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Accurate prediction of reservoir properties through linear transformation
and regression methods are successful in limited cases but are often
geologically unrealistic and have no concrete theoretical foundation. Artificial
Neural Network’s (ANN’s) have emerged as an effective tool for deriving
nonlinear mathematical relationships between seismic attributes and well logs
that are theoretically plausible and may prove geologically realistic. In this
paper, we devise a methodology to integrate rock physics analysis, seismic
inversion, multi-attribute transformation, and Feedforward Neural Network
(FNN) modeling for accurate inter-well reservoir property predictions. We test
thismethodology onwell logs and seismic data from the Cretaceous sandstones
of the Sembar Formation, Southern Indus Basin, Pakistan. Viable productive
gas zones are identified through rock physics and Model Based Inversion
(MBI) analyses. Five volume-based seismic attributes are sequentially calculated
through forward stepwise regression and cross-validated for inter-well porosity
prediction. When a Probabilistic Neural Network (PNN) is trained in a non-linear
mode integrated with multi-attribute transformation, correlation (r2) is improved
from 72% to 88% between seismic attributes and porosity derived from logs.
The PNN-derived porosity distribution is geologically more realistic than linear
transformation and regression methods, supporting our model’s validity. We
suggest that it is theoretically possible for the ANN to make predictions about
any attribute of the reservoir via bridging target logs and seismic data within a
short computation time.
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1 Introduction

Clastic reservoirs have supplied ever more reserves to the
oil and gas sector because of recent scientific and technological
developments (Ginting et al., 2011; Yasin et al., 2018). Several
researchers have made use of cutting-edge machine learning (ML)
methods to examine the full potential of such clastic reservoirs.
Backpropagation (BP) networks, which have a single hidden layer
and are trained by inverse propagation of errors, are among themost
popular types of traditional neural networks (Della’versana, 2019;
Qiang et al., 2020). Artificial Intelligence (AI) is a relatively new area
of study within the field of geoscience. So far it has been applied
to address many geophysical issues. Using Neural networks (NNs),
it has been possible to statistically anticipate and establish the link
that exists between reservoir properties and seismic data (Ding et al.,
2022). AFeedforwardneural network, often known as FNN, is a kind
of artificial neural network that does not include connections that
create a cycle or loop between its nodes. It starts at the input nodes
and makes its way to the output nodes after passing through any
hidden nodes. The classical example of FNN is Probabilistic Neural
Network (PNN). The flow of information in FNN is unidirectional
only, i.e., forward (Zell, 1994).

Characterization of reservoir properties in deeply buried
sandstones in a manner that is accurate and trustworthy is,
however, one of the most significant unresolved challenges. From
a petrophysical viewpoint, there is no one-to-one analytical
link between seismic characteristics and reservoir properties
including porosity. Any attempt to calculate the true economic
potential of an exploration area requires a foundation that
is provided by improved reservoir characterization integrating
numerous datasets (Shakir et al., 2022). This process helps
decrease the level of uncertainty involved in establishing new
drilling sites (Torres-Verdín and Sen, 2004; Karbalaali et al., 2013;
Ali et al., 2018). To forecast rock and fluid characteristics from
seismic amplitude data, many seismic inversion approaches have
been developed for reservoir characterization. Various seismic
inversion approaches like Amplitude Versus Offset (AVO) analysis,
Amplitude Variation with incident Angle and Azimuth inversion
(AVA/AVAZ), seismic scattering inversion, Simultaneous Inversion
(SI), Extended Elastic Impedance (EEI) inversion, and Bayesian
Inversion (BI) were extensively reviewed by Hampson et al.
(2001), Zhang and Brown (2001), Rüger, (2002), Hampson et al.
(2005), Gharaee (2013), Russell, (2014), and Chen and Zong, 2022,
Chen et al. (2024a), Chen et al. (2024b). There are many pros
and cons associated with each of these approaches, but the most
common problem is that these approaches work only on pre-stack
seismic data.

NNs provide an additional method for the prediction of the
spatial distribution of reservoir rock properties derived from post-
stack seismic inversion (Hosseini et al., 2019). NNs do not need
prior mathematical equation descriptions to learn and retain a
wide variety of input-output mapping connections (Du et al.,
2019). Therefore, the use of seismic inversion, which combines
the two types of data coupled with NNs, is a new approach used
in modern reservoir characterization. Among others, one of the
most challenging tasks is the accurate prediction of petrophysical
properties across the entire seismic extent beyond well control. The
reason behind this difficulty is the lack of any direct correlation

between petrophysical properties and seismic amplitude data
(Othman et al., 2021). To tackle this problem, we employed a
machine learning (ML) technique, known as ANN. The ability of
ANN inversion to generate nonlinear correlations between the target
and the input attribute has led to its rise in prominence in the last
decade. This approach can be successfully applied to predict any
reservoir property using target logs and seismic data.The NNs learn
the connections and correlations between the target log and the
seismic properties at each well site. Then, it uses that information
to make predictions about the desired attribute in a spatially explicit
2D and 3D seismic data environment (Othman et al., 2021).

Our test study area to implement this methodology is situated in
the Khewari block using seismic data and well logs (Aradin-01 and
Suleman-01 wells) of the Lower Indus Basin that geologically lies
on Jacobabad High in Pakistan (Figure 1). The Sembar Formation
is widely recognized as a primary petroleum source rock of
the Lower Indus Basin of Pakistan suggested by oil-to-source
correlation studies (Wandrey et al., 2004; Ali et al., 2022). The
Sembar Formation is mostly composed of shale, with sandstones
intercalated throughout (Shah, 1977). There has been a great deal
of studies carried out and published in the past on the shale
intervals of the Sembar Formation, but there has been no substantial
research work published on the sandstone intervals of the Sembar
Formation. Aftab et al. (2022) delineated a comprehensive reservoir
properties estimation of the Sembar sandstones via petrophysical
analysis, seismic structural interpretation, and developed a spatial
correlation using well logs and seismic data. Many vertical and
side-tracked wells have been drilled in the Lower Indus Basin but
none of them has yet attempted to produce primarily from the
sandstone intervals of the Sembar Formation. One reason is the
complexity driven by diagenesis at such a great depth and variability
of the underlying rock due to changes in lithology. Therefore, it
is significantly more difficult to estimate critical reservoir features
including petrophysical properties.The expected output of this study
is to develop an approach for more accurately determined reservoir
properties (effective porosity as a test case in this study) away from
well control that may assist with the delineation of prospect fairways
of sandstone packages of the Sembar Formation. By accurately
estimating these reservoir properties, one may better comprehend
the spatial distribution of the productive section of the reservoir and
suggest a future field development plan, both of which are crucial to
effective reservoir management.

2 Geological setting

The Khewari and Gambat blocks, which are the primary focus
of this research study, span over 1625.36 square kilometers and are
in the Khairpur and Nawabshah districts of the Sindh Province of
Pakistan. The region is situated near the boundary of the Central
and Southern Indus Basins. To be more specific, it is located on
Jacobabad-Khairpur High (Figure 1). The width of the Southern
Indus Basin is about 250 km and is surrounded on the east by
the Thar desert and on the west by fold and thrust belts. The
Southern Indus Basin remained tectonically stable throughout the
Mesozoic time. The intensity of folding increases westward and is
most prominent in the heavily folded and faulted portions of the
axial fold and thrust belt (Zaigham and Mallick, 2000). Multiple
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FIGURE 1
Geological map of Pakistan with a red rectangle representing the boundaries of the study area, modified after (Kadri, 1995; Aftab et al., 2022).

structural highs are present in the southern part of the Indus
Basin. These highs may be seen in Jacobabad, Mari-Kandhkot,
Hyderabad, Khairpur, and Sibi districts. Previous researchers
including Wadia (1953), Krishnan (1960), Gansser (1979), Kazmi
and Rana, (1982), andKazmi and Jan, (1997) believe that these highs
are surface fingerlike expansions of the Indian shield.

The Sembar Formation is the most important conventional
clastic source rock in the Southern Indus Basin. The unit has shale
as a major lithology and sandstone and siltstone as the minor
lithologies (Iqbal and Shah, 1980; Kadri, 1995; Abid et al., 2021)
(Figure 2). Sandstone, which most likely originated from the Indian
Shield, is found in greater abundance towards the eastern boundaries
of the basin with a thickness ranging between 760 and 1000 m. On
the other hand, siltstone and shale aremore prevalent on the western
side and decrease proportionally towards the eastern side (Zaigham
and Mallick, 2000). Belemnites, Foraminifera, Ammonoids, and
even nano-fossils may all be found in the Sembar Formation (Sheikh
and Giao, 2017). The age of the Sembar Formation extends over
the whole of the Neocomian period, which occurred during the

early Cretaceous with open sea to shallow marine environment of
deposition (Bender et al., 1995; Ahmad et al., 2019). The Sembar
Formation is deposited under the influence of wave and tidal
regimes with a net pay higher than 300 m in the delta front and pro-
delta environment of deposition (Quadri and Shuaib, 1986). Both
the lower and upper contacts with the Chiltan and Goru Formations
are unconformable and gradational, respectively (Bender et al.,
1995). The initiation of extensional tectonics during the Cretaceous
period affected the construction of structures in the area that were
favorable for the accumulation of oil and gas (Milan and Rodgers,
1993; Ali et al., 2022). Oil production from the Sembar Formation
is estimated to be in the range of 65–155 million barrels per square
kilometer (Quadri and Shuaib, 1986).

3 Methodology

This research makes use of a data set that consists of well
logs, post-stack seismic data, and root mean square (RMS) stacking
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FIGURE 2
Generalized stratigraphic chart of the Lower Indus Basin of Pakistan modified from (Yousaf, 2020; Aftab et al., 2022). Shale and sandstone are shown as
major and minor lithologies of the Sembar Formation, respectively.

velocities. Every well was drilled to such a depth that it had
significant penetrations of the Sembar Formation. Log ASCII
Standard (LAS) file format of study wells contained a full suite of
log curves, which included but were not limited to caliper, gamma
ray, spontaneous potential, computed gamma ray, micro spherically
focused log, latero log deep, latero log shallow, neutron, bulk density,
and sonic log curves. This study consists of four separate stages of
execution. During the initial stage of this project, a thick (∼200 m)
sandstone interval in the Sembar Formation was marked in each
well by estimating the amount of shale present using the gamma-ray
log curve. After marking hydrocarbon and water profiles using fluid
indicators and porosity logs, sandier zones with good hydrocarbon
potential were marked. Then petrophysical reservoir properties
such as average porosity, permeability, effective porosity, volume
of shale, hydrocarbon, and water saturation were estimated to
begin the process of identifying potentially prospective sandstone
intervals within the Sembar Formation. In the second stage of
this study, a rock physics analysis was conducted during which
several petrophysical and elastic parameters were plotted to examine

the nature of reservoir properties and elastic parameters of rock
including the influence of fluid content.

In the third stage of this study, seismic interpretation was
carried out to define the structural geometry of sandstones of
the Sembar Formation. Following the establishment of a time-to-
depth link with the assistance of well-log data, the horizons were
located and mapped out. To carry out any kind of seismic inversion
procedure, it is essential to have inputs such as interpreted seismic
boundaries and elastic logs (both acoustic and density). Post-stack
seismic inversion provided an external attribute for the extraction
of reservoir properties using inverted seismic data. Two types of
seismic inversion, namely, Colored Seismic Inversion (SCI) and
MBI are incorporated in this study. Post-stack seismic data with
zero offset assumption is utilized for the application of SCI and
MBI. In the MBI workflow, following the extraction of a statistical
wavelet from the seismic data, a seismic-to-well tie was established.
In a later step, a well-based wavelet was used for a seismic-to-well
tie to maximize the correlation to the highest possible degree of
confidence. Tomake up for the absence ofmissing low frequencies, a
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FIGURE 3
Detailed workflow chart of the methodology adopted in this study.

low-frequency acoustic-impedancemodel (referred to as the LFMor
initial model) was constructed and incorporated using interpreted
seismic data. The seismic data passing through each well location
was used to make a correlation, and then seismic inversion analyses
at well locations were carried out to calculate the seismic inversion
parameters and bring the amount of error down to an acceptable
level. In the end, an inverted acoustic impedance seismic section is
obtained by applying MBI to the entire amplitude-based post-stack
seismic data.

The fourth and last stage was the integration of multi-
attribute transformation and AI-based neural network approach
known as FNN, more specifically, a non-linear PNN technique to
establish an optimum relationship between target logs and reservoir
properties using extracted seismic attributes. Using this method, the
petrophysical properties calculated from all the study wells were
trained by using post-stack seismic attributes as internal attributes
and inverted seismic p-impedancewas taken as an external attribute.
Porosity was determined by extrapolating the results of a non-linear
empirical relationship that existed between the actual porosities at
well sites and expected porosities away from the well site throughout
the seismic data. A detailed workflow chart of the methodology
adopted in this study is shown in Figure 3.

4 Results and discussion

4.1 Input data conditioning and quality
control

Well-log conditioning, especially sonic and density log curves
editing (using log editing techniques) is the first and foremost
important step for accurate and reliable petrophysical properties
modeling, well-to-seismic tie, inverted impedance model building,
and rock physics analysis. Durrani et al. (2020) described the well
and seismic data conditioning workflow in detail. We performed

a thorough well and seismic data QC to get optimal results
and successfully achieve the objectives of this study. The input
study data (seismic and well data) lies in Ultimate Transverse
Mercator Zone 42 North (66 E − 72 E longitude), and all the map
coordinates are georeferenced using the World Geodetic System
1984. Before commencing this study, the well data quality was
thoroughly checked. The inventory of well log curve sets and
the log headers confirm the availability of well log curves and
associate them with their correct names. The standardization of
all well log curves was accomplished using curve-aliasing and
curve mnemonics techniques. With the use of seismic headers and
parameter testing techniques, seismic data was checked in terms of
X and Y coordinates, line length, CMP, number of shot points, and
related shot number.

4.2 Petrophysical reservoir properties
estimation

The accuracy of petrophysical modeling is vital for the accurate
prediction of reservoir properties through seismic inversion and the
subsequent ANN analysis. The detailed workflow and methodology
for petrophysical analysis performed in this study are adopted from
the criteria given by Aftab et al. (2022). The detailed petrophysical
analysis of sandstones of the Sembar Formation encountered in
the Aradin-01 well is shown in Figure 4. A zone of about 195 m
thick zone of reservoir gas sands is encountered in Aradin-01 well
at a depth of 4065–4260 m. This zone is characterized by 13.63%
average volume of shale (86.37% average volume of sands) and
17% and 14% average and effective porosities, respectively. The
average permeability of this sand unit is 5.76 millidarcy, whereas
the average water saturation is 29.83% (70.17% average hydrocarbon
saturation). This thick reservoir gas sandstone unit is confirmed by
the presence of bulk density-neutron porosity crossover that exists
in more than 95% zone and net pay marked in more than 85% of
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FIGURE 4
Detailed petrophysical analysis of 195 m thick sandstone unit encountered in Aradin-01 well. The gas effect (marked in the third track) is present in
more than 95% of this reservoir zone. The yellow color represents sandstone in the lithology track (fourth track). Hydrocarbon saturation is depicted
with black color and water saturation with blue color computed through Indonesian equation is shown in the second last track.

this sandstone unit. The quantitative modeled properties derived
from the petrophysical analysis of the marked reservoir zone in the
Aradin-01 well are shown in Table 1.

4.3 Rock physics analysis

Rock physics acts as a bridge between reservoir properties
derived from petrophysics (like, volume of shale and water
saturation, etc.) and reservoir elastic properties (like, P-impedance,
S-impedance, Vp/Vs ratio, etc.) (Avseth, 2000). Cross-plot analysis

is a very powerful visualization tool that not only allows us
to differentiate between various lithofacies but also provides an
interface to mark data clusters in the zone of interest (Mavko et al.,
2020). According to Azeem et al. (2017), quantitative classification
of petrophysical and elastic properties of sandstone and shale
lithofacies suggests that the gas-bearing sand zone should contain
Gamma Ray <80 API (volume of shale less than or equal to 20%),
water saturation <55%, P-impedance less than 10,200 (m/s)∗(g/cc),
S-impedance less than 6200 (m/s)∗(g/cc) and Vp/Vs ratio less
than or equal to 1.65. The gas sands will convert into shaly
sand and shale if the elastic and reservoir properties exceed the

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1516420
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Aftab et al. 10.3389/feart.2024.1516420

TABLE 1 The quantitative modeled properties derived from the petrophysical analysis of sandstones of the Sembar Formation encountered in
Aradin-01 well.

Depth (m) Gamma Ray
(API)

Volume of
Shale (%)

Average
Porosity (%)

Effective
Porosity (%)

Permeability
(millidarcy)

Water
Saturation (%)

4072.01 57.86 4 11 11 0.35 37

4079.02 48.96 2 14 13 0.85 28

4086.03 44.61 1 13 13 0.68 31

4093.04 55.44 4 24 23 7.07 18

4100.05 93.85 6 26 22 5.82 19

4107.06 60.63 5 13 13 0.68 36

4114.07 77.32 10 22 20 3.85 26

4121.08 58.35 4 24 23 7.85 24

4128.09 84.33 12 22 19 3.65 26

4135.1 75.12 9 16 14 1.13 50

4142.11 90.1 15 17 15 1.32 29

4149.13 84.28 12 25 22 6.34 23

4156.14 61.11 5 14 14 0.88 27

4163.15 89.77 15 6 6 0.02 73

4177.17 72.42 8 16 14 1.12 34

4184.18 90.28 15 17 15 1.27 27

4191.19 75.66 9 29 26 12.12 19

4198.2 66.47 7 25 23 7.97 20

4205.21 105.62 21 21 17 2.1 32

4212.22 163.65 65 25 9 0.15 40

4219.23 132.78 37 12 8 0.1 44

4226.24 93.6 16 6 5 0.02 59

4233.25 91.08 15 6 5 0.02 51

4240.26 87.85 14 21 18 2.78 20

4247.27 121.53 30 13 9 0.21 39

4254.28 84.4 13 27 24 8.27 15

aforementioned ranges. The cross-plot analysis in the reservoir
zone of sandstone of the Sembar Formation between P-impedance
(x-axis) and Vp/Vs ratio ( y-axis), with data points color-coded
with the volume of shale and water saturation (computed from
petrophysical analysis), are shown in Figs. (A) and (B), respectively.
The low values of P-impedance, Vp/Vs ratio, and volume of shale
represent clean sands. The first cross-plot separates lithofacies with
red color data point circles which represent clean sands (volume

of shale less than or equal to 20% with low P-impedance and
Vp/Vs ratio), yellow circles represent shaly sand and blue-green
circles represent shale as shown in Figure 5A. The low values of P-
impedance, Vp/Vs ratio, and water saturation represent gas-sands.
The reason behind this is the presence of gas which decreases
both the acoustic impedance and Vp/Vs ratio (Azeem et al., 2017).
Figure 5B separates the hydrocarbon-bearing zone from a non-
hydrocarbon-bearing zone. This plot shows gas sands with red
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FIGURE 5
(A) Cross-plot analysis of P-impedance versus Vp/Vs ratio, color-coded with the volume of shale in the reservoir zone of interest in Suleman-01 well.
Clean sand is marked (red circle) and separated from shaly sand and shale; (B) Cross-plot analysis of P-impedance versus Vp/Vs ratio, color-coded with
water saturation in reservoir zone of interest in Suleman-01 well. Gas sands are marked (red and yellow circles) and separated from water-bearing
sediments; (C) Cross-plot analysis of P-impedance versus S-impedance, color-coded with water saturation in reservoir zone of interest in
Suleman-01 well. Gas sands are marked (red circle) and separated from water-bearing sediments.

and yellow data point circles (where water saturation is less than
or equal to 50% with low P-impedance and Vp/Vs ratio) and
predominant water-saturated sediments with blue-green color data
point circles. The low values of P-impedance, S-impedance, and
water saturation represent highly saturated gas sands. Whereas
high values of P-impedance, S-impedance, and water saturation
represent shale without any gas saturation (Castagna et al.,
1993). Figure 5C shows a cross plot between P-impedance (x-
axis) and S-impedance ( y-axis), color-coded with water saturation
(z-axis). Figure 5C shows red data point circles as gas-saturated
sands (data cluster with low P- and S-impedances along with
very low water saturation), whereas yellow and green color circles
represent the water-saturated zone. The rock physics cross-plot
analysis in this study has successfully separated productive payable
hydrocarbon sandstone zone (gas-bearing sands with P-impedance
<10,200 (m/s)∗(g/cc), S-impedance <6200 (m/s)∗(g/cc) and Vp/Vs
ratio <1.65) from non-hydrocarbon zone via bridging reservoir
and elastic properties in the reservoir zone of sandstone of the
Sembar Formation.

4.4 Subsurface seismic model

Seismic reflection data imaging and analysis are established
as one of the best ways to constrain subsurface structural and
stratigraphic geometries. The reliability and precision of the inverse
seismic-geological model chiefly depend on the interpretation of
the observed seismic-geological model (Ali et al., 2018). In other
words, the degree of misinterpretation of processed seismic data
will incorporate a proportional error into the inverted seismic
model. The marked horizon at the top of the sandstone of the
Sembar Formation on seismic data varies in thickness from 170 to
200 milliseconds (Aftab et al., 2022). The study area is governed
by trans-tensional tectonics (having both normal and strike-slip
components) with northwest-southeast trending faults having a little

vertical throw. These faults are mainly present in the Cretaceous
strata and extend downward to the Jurassic sequence forming a horst
and graben structures in the study area (Aftab et al., 2022).

4.5 Seismic colored inversion (SCI)

The relative acoustic impedance model generated through SCI
based on an un-constrained sparse spike inversion algorithm is
the preliminary model generated in this study for qualitative
interpretation. Simplicity and short computation time make SCI
a good preliminary inversion model (Naseer, 2021). This robust
and non-exhaustive seismic inversion technique provides a good
initial model for qualitative interpretation of reservoir properties
with positive and negative acoustic impedance values. SCI requires
a color operator depicting the information of frequency and time
versus amplitude. We initialized SCI with one data pair with a
processing sample interval of 2 ms, operator length of 200 samples,
and taper length of 50 samples. The spectrum threshold for SCI
is set at 20% (Figure 6). Figure 7 shows the result of SCI applied
to the interpreted seismic data along with well locations and GR
log curves displayed on it. The acoustic impedance observed at the
level of sandstone of the Sembar Formation is relatively low (mainly
with negative values) suggesting an onset of the potential porous
formation.Whereas relatively high acoustic impedance (mainlywith
positive values) can be qualitatively observed in lithological units
above and below the sandstone of the Sembar Formation. Although
SCI gives us a piece of valuable impedance information and does
not require an initial model, its main limitation is the fact that
it reveals information in terms of relative acoustic impedances, as
opposed to absolute acoustic impedances (with positive and negative
values).Therefore, we have further appliedMBI for the development
of a more accurate and reliable absolute acoustic impedance model
(discussed in Sections 4.6–4.9).
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FIGURE 6
A Color operator is required to perform SCI successfully. The frequency spectrum of the color operator and seismic data is manifested by plotting
frequency and time versus amplitude while setting a sample interval of 2 ms, operator length of 200 samples, and taper length of 50 samples with SCI
spectrum threshold of 20%.

FIGURE 7
SCI model depicting relative P-impedances using seismic data. Sands of the Sembar Formation are predominantly delineating negative P-impedance
layers along with only a couple of positive P-impedance layers. These negative P-impedance layers are qualitative indicators of a good reservoir sand
unit (since acoustic impedance is inversely relational to reservoir properties like porosity, etc.).

4.6 Wavelet scaling and seismic-to-well
correlation

MBI is the most accurate and reliable among all the available
post-stack seismic inversion techniques. However, a few steps
are necessary to perform after seismic and well data loading,
conditioning, and QC before the application of MBI. Correlation

of seismic times to well depths is the first step and critical for
accurate quantitative seismic reservoir characterization through
MBI. Among other factors (like seismic and well data quality),
the reliability of this correlation is highly dependent upon the
accurate wavelet estimation (Durrani et al., 2020). A well-to-seismic
correlation for all study wells was individually established before
the estimation of an average single well wavelet. The comprehensive
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FIGURE 8
Extracted zero phase statistical wavelet with frequency and amplitude spectrum. The wavelength is 200 m which is normally kept to one-third of the
seismic inversion analysis window. The Blue dotted line represents the phase which is zero in this case with the average amplitude of the frequency
spectrum. The frequency spectrum is kept broad to build an accurate geological model with detailed information of the subsurface.

workflow that was employed includes: 1) Development of a time-
depth relationship between seismic and well data using sonic and
density logs for the estimation of reflectivity series, 2) Extraction
of zero-phase statistical wavelet since utilized seismic data is zero-
phase (Figure 8), 3) Correlation of each well, that will be used for the
building of seismic inversion model with seismic data, 4) Extraction
of an average well wavelet using all the wells, and 5) Fine adjustment
of each well correlation via giving shift to synthetic traces to match
with the seismic data.

Input sonic and density logs were calibrated with accurate
well velocities obtained from borehole seismic data. Synthetic trace
in the zone of interest is the direct output of one-dimensional
forward modeling. A synthetic trace was developed by convolving
a zero-phase statistical wavelet with a reflectivity series derived
from sonic and density logs. Hence, a time-depth relationship
is established between seismic and well data. The maximum
correlation coefficient achieved with this procedure is 74.4%. The
reliability of this time-depth correlation between seismic and
well data is dependent upon multiple factors such as a suitable
time window for wavelet estimation. To improve the correlation
coefficient for more confidence in time-depth correlation, a well
wavelet was extracted in a 350 ms time window (from 2400 to
2750 ms) which is the common representative of all the study
wells. This well wavelet is finalized after an iterative approach based
on multiple quality checks, including phase, spectral analysis, and
wavelet shape. Hence, the correlation coefficient is improved to
80.7% and the mismatch between synthetic and seismic traces is
further reduced. In other words, more confidence in the well-
to-seismic tie is achieved (Figure 9). All study wells are tied
with excellent correlation between well and seismic data. Good
agreement and match between major seismic events (based on

picked horizons) and well data (synthetic trace) represents that the
extracted wavelet and reflectivity data are accurate, which is the true
representation of subsurface geology, consistent with seismic data.

4.7 Low-frequency model (LFM)

Seismic reflection data generally does not contain low
frequencies (0–10 Hz) for several reasons including, but not limited
to: 1) the non-capability of the recording geophones to record such
a low frequency, 2) non-recording of the low-frequency seismic
data due to the problem of ground rolls and, 3) the removal of
low frequencies during seismic data processing to enhance the
signal to noise ratio (Sams and Carter, 2017). The lack of low
frequencies in the final seismic inverted model will result in pseudo
impedance layers.Therefore, building an LFM and its incorporation
in seismic inversion workflow is inevitable to recover the absolute
acoustic impedance of the subsurface.Well logs and seismic velocity
data are the two primary sources that may be utilized to aid in
the development of LFM (Sams and Carter, 2017). Other types
of data like electromagnetic data are also potentially viable to
build LFM (Mukerji et al., 2009). Well logs (related to required
elastic properties) contain frequencies that range far above and
below the frequency spectrum of seismic data. Seismic velocity
data contain compressional velocity information with 0–3 Hz of
reliable frequencies. Therefore, we utilized the integrated well logs
and seismic data in building LFM to incorporate the entire range
of low frequencies. The most typical approach to constructing
an LFM is the interpolation of horizons and well data using
various interpolation methods (Pedersen-Tatalovic et al., 2008).
Three horizons, namely, the top of the Sembar Formation, the
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FIGURE 9
Well-to-seismic tie established with the help of synthetic seismogram (blue color trace shown in fourth track) using sonic and density logs of
Suleman-01 well. The red color trace is a composite seismic trace. Both synthetic and seismic traces are in excellent correlation with each other. The
fifth track represents seismic data with seismic peaks and troughs tied and matched excellently with synthetic seismogram.

FIGURE 10
Seismic data showing LFM used for MBI with Aradin-01, and Suleman-01 wells overlain on it. Vertical variation in lithology is depicted by vertically
changing colors whereas the horizontal extent of a particular lithology and change in facie is represented by colors changing horizontally.

sands of the Sembar Formation, and the Chiltan limestone were
utilized via stretching and squeezing the acoustic impedances for
interpolation between the wells using inverse distance interpolation
algorithm within a structural and stratigraphic framework. After
the interpolation of well data, a low-pass frequency filter was
designed which passes all the frequencies from 0 to 10 Hz,
interpolates all the frequencies between 10 and 15 Hz, and blocks
the frequencies that lie above 15 Hz.This initial model is LFMwhich
is shown in Figure 10 along with well locations and GR log curves
displayed on it.

4.8 Well-based seismic inversion error
analysis and quality control

Quality control (QC) and parameter testing are crucial before
the application of any seismic inversion on the entire seismic

dataset. This can be accomplished by the selection of optimum
parameters and the application of the required seismic inversion
algorithm at the well location only. Simultaneously, scalars are
computed so that the seismic data may be scaled to the same
amplitude range as the synthetic seismogram. Figure 11 shows the
results of MBI analysis with multiple tracks from left to right
starting with the display of the seismic inversion result (inverted
seismic acoustic impedance) which is shown as a superimposed
curve in red color over the well’s initial impedance log in blue
color. Both curves mainly overlap with each other and show a
good agreement between the two in the zone of interest of the
seismic inversion analysis window. In the next three tracks, a
wavelet is extracted as shown by blue color, then a synthetic
trace in red color (derived from the application of seismic
inversion) and the actual composite seismic trace in black color,
respectively. The last track shows the error trace in the seismic
inversion analysis at the well location, which is the difference
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FIGURE 11
Post-stack MBI error analysis at Suleman-01 well. MBI error analysis window is set in between 2400 and 2740 m represented by two yellow lines.
Track-1 represents an inverted p-impedance curve shown in red color superimposed over the well’s initial impedance log curve shown in blue color.
The next three tracks show extracted wavelet, synthetic trace, and composite seismic trace, respectively. The final track shows the difference between
synthetic and composite seismic trace in terms of inversion error which is negligible in this case.

between the synthetic trace derived from seismic inversion and
the actual composite seismic trace. This error is only 8% with
a correlation coefficient of around 99%. These statistics show
that: 1) the applied seismic inversion is mathematically accurate,
and 2) there is a good agreement in the correlation between
seismic inversion derived synthetic trace and actual composite
seismic trace. This gives us confidence to proceed towards the
application of post-stack model-based seismic inversion on entire
seismic data.

4.9 Application of model-based seismic
inversion

Low frequencies remained partially recorded during seismic
data acquisition and fully removed during seismic data processing
due to associated ground rolls incorporating a thin bed tuning
effect. Thus, the Sparse-spike inversion (SSI) algorithm requires the
addition of LFM separately (Cooke and Schneider, 1983). Absolute
acoustic impedance is the manifestation of an exhaustive and
time-consuming seismic inversion technique with low-frequency
components (0–10 Hz) being a part of the MBI workflow (Cooke
and Cant, 2010). In this study, we applied MBI to seismic data
because it is stable and can identify geological boundaries and
structural trends with few wells and restricted seismic data quality.
The convolution model serves as the foundation for MBI, and
it is a well-established principle that a synthetic trace can be
developed from the convolution of a chosen wavelet and the earth’s
reflectivity series (Barclay et al., 2008), proposed by an Equation 1
as follows:

S =W∗R+N (1)

Where S is the seismic trace, W is the extracted seismic wavelet, R
is the reflectivity series (for which we solve this equation) and N is
random noise (which is uncorrelated with the signal).

MBI is based on the Generalized Linear Inversion (GLI)
algorithm to guess an accurate reflection coefficient (RC) series,
hence an accurate impedance model with the assumption that
the seismic trace S and extracted wavelet W are already known.
Therefore, MBI works on the principle that the sonic and density
logs generate blocked acoustic impedance logs at well locations.The
convolution of this blocked acoustic impedance log and extracted
wavelet results in the development of synthetic trace. This synthetic
seismogram is our calculated geophysical data, whereas acquired
and processed seismic data (real seismic data) are our observed
geophysical data. The mismatch between observed and calculated
geophysical data is an objective function. The main approach of
the inversion operator is to minimize the objective function or in
other words, misfit between observed and calculated geophysical
data (Lee et al., 2013). The first blocked acoustic impedance trace
model with low frequencies incorporated in this study is LFM.
We updated the blocked acoustic impedance model by adopting
an iterative approach to reduce a mismatch between seismic and
synthetic traces to as low as possible by running 10 iterations.
The error decreases with every iteration which is the average
difference between acoustic impedance results and well logs. The
maximum acoustic impedance change was defined by setting hard
constraints to 100% for upper and lower limits to keep our model
output in this set range of values. The average block size and
pre-whitening are set to 2 ms and 1%, respectively. This iterative
approach is mathematically alluded to by Hampson et al. (2001) in
Equation 2:

J = weight1∗ (S–W∗R) +weight2∗ (M–H∗R) (2)

Where the objective function is denoted by J and RC
series by R, H is the integration operator to produce the final
impedance after convolution with final reflectivity, M is the initial
impedance model, S is the actual seismic trace and W is the
extracted wavelet.
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FIGURE 12
Workflow adopted in this study for ANN-predicted reservoir properties.

4.10 Multi-attribute transformation and
ANN predicted reservoir properties

We improved the prediction of reservoir rock properties through
the integration of two methods: a) multi-attribute transformation
and b) utilization of an ANN via training of PNN. This approach
is applied to the sandstone of the Sembar Formation using
seismic and well data of the study area to test the validity of
our devised methodology and output model. Firstly, a statistical
relationship (linear regression) was developed between target logs
like effective porosity, etc., and seismic data at the well locations
(using all study wells). Then a non-linear relationship was derived
between the target log and seismic attributes via training PNN
to improve the correlation coefficient of the reservoir property
model. Lastly, this computed relationshipwas utilized over the entire
seismic volume to predict reservoir properties beyond well control.
The workflow adopted for ANN-predicted reservoir properties
is shown in Figure 12.

The porosity logs were converted into a time domain from a
depth domain using a time-depth relationship established through
a corrected sonic log along with a 2 ms processing sample rate to
integratewell andseismicdata.Two typesof attributeswereutilized for
thepredictionof reservoirproperties through the target log: a) internal
attribute and b) external attribute. The internal attributes are those
sets of volume attributes that are derived from the input seismic data.
These attributes are calculated sample-by-sample from seismic data.
The external attributes are a bit more complex and require deriving
them mathematically from seismic data, for example, inverting p-
impedance from a seismic inversion (Dorrington and Link, 2004).
In this study, an inverted p-impedance was derived from MBI as an
externalattributefrominputseismicdata.Oneaveragecomposite trace

was extracted which is representative of both wells from the nearest
seismic line.The analysis window is set in between 2470 and 2740 ms
with target log(effective porosity) in red color, seismic trace in black
color, and external attribute (MBI inverted p-impedance) in blue color
as shown inFigure 13A.Thecorrelationcoefficient is ameasureofhow
useful and reliable an attribute is for the prediction of a certain target
log. Therefore, a series of linear and non-linear transformations were
utilized to calculate and test the correlation coefficient of internal and
external attributes for the prediction of the target log.

Firstly, a single attribute analysis/transformation was performed
to generate a single attribute list having a target or transformed
target logs paired with an attribute or transformed attributes.
Subsequently, a statistical error and correlation between each target-
attribute pair were calculated. The analysis shows a minimum
statistical error of around 7% and the highest correlation of
around 39% between effective porosity and time attribute. This
low correlation is because of the inability of a single attribute
to predict subtle features of the target log. This average error
of 7% is the root-mean-square difference between the predicted
values and target logs. Since the correlation coefficient between
the target log and predicted values is quite low, multiple attributes
were simultaneously incorporated to predict and resolve subtle
features of the target log to enhance the correlation coefficient and
reliability of predicted values. This process is known as multi-
attribute analysis/transformation. Multiple attributes were analyzed
by creating a list of transformations at a time using forward
stepwise regression. The first best attribute-target log pair is one
with minimum error and the highest correlation. Using the trial-
and-error method five best attributes were recognized to predict
target log values. The criteria for choosing these five attributes are
the sequential selection of those attributes having minimum RMS
error and the highest correlation coefficient. Four of these attributes
are internal and one is external as shown in Table 2. As the target
value is a log property and the attribute is a seismic property,
a convolution operator is required to establish a relationship
between one-dimensional and two-dimensional propertymodeling,
respectively.Therefore, an operator length of five was chosen (which
determines the length of the convolution operator) with a pre-
whitening of 0.10%. The operator length should be set following
the number of attributes utilized for the prediction of the target
log. Large operators will be more reliable in the prediction of target
log as compared to short operators but the risk of predicting noise
will be directly proportional to the operator length. The Equation 3
that expresses the relationship between the target log and attributes
(Russell et al., 1997; Hampson et al., 2001) is given in the following:

T = constant+weight∗A (3)

Where T is target values, A is attribute values, constant is
calculated from least square regression,∗is the convolution operator,
and weight is calculated through least square regression.

Figure 13B shows the number of attributes on the x-axis
and the average prediction error on the y-axis. The lower black
curve represents all wells error whereas the red curve represents
validation error. The validation error should mathematically
decrease with the increase in the number of attributes. In this
study, the validation error is minimal with the incorporation of
the fifth attribute. Therefore, only five attributes were utilized
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FIGURE 13
(A) Target log(effective porosity), composite seismic trace, and inverted P-impedance (external seismic attribute) utilized to predict effective porosity in
analysis window set in between 2470 and 2740 m; (B) Five seismic attributes utilized in this study are numbered on the x-axis and their associated
average prediction error is plotted on the y-axis. The lower black curve represents all wells’ errors whereas the upper red curve represents validation
error which ultimately decreases with the increase in the number of seismic attributes.

TABLE 2 The best set of sequentially derived internal and external seismic attributes (with computed training and validation error) was selected through
forward stepwise regression to train the PNN for the prediction of effective porosity.

Target
log Reservoir’s

property

Attribute order Selected attribute
name

Attribute type Training error (%) Validation error
(%)

Effective porosity 1 Average frequency Internal 4.93 5.94

Effective porosity 2 Time Internal 4.50 6.38

Effective porosity 3 MBI_Zp External 4.36 6.38

Effective porosity 4 Amplitude weighted
frequency

Internal 4.14 5.56

Effective porosity 5 Filter 5/10–15/20 Internal 3.93 5.38

for this study. Increasing the number of attributes will otherwise
increase noise in the prediction of target log values. The multi-
attribute transformation/regression was applied using five attributes
simultaneously. As compared to single attribute transformation,
the correlation coefficient is now increased from 39% to
72% with average statistical error decreased from 7% to 5%,
as shown in Figure 14A.

To address more complicated problems without having previous
knowledge of the process, nonlinear models that are based on
data-driven methodologies such as ANN are used (Herrera et al.,
2006; Durrani et al., 2020). Therefore, in this study, the predictive
power of reservoir property modeling was enhanced via training of
FNN-derived PNN integrated with multi-attribute transformation.
Therefore, a neural network was developed with the same five
attributes that have already been utilized for muti-attribute
transformation. This is because these attributes are found best in
terms of reliability and correlation in predicting the target log. PNN

is trained with study wells in a 2470–2740 ms analysis window
for predicting effective porosity using the attributes; MBI inverted
p-impedance as an external attribute, average frequency, time,
amplitude weighted frequency, and filter 5/10–15/20 as internal
attributes. The parameters used in training PNN for this study
include operator length of 5, operator lag measured from the
center is 0, and pre-whitening of 0.1%. The number of sigmas
for training PNN is set to 25 with sigmas ranging from 0.1 to 3
and the number of conjugate-gradient iterations is 20. Then PNN
was applied in mapping mode, cascading with the trend from the
multi-attribute transformation for predicting both high and low-
frequency components of logs and hence accurately predicting the
numerical values of the target log. As compared to multi-attribute
transformation, the correlation coefficient has now increased from
72% to 88% with average statistical error further decreased from
5% to 3%, as shown in Figure 14B. This is an accurately determined
neural network relationship with maximum correlation between

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2024.1516420
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Aftab et al. 10.3389/feart.2024.1516420

FIGURE 14
(A) Application of multi-attribute transformation using five seismic attributes simultaneously with a correlation of 72% and average error of 5% to
predict effective porosity in Aradin-01 and Suleman-01 wells; (B) Application of PNN using five seismic attributes at a time with a correlation of 88%
and average error of 3% to predict effective porosity in Aradin-01 and Suleman-01 wells.

FIGURE 15
Seismic inverted effective porosity section via application of FNN derived PNN.

target log and seismic data upon which we can rely. This neural
network relationshipwas applied to the seismic data to predict target
log(effective porosity) values away from the well control with high
confidence as shown in Figure 15 (effective porosity: ∼7–18%).

4.11 Implications of this study

In the absence of core plugs/well cuttings data, reservoir
properties estimation using petrophysical analysis is the key
to calibrating the ANN lead seismic reservoir characterization
(Leiphart and Hart, 2001). Well logs and seismic data were analyzed
to model the hydrocarbon reservoir potential of sandstone of the
Sembar Formation both vertically and horizontally. Petrophysical
modelling in the study wells has shown up to a maximum of

∼200 m continuous thick packages of gas sandstone. The overall
reservoir quality is good for the study area which reveals the
sandstone of the Sembar Formation as a highly prospective gas-
bearing formation in the study area (Figure 4; Table 1). Vp/Vs
ratio is a very effective elastic attribute in separating different
lithofacies and for the demarcation of hydrocarbon pay zones
and non-pay zones (Hughes et al., 2008). The cross-plot between
Vp/Vs ratio and P-impedance, color-coded with petrophysical
properties not only predicts lithology but also predicts the nature
and saturation of fluid in the reservoir rock (Avseth and Odegaard,
2004; Avseth and Bachrac, 2005). Rock physics analysis effectively
separated productive gas sands from non-productive sands in the
study area (shale, shaly sand, clean sands, gas sands, and water-
bearing sediments) (Figures 5A–C). There is excessive variability in
composition, texture, and porosity in sand grains because of the
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effect of diagenesis. This resulted in the incorporation of mixed
impedance layers (overlapping ranges of high and low impedance
among different facies) in the Sembar sandstone mainly because of
the presence of gas and clays filled in the pore spaces (Figure 7).

Low frequencies are typically not part of processed seismic data.
Suchbandlimiteddataaloneisnotsatisfactorytomodelmanyelements
of subsurface geology and make accurate predictions of reservoir
properties (Yilmaz, 2001; Torres-Verdín and Sen, 2004; Prskalo, 2005;
Karbalaali et al., 2013; Nawaz, 2013; Karim et al., 2016). Integrating
many sets of data, such as those collected from wells and seismic
stations, is one way to increase accuracy (Robinson and Silvia, 1978;
Hampson et al., 2001; Swisi, 2009). Seismic inversion acts as a bridge
inmodern reservoir characterizationwhich combines these two types
of data (Azeem et al., 2017; Sams and Carter, 2017). Today, a variety
of post-stack seismic inversion methods are used, and their selection
relies on the available data set and the problem that is currently being
considered (Russell and Hampson, 1991; Delépine et al., 2009). To
avoid a pseudo-invertedmodel,MBIworkflow incorporates a built-in
low-frequency model for more accurate absolute acoustic impedance
model generation (Lindseth, 1979). Higher resolution modelling and
better handling of noise andmultiples giveMBI an edge over SSI.This
motivates the choice ofMBI for this study. Post-stackMBI operates at
zero offset assumption with final output as acoustic impedance (Zp)
seismic volume (Eidsvik et al., 2004). The ultimate objective of MBI
is to provide an interface to NNs to extract reservoir properties from
the entire seismic volume using Zp as an external attribute through
developing a statistical relationship between petrophysical and elastic
properties (Doyen et al., 1989).Therefore, P-impedance is extracted as
anexternal seismic attribute fromMBI toutilize in thePNNworkflow.

Seismic attributes act as a bridge between seismic images and
well-log data in successfully predicting the reservoir properties
(Russell et al., 1997). Linear transformation and regression methods
can be utilized for the prediction of reservoir properties with risks
of higher uncertainties in the output model. Since there is no direct
correlation between reservoir properties and seismic amplitude
data, it is necessary to make many underlying assumptions in
these linear transformations that are suspect (Leiphart and Hart,
2001). The capacity to establish nonlinear correlations between
seismic data and petrophysical logs is the primary benefit of
ANN over other seismic reservoir characterization approaches
(Hampson et al., 2001; Leiphart and Hart, 2001; Miguez et al., 2010;
Durrani et al., 2020; Durrani et al., 2021). Therefore, it is a new
approach to use ANN for forecasting reservoir properties.

To get around the problems with traditional reservoir
characterization techniques an integrated approach is adopted
in this study to link MBI with FNN-like PNN to quantitatively
characterize the reservoir properties of thick packages of
sandstone encountered in deeper levels of the Cretaceous Sembar
Formation. This integrated approach includes seismic multi-
attribute transformation and FNN-derived PNN modelling to
seismic and well log data for the prediction of reservoir properties
(like effective porosity), away from well control. The suggested
approach predicts reservoir properties concisely and efficiently.
This methodology may be regarded as an extension of traditional
seismic inversion methods. The PNN is trained to derive the best
non-linear mathematical relationship that provides the highest
correlation and minimum error between the seismic attributes and
target log(effective porosity log). The effective porosity predicted

by PNN on seismic data at well locations at the level of sandstone
of the Sembar Formation is in a range of 7%–18% (Figure 15).
This is consistent with the computed range of effective porosity
as proposed by petrophysical analysis. This agreement calibrates
and confirms the validity of ANN constructed model for reservoir
property prediction.This accurate prediction of reservoir properties
is extremely important for future field development and production
of the Khewari block. The findings of this study have implications
that extend beyond the scope of the current investigation. The
methodology employed in this study could be applied regionally
to assess the untapped hydrocarbon potential of sandstones of
the Sembar Formation because of formation’s extension toward
the Zagros Fold-and-Thrust Belt in Iran in the western part of
the study area and toward the Rajasthan Basin in India in the
eastern part (Aftab et al., 2022).This approachwould also help assess
the undeveloped hydrocarbon potential of reservoir sandstones of
similar formations in South Asia and worldwide.

5 Conclusion

The following conclusions are drawn from this study:

• Reservoir properties estimation through petrophysical analysis
has modeled considerably thick (∼200 m) gas-bearing
sandstone in study wells. Rock physics analysis is employed
which successfully separated productive payable gas sands from
non-productive sands of the Sembar Formation.

• P-impedance is extracted as an external seismic attribute
from MBI. To get around the problems with traditional
reservoir characterization techniques, we applied an integrated
seismic multi-attribute transformation and FNN-derived PNN
modeling to seismic and well log data to extract reservoir
properties like effective porosity, away from well control.
We sequentially extracted five seismic attributes (inverted
p-impedance, average frequency, time, amplitude weighted
frequency, and filters) through forward stepwise regression to
predict effective porosity values.

• The PNN provides the highest correlation and minimum error
between the target log and seismic attributes. This inter-well
prediction of reservoir properties is extremely important for
field development and production of any hydrocarbon field.
This integrated approach predicted the reservoir property
model which is geologically more realistic, and pragmatic
compared with linear regression approaches.

• The projected effective porosity demonstrates an excellent fit to
the actual log-derived effective porosity at well locations which
cross-validates the accuracy of the PNN-derived reservoir
property. ANN predicted the effective porosity via bridging
target logs and seismic data within a short computation time.
These results suggest that FNN-derived PNNs, when used
appropriately, have the potential to provide a method for
enhanced resolution and prediction of subsurface reservoir
properties that may be used to redesign, reassess, and
reevaluate already built reservoir and hydrocarbon reserves
models. The methodology adopted in this study is also
valid and equally applicable to similar sandstone reservoirs
across the globe.
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