset was expanded to
generate six new datasets, subsequently subjected to 12 classifiers across 84
classification processes. The model incorporating the highest-scoring model
from the original dataset and the top two models from the expanded dataset,
yielded a high-performance model. Findings indicate that the KMeansSMOTE
oversampling technique exhibits the most substantial enhancement across the
combined 12 classifiers, whereas individual classifiers favor ET+SVMSMOTE and
RF+SMOTENC. Following multiple rounds of hyper parameter adjustment via
random cross-validation, the ET+SVMSMOTE combination attained the highest
accuracy rate of 93.75%, surpassingmainstreammodels for rockburst prediction.
Moreover, theSVMSMOTEtechnique,augmentingsampleswithfewercategories,
demonstratednotablebenefits inmitigatingoverfitting,enhancinggeneralization,
and improving Recall and F1 score within RF classifiers. Validated for its high
generalization performance, accuracy, and reliability. This process also provides
an efficient framework for model development.

KEYWORDS

oversampling techniques, machine learning, shallow rockburst intensity prediction,
assessment, generalization capability

1 Introduction

As humanity explores the natural world, encountering geological hazards (Ma
and Mei, 2021) like earthquakes (Kanamori and Brodsky, 2004), volcanic eruptions
(Milford et al., 2023), and extreme weather is common (Newman and Noy, 2023).
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Despite their destructive potential, advancements in artificial
intelligence enable their prediction (Varsha et al., 2024; Abid et al.,
2021). Rockburst, a significant hazard in underground engineering,
stem from factors such as excavation-induced stress and rock
properties like elasticity and brittleness (Zhou et al., 2018). Extensive
literature review and field research reveal (Dong et al., 2016) that
rockburst occur not only in deep but also shallow underground
projects, underscoring the need for accurate prediction to safeguard
lives, health, and sustainable development. Furthermore, in the era
of big data, diverse datasets abound (Borgman, 2017), yet often
exhibit uneven distributions, termed class imbalance (Longadge and
Dongre, 2013). This phenomenon is prevalent in research, posing a
challenge to data-driven modeling. Maximizing the utility of such
datasets presents a key hurdle in academia’s pursuit of effective
modeling. In the field of sample imbalance dataset research, it can be
broadly categorized into three categories, one is the undersampling
technique, the second is the oversampling technique, and the third
is amixture of the two techniques (Luo et al., 2023). Due to the small
number of shallow rock burst data cases, in order to fully utilize
the data used, so the general use of oversampling techniques. In the
field of oversampling technology, themost researched is the SMOTE
oversampling technology, from which a number of oversampling
methods have been derived. This paper focuses on the impact of
mainstream oversampling techniques on rock burst data sets in the
study of oversampling techniques.

In recent years, the field of rockburst prediction had witnessed a
surge in research leveragingmachine learning algorithms (Yin et al.,
2024a; Yin et al., 2024b; Yin et al., 2021; Yin et al., 2022;
Yin et al., 2023; Rao et al., 2024). This trend was fueled by the
increasing development of artificial intelligence. Moreover, amidst
considerations regarding the class imbalance of rockburst case data,
these studies underscore the growing interest in employingmachine
learning for rockburst engineering prediction. Liu Q. et al. (2023)
used KMeansSMOTE oversampling method and SMOTE(Synthetic
Minority Oversampling Technique, SMOTE) oversampling method
to put into the machine learning field for detection found that
ultimately 25% accuracy improvement can be realized. Sun et al.
(2022) improved the model prediction accuracy up to 0.3636 based
on algorithms such as KMeansSMOTE oversampling method, the
stacking technical. Li et al. (2023) utilized the FS+t-SNE+GMM
method for the reselection of feature labels, which ultimately
achieved an accuracy of about 90% in the voting integration
model.

According to the above literature review and the real stress
situation, this study considers that the depth of burial of 500 m as the
boundary with other types of rock bursts is scientific and reasonable.
There are three reasons: First, the buried depth of 500 m within
the horizontal stress and vertical stress gap is huge, the maximum
horizontal principal stress and the minimum horizontal principal
stress and vertical stress ratio can reach up to 7 and 5 (Feng et al.,
2007); Second, the buried depth of 500 m within the rockburst
occurrence mechanism is more or less the same, mainly in the hard
rock tectonic stress damage is dominant; Third, it is conducive to
the revelation of different buried depth caused by the occurrence
of the rock burst law, facilitating further refinement prediction and
improve the accuracy of the prediction model.

To enhance the efficiency of tackling complex rockburst
problems, integrating novel technical modeling approaches

is essential. There are few comparative analytical studies on
oversampling techniques in mainstream rockburst prediction
models. While oversampling techniques and integrated models
have gained traction in various fields, their application in shallow
rockburst prediction remains limited. Overall, this study mainly
realizes the following innovations: (1) Analyzing and evaluating
multiple mainstream oversampling techniques, and deriving the
best-performing oversampling technique in unbalanced small
rockburst datasets from the data quantity and quality levels.
(2) Propose a model with high accuracy and generalization
ability, which performs best compared with mainstream rockburst
prediction models. (3) Distinguish between shallow and deep
rockburst based on depth of burial, and for the first time model
rockburst from this perspective, and the resulting model accuracy
exceeds that of some mainstream full-depth rockburst case models.
Based on the above issues, the framework study and model
development in this study considered six oversampling techniques
(SMOTE (Fernández et al., 2018); ADASYN (He et al., 2008);
KMeansSMOTE (Douzas et al., 2018); SMOTENC (Fonseca and
Bacao, 2023); BordenlineSMOTE (Han et al., 2005); SVMSMOTE
(Wang et al., 2021),12 classifiers (Decision Tree, DT (Song and Ying,
2015); Extra Trees, ET (Geurts et al., 2006); Gradient Boosting,
GBD (Natekin and Knoll, 2013); Gaussian Process Regression, GPR
(Schulz et al., 2018); K-Nearest Neighbor, KNN (Peterson, 2009);
Light Gradient BoostingMachine, LGB (Fan et al., 2019); Multilayer
Perceptron, MLP (Tang et al., 2015); Naive Bayes model, NBM
(Murphy, 2006); Quadratic Discriminant Analysis Algorithm, QDA
(Kim et al., 2011); Random Forest, RF (Biau and Scornet, 2016);
Support Vector Classification, SVC (Hsu et al., 2003); EXtreme
Gradient Boosting, XGB (Chen et al., 2015)). Eighty-four algorithm
combinations were systematically evaluated, leading to the selection
of the top-performing two. Stochastic cross-validation (Xu et al.,
2018) optimized hyper parameter to enhance model performance.
The RF+SMOTENC hybrid model emerged as the best, showcasing
excellent predictive metrics (Accuracy = 0.9375, Precision =
0.9531, Recall = 0.9375, F1 score = 0.9375) after comprehensive
evaluation. Notably, ET+SVMSMOTE demonstrated notable
generalization and reduced overfitting compared to other
models.

2 Materials and methods

2.1 Construction of a representative
shallow rockburst dataset

Accurate data collection is fundamental in machine learning
algorithms. Besides diversity, data quality and representativeness are
crucial considerations. Hence, constructing a high-quality dataset
is paramount. This study manually collected and compiled diverse
rock burst data from published sources, aiming to develop a highly
accurate and reliable model. Various oversampling techniques were
employed to enhance dataset quality.

To ensure dataset representativeness, various actual engineering
rock burst cases were collected (Wang et al., 1998; Zhangjun et al.,
2008; Afraei et al., 2019; Liu G. et al., 2023; Yu et al., 2013; Zhou et al.,
2022; SUN, 2019; Feng and Wang, 1994; Mengguo et al., 2008;
Xue-pei, 2005; Lai Feng, 2008; Zhang et al., 2011; Yu Xuezhen,
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FIGURE 1
Rockburst data display violin diagram.

FIGURE 2
Percentage of the number of categories of rock burst datasets.

2009; Zhou et al., 2016), detailed in Supplementary Table S1.
With a burial depth of 500 m as the delineation, the dataset
comprised 69 rock burst cases, spanning hydroelectric power station
construction, tunneling, and underground mining. Data collection
mirrored the original approach (Yunzhang and Xuezhen, 2015).The
input features included maximum tangential stress (σθ), uniaxial
compressive strength (σc), uniaxial tensile strength (σt), and elastic
energy index (Wet), while rockburst intensity levels—categorized as
None, Light, Moderate, and Strong—served as output prediction
values. Violin plots in Figure 1 illustrate feature distributions,
predominantly ranging from 20 to 80 MPa (σθ), 80–180 MPa
(σc), 2–10 MPa (σt), and 2–8 (Wet). Category percentages are
depicted in Figure 2.

2.2 Overview of oversampling techniques

In real-world data scenarios, imbalances often arise where
certain sample categories are underrepresented compared to

others. This imbalance can cause some classifiers to favor
results with more samples, thus exaggerating the accuracy of
the model. But this may not accurately reflect reality. Correctly
addressing sample imbalance is therefore crucial for improving
model accuracy. Two main approaches are commonly employed:
adjusting or integrating algorithmic models and reducing the
sample number gap between classifications through sampling
techniques.

The former approach involves analyzing the model and
application cases comprehensively to make informed choices, albeit
sometimes without satisfactory outcomes. The latter approach,
favored by scholars for its simplicity and applicability at the dataset
preprocessing stage, aims to bridge the sample number gap and
enhance the realism of simulated data. Prior to this study, several
popular oversampling techniques were outlined, providing the
foundation for comparative analysis. See Supplementary Table S2
for details. These techniques provide diverse approaches to
addressing sample imbalance and enhancing the realism and
effectiveness of predictive models.
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FIGURE 3
Framework flowchart.

2.3 Overview of the classifiers

Suitable classifiers are the basis for building models with
excellent performance. In this study, 12 mainstream classifiers were
used. They are described in Supplementary Table S3.

2.4 Framework developed

The framework’s development process, depicted in Figure 3,
entails several key steps.

(1) Initially, rockburst case data were collected from literature
sources, revealing a deficiency in Strong class data.

(2) The significant impact of class imbalance on classifier
performance prompted the exploration of six new datasets
formed through various sampling techniques. Twelve machine
learning algorithms were combined with hierarchical 5-fold
cross-validation for evaluation. Notably, data normalization
enhanced efficiency and reduced dimensionality interference.

(3) The best oversampling techniques and classifier combinations
were identified based on evaluation scores, with comparison
to top-performing classifiers in the original dataset. Key
parameters of each classifier were identified through literature
review. Data were randomly split into 8:2 ratios, and the
three classifiers were optimized using 5-fold random cross-
validation.

(4) Extensive performance comparisons were conducted,
highlighting the contribution of oversampling techniques
in addressing underclassification based on model
learning outcomes.

2.5 Indicators for the evaluation of
oversampling techniques

To accurately gauge the performance of the six oversampling
techniques across specific datasets and models, it is
essential to employ appropriate evaluation metrics. In this
context, the cross-validation method emerges as a suitable
choice. Given the class-imbalanced nature of the collected
dataset, the stratified 5-fold cross-validation score method
is selected for evaluation. This approach involves dividing
the entire dataset into five equally-sized subsets, ensuring
that each subset includes representative data from all classes
in the same proportion as the entire dataset. Moreover,
random sampling of the data further enhances the model’s
generalization ability. Figure 4 illustrates the specific process
involved in implementing this approach. This methodology
facilitates robust assessment of oversampling technique
performance while accounting for dataset characteristics,
contributing to more reliable model evaluation in real-world
scenarios.

2.6 Model evaluation indicators

Once the rockburst prediction model was established, selecting
appropriate metrics becomes crucial for assessing its performance.
In classificationmodels, accuracy serves as a key indicator, reflecting
themodel’s overall error rate.Duringmodel training, errorsmanifest
in two forms: training error within the training set and testing error
within the test set. While higher accuracy was desirable, it was
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FIGURE 4
Layered cross-validation process.

imperative to prevent overfitting during training, ensuring robust
performance on unseen data.

However, generalization error, occurring during testing on
unseen data, was inherently unpredictable. To evaluate the model’s
generalization performance, additional metrics were essential.
Precision and recall emerge as complementary metrics, focusing
on the model’s ability to correctly identify true positive instances.
Precision quantifies the proportion of true positives among all
predicted positives, while recall measures the proportion of true
positives among all actual positives.Thesemetrics assume particular
significance in rockburst damage scale prediction, where accurately
identifying hazardous conditions was paramount.

The F1 score, a harmonized average of precision and recall,
offers a balanced assessment, capturing the trade-off between
these two metrics. This score provides a unified metric that
accounts for the model’s capacity to accurately predict positive
instanceswhileminimizing false positives.Utilizing thesemetrics, as
depicted in Figure 5, ensures a comprehensive evaluation of model
performance in this study, facilitating more reliable and accurate
predictions.

3 Results and discussion

3.1 Comparative study of oversampling
techniques

The dataset analysis reveals a class imbalance, particularly
in the Strong class. To address this, the dataset was expanded
using six sampling methods: SMOTE, ADASYN, KMeansSMOTE,
SMOTENC, BordenlineSMOTE, and SVMSMOTE, resulting
in seven datasets including the original. These datasets are
labeled as N1 to N6, respectively, with the original dataset
labeled as OD (Table 1). SMOTENC and BordenlineSMOTE
emerged as effective techniques for achieving balanced class
distributions at the sample level, ensuring consistency across all four
classifications. KMeansSMOTE notably increased sample numbers
the most, while ADASYN and SVMSMOTE exhibited the smallest
increases.

In addition to quantitative comparisons, Principal Component
Analysis (PCA) (Abdi and Williams, 2010) is utilized as a
dimensionality reduction technique. PCA aims to map N-
dimensional features to K-dimensions while retaining the original
high-dimensional features. Figure 6 illustrates this process, with the
blue ball representing the original data and the red ball depicting
the synthesized data.

Downsizing 5-dimensional data to two dimensions enables
visualization of both the data distribution and the distribution of
synthesized data.

To comprehensively assess oversampling techniques’
performance on seven datasets (OD, N1-N6), twelve machine
learning algorithms (DT, ET, GBD, GPR, KNN, LGB, MLP, NBM,
QDA, RF, SVC, XGB) were employed.The evaluationmetric utilized
was the 5-fold hierarchical cross-validation score, with default
hyper parameter. Figure 7 presents the obtained data, revealing that
among horizontal comparisons, the ET classifier + SVMSMOTE
oversampling technique achieved the highest score, while the NBM
classifier + original dataset attained the lowest, with a notable
difference of 0.291. This underscores the significance of classifier
selection. In longitudinal comparisons, varied sampling techniques
exhibited distinct effects on classifiers. Notably, the GPR classifier
displayed the highest discrepancy, with a potential difference of
0.1958 between selected sampling techniques.

To elucidate the impact of oversampling techniques across
multiple models, Figure 8 presents the average scores of each
technique. Notably, KMeansSMOTE demonstrates the highest
average improvement across models, with a notable enhancement
of 0.0998. This underscores the efficacy of KMeansSMOTE across
diverse model architectures. Conversely, SVMSMOTE exhibits the
lowest average improvement at 0.0178. Nonetheless, it is evident
that employing oversampling techniques generally enhances model
performance across various scenarios.

3.2 Models performance comparison

While various oversampling techniques were explored, the
primary aim of the comparison study was to attain a highly
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FIGURE 5
Calculation process.

TABLE 1 Comparison of the number of sample increases.

OD N1 N2 N3 N4 N5 N6

None 19 21 19 23 21 21 21

Light 21 21 21 21 21 21 21

Moderate 19 19 19 22 21 21 21

Strong 10 21 20 21 21 21 16

Aggregate 69 82 79 87 84 84 79

accurate and reliable model. Consequently, the top-performing
combinations—ET+SVMSMOTE and RF+SMOTENC—were
selected for comparison. Additionally, the best-performing ET
model from the original dataset was included for training and
optimization.

Each dataset was randomly split in an 8:2 ratio, with 80%
allocated to training and 20% to testing, ensuring models did not
overfit (Zhang et al., 2024). Hyper parameter optimization was
conducted using randomized 5-fold cross-validation, targeting
key parameters—Estimators, Min samples split, Min samples
leaf, Max features, Max depth, and Bootstrap. These parameters,
being part of ensemble models built on decision trees, exhibited
consistency across models. Subsequently, the training set was
divided into five folds, with four utilized for model fitting and
one for validation. Hyper parameter values were selected based
on average accuracy across the five folds, as detailed in Table 2.
These parameters were then used to evaluate overall classifier
performance metrics—Accuracy, Precision, Recall, and F1

score—while other hyper parameter remained at default
values.

The F1 score (Chicco and Jurman, 2020) is effective in
incarnating the impact of class imbalance and serves as a
key performance metric for classifiers. Comparison of the
three classifiers with the test set prior to optimization, as
depicted in Figure 9, reveals the significant impact of hyper
parameter adjustments. Specifically, the combination of ET with the
original dataset exhibits a notable improvement of 7.5 percentage
points, while the pairing of ET with SVMSOTE demonstrates
a substantial enhancement to 0.9375, compared to the original.
Similarly, the combination of RF with SMOTENC notably improves
by 18.4 percentage points. Notably, the ET with SVMSOTE
combination attains the highest F1 score of 0.9375. Overall, hyper
parameter tuning is crucial for achieving highly accurate modeling,
underscoring its essential role in the process.

After hyper parameter adjustment, detailed evaluation of
classifiers for overfitting or insufficient generalization ability is
essential. The ideal model should exhibit high accuracy with
minimal discrepancy between training and test sets. Figures 10, 11
provide visualizations for such assessments, with detailed data in
Table 3. Overall, all three classifiers demonstrate sufficient accuracy
post-hyper parameter tuning (Liu et al., 2024).

From the two-dimensional visualization in Figure 10, the
ET and SVMSMOTE combination surpasses others in terms of
generalization ability and test set accuracy, underscoring its superior
performance.

Generalization ability is one of the main evaluation indexes for
assessing the applicability of models. Good generalization ability
can fully reflect the model’s ability to predict new data sets, and
can greatly avoid the model overfitting, underfitting and non-
convergence and other problems. In order to intuitively assess and
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FIGURE 6
Two-dimensional map after PCA transformation.

FIGURE 7
Scores of different sampling techniques in different models.

compare the generalization ability of different models, Figure 10 is
plotted. In this study, three combinations of models are evaluated
together for their generalization ability, with the X-axis as the
accuracy of the test set and the Y-axis as the accuracy of the training
set, and the graph of the generalization ability of the three models
evaluated is shown in the figure. Ideally, the model should show
high accuracy both on the training set and the test set, with a
small gap between the two. In this study, with this visualization, it
can be clearly observed that the ET+SVMSMOTE model exhibits

FIGURE 8
Average scores for different sampling techniques.

good generalization ability, highlighting the superiority of the data
enhancement strategy.

Further analysis in Figure 11 reveals that the ET and
SVMSMOTE combination outperforms in Accuracy, Precision,
Recall, and F1 score. Notably, Accuracy improves to 0.9375,
Precision to 0.9537, Recall to 0.9375, and F1 score to 0.9375.

In-depth exploration through Table 3 elucidates the superior
performance of the ET and SVMSMOTE combination. Analysis by
category reveals that SVMSMOTE effectively balances the number
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TABLE 2 Hyperparameter values.

Hyperparameter ET ET+SVMSMOTE RF+SMOTENC

Estimators 2394 2394 1131

Min samples split 5 5 2

Min samples leaf 1 1 4

Max features sqrt sqrt sqrt

Max depth None None 50

Bootstrap False False False

FIGURE 9
Comparison of classifiers before and after adjustment of parameters.

FIGURE 10
Analysis of model performance on training and test sets.

of Strong categories, thereby enhancing model performance in
this category. Specifically, in the test set evaluation metrics, Strong
category Recall improves from 0.6667 to 1, and F1 score from 0.8 to
0.8751. In the validation set, Strong category Recall improves from
0.8571 to 1, and F1 score from 0.9231 to 0.9653. This highlights the
efficacy of oversampling techniques in achieving balanced datasets
and subsequently improving model performance.

3.3 Comparison with state-of-the-art
studies

In contrast to prior studies, this research aims to develop an
efficient modeling framework focusing on validating the resulting
model’s performance. This model integrates the SVMSMOTE
oversampling technique, Extra Trees integration method, and
stochastic cross-validation of optimized hyper parameter to enhance
reliability and accuracy in shallow rockburst prediction. Emphasis is
placed not only on prediction accuracy but also on the oversampling
technique’s significance in deeply analyzing various assessment
indicators to ensure high reliability, accuracy, and generalization
capabilities of themodel.This contributes to safer, more reliable, and
efficient underground engineering construction operations.

Furthermore, comparative analysis of different oversampling
techniques across classifiers reveals their effectiveness in improving
model performance by adjusting category numbers. Notably,
KMeansSMOTE exhibits the most comprehensive improvement,
increasing by 9.98 percentage points. However, at the individual
model level, the ET+SVMSMOTE combination demonstrates the
best performance, achieving a five-fold hierarchical cross-validation
score as high as 0.7833. Additionally, this study conducts an in-
depth analysis of the impact of SVMSMOTE oversampling on the
ET classifier, validated through the analysis of category composition
and evaluation metrics.

Table 4 presents a comparative analysis between the novelmodel
proposed in this study and previous rockburst prediction models.
Previous research indicates that while achieving high accuracy in
modeling all rockburst is feasible, it remains challenging to further
enhance accuracy to accommodate diverse stress state variations.
Segmenting the rockburst dataset based on burial depth emerges
as a crucial method for enhancing prediction accuracy. Remarkably,
the ET+SVMSMOTE combination methods obtained through this
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FIGURE 11
Test set performance.

TABLE 3 Evaluation results.

Test set Training set

Precision Recall F1score Accuracy Precision Recall F1score Accuracy

ET

N 1 1 1

0.9286

1 1 1

0.9818
L 1 1 1 0.9375 1 0.9677

M 0.7500 1 0.8571 1 1 1

S 1 0.6667 0.8000 1 0.8571 0.9231

ET+
SVMSMOTE

N 1 1 1

0.9375

1 1 1

0.9841
L 1 1 1 1 0.9333 0.9655

M 1 0.7500 0.8571 1 1 1

S 0.7500 1 0.8571 0.9286 1 0.9653

RF+
SMOTENC

N 0 0 0

0.8824

1 1 1

0.9254
L 0.8333 1 0.9091 0.8000 1 0.8889

M 1 0.8000 0.8889 1 0.8125 0.8966

S 0.8571 1 0.9231 0.9286 0.8667 0.8966

approach consistently outperformmainstreammodel predictions in
terms of accuracy.

3.4 Limitations of the study

A current limitation of this study is the inability to discern
the interactions between oversampling techniques, hyper parameter

tuning, and model performance. Future research endeavors should
prioritize analyzing the significance of both factors on model
interpretability, thereby enhancing overall model understanding.
In addition, modeling all depths of rockburst occurrence based
on previous studies could improve accuracy. However, it is critical
to address the complex environmental factors associated with the
occurrence of rockbursts at different depths. Future investigations
should therefore distinguish between shallow, medium, and deep
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TABLE 4 Comparison of the proposed model with previously reported models.

Models Depth of burial Number of original datasets Accuracy References

KMeansSMOTE+SVM All 226 90.8% Luo et al. (2023)

KMeansSMOTE+ stacking All 275 85.59% Yin et al. (2024a)

FS + t-SNE + GMM+Vote All 344 90% Yin et al. (2024b)

ET Shallow 69 92.86%

This workRF+SMOTENC Shallow 69 88.64%

ET+SVMSMOTE Shallow 69 93.75%

depths’ influences on rockburst prediction models and develop
corresponding models to enhance accuracy and applicability.

4 Conclusion

Rockburst pose a significant threat to various underground
projects, including open-pit and underground ore mining,
water conservancy and hydropower ventures, as well as
tunnelling activities, thereby jeopardizing the safety of
workers. Accurate assessment of rockburst intensity is
paramount for mitigating these hazards. In this study,
this study propose a novel hybrid model with superior
generalization performance, accuracy, and reliability, achieved
through the integration of multiple sampling techniques and
classifiers.

This model, ET+SVMSMOTE, was developed using a dataset
comprising 69 shallow rockburst samples. This study considered six
oversampling techniques (SMOTE, ADASYN, KMeansSMOTE,
SMOTENC, BordenlineSMOTE, and SVMSMOTE) and 12
classifiers (DT, ET, GBD, GPR, KNN, LGB, MLP, NBM, QDA,
RF, SVC, and XGB), resulting in 84 algorithm combinations that
were meticulously evaluated. Through this rigorous process, this
study identified the top-performing combinations, employing
stochastic cross-validation to fine-tune hyperparameters and
mitigate overfitting.

The RF+SMOTENC hybrid model emerged as the most
promising, boasting exceptional predictive performance with an
accuracy of 0.9375, precision of 0.9531, recall of 0.9375, and
F1 score of 0.9375. Notably, this model exhibited superior
generalization performance compared to others, demonstrating a
marked reduction in overfitting.

Furthermore, its analysis revealed that oversampling techniques
significantly enhance model performance by altering category
distributions. Particularly, KMeansSMOTE demonstrated the
most substantial improvement, enhancing performance by
9.98 percentage points across all combinations. However,
individual model evaluation identified ET+SVMSMOTE as the
top performer, achieving a five-fold hierarchical cross-validation
score of 0.7833.

Moreover, this conducted an in-depth examination of the
impact of SVMSMOTE oversampling on the ET classifier,

corroborated by analysis of category compositions and evaluation
metrics. Despite the notable achievements of this study which
acknowledge the limitation concerning the intricate interplay
between oversampling techniques, hyper parameter tuning, and
model performance. Future research should prioritize elucidating
the synergistic effects of these factors to further enhance
model efficacy.
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