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Spatial distribution prediction of
landslide susceptibility based on
integrated particle swarm
optimization

Qing Zhang1,2*
1College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, China,
2China Academy of Safety Science and Technology, Beijing, China

Landslide sensitivity prediction relies on multiple environmental factors, making
it difficult to obtain accurate prediction results. In order to improve the prediction
accuracy of regional landslide sensitivity, a landslide sensitivity spatial distribution
predictionmethod based on integrated particle swarm optimization was studied
in Lianhe Village, Jianfeng Town, Shizhong District, Leshan City, Sichuan
Province. Based on the determination coefficient, the sensitivity of landslide
influencing factors was analyzed, and the weights of the influencing factors
were determined. A landslide sensitivity spatial distribution prediction model
was established based on support vector machine. By introducing simulated
annealing and mutation operations into the particle swarm algorithm, an
integrated particle swarm algorithmwas obtained to extract highweight features
of landslide sensitivity space and generate landslide sensitivity prediction
results. The experimental results show that the cumulative value (ACU) of
this method for predicting landslide sensitivity is 0.91, which can accurately
predict the spatial distribution of landslide sensitivity in the study area and has
practical value.

KEYWORDS

integrated particle swarm optimization, support vector machine, landslide
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1 Introduction

A landslide is a highly destructive geological disaster. It is sudden and unpredictable.
Every time it occurs, there will be a huge loss of life and property. This has a far -
reaching impact on the infrastructure of human society, residents' lives and the natural
environment (Zhu et al., 2023). The weakness of geological structure provides a potential
sliding surface for the formation of landslides. Topography and water system distribution
directly affect the triggering conditions and movement path of landslides (Chen et al.,
2023; Zhu et al., 2024). Meteorological conditions, especially extreme rainfall, earthquakes
and other natural disasters, often become the direct cause of landslides. In addition,
with the intensification of human activities, the erosion and instability of the earth’s
surface have been further aggravated, making the risk of landslide disasters significantly
increased (Zeng et al., 2023; Wei et al., 2024). In the vast territory of China, the
distribution of landslide disasters shows obvious regional characteristics (Luo, 2023).
Due to the limited ability to predict the impact of landslide disasters, early warning
resources (such as monitoring instruments, warning information release platforms, etc.)
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often find it difficult to achieve comprehensive coverage and efficient
utilization. In this situation, if there is a lack of spatial distribution
prediction of landslide susceptibility, disaster response departments
will not be able to identify high-susceptibility areas and focus
on monitoring and warning them, resulting in an unreasonable
allocation of warning resources and the inability to take effective
preventive measures before disasters occur, such as reinforcing
mountains and carrying out engineering treatment. Therefore, it is
particularly important to carry out spatial distribution prediction of
landslide susceptibility.

In recent years,many scholars have carried out research andhave
achieved some research results. Literature (He et al., 2023; Qiu et al.,
2022) takes Weixin County, a mountainous area in Northeast
Yunnan, as the research object. Firstly, a comprehensive evaluation
index system is established, and then the factors are classified
by using the woe model. Finally, the multi-scale support vector
machine model is established, and the landslide susceptibility grade
map is established by using Geographic Information System (GIS)
technology. The selection of Support Vector Machine (SVM) model
parameters has a great impact on the results, and the generalization
ability of its model is not enough to achieve the ideal evaluation
effect. Reference (Zou et al., 2023) proposed an evaluation method
of landslide susceptibility in eastern Tibet Based on the frequency
ratio and theAnalyticHierarchy Process (AHP)model.Thismethod
first selects the Digital Elevation Model (DEM) and its derived
data (slope, aspect), faults, formation lithology, seismic points and
other factors, then normalizes each factor, calculates the relative
importance of each factor using the Factor Rating (FR) method, and
finally calculates the weight of impact factors to build an evaluation
model. The FR method used in this method can intuitively reflect
the relationship between factors and landslide occurrence frequency.
However, it ignores the complex non-linear relationship between
factors and landslide occurrence, as well as the coupling between
factors, which further exacerbates the complexity of the AHPmodel
and leads to poor prediction accuracy. In literature (Yang et al.,
2023; Wang et al., 2022), Yushe County is taken as the research area.
Firstly, based on the GIS platform, five influencing factors of slope
and slope height are selected as evaluation indexes through cluster
analysis. Then, the information value of each factor is calculated
using the Weighted Information Value (WIV) method. Finally,
the weighted sum is obtained to evaluate the results of geological
disaster susceptibility. Although the WIV method can effectively
integrate multi-source information, its results are sensitive to weight
allocation and do not fully consider the spatial correlation between
factors, resulting in the need to improve its application prediction
accuracy. In reference (Wang et al., 2023), a landslide hazard
susceptibility evaluation method based on an information model is
proposed. In this method, Chongqing, a city with serious landslide
disasters, is taken as the research area. Firstly, based on the historical
landslide data, 10 evaluation indexes, including slope and aspect,
are selected. Then, the contribution of each factor to landslide
occurrence is calculated using the information model. Finally, the
contribution is ranked, and the landslide susceptibility distribution
map of the research area is obtained. Although the information
model can reflect the contribution of various factors to landslide
occurrence, it may overlook some potential non-linear landslide
influencing factors, which may affect the evaluation results and lead
to poor prediction accuracy.

In view of the problem that the above method is affected
by the landslide influencing factors and the prediction accuracy
is insufficient, the prediction of landslide susceptibility spatial
distribution based on integrated particle swarm optimization
is carried out. Innovatively analyze and extract potential, non-
linear landslide impact factors; analyze the spatial correlation
between influencing factors based on the deterministic coefficient;
complete the sensitivity analysis of landslide influencing factors;
and reduce the impact of factor weight allocation on the prediction
results. Considering the complex non-linear relationship between
influencing factors and landslide occurrence, as well as the coupling
between factors, simulated annealing and mutation operations are
simultaneously introduced into the particle swarm algorithm to
optimize the ensemble particle swarm algorithm and improve its
generalization ability. Solve the effective spatial high factor weight
characteristics of landslide susceptibility, simplify the prediction
model, and obtain distribution prediction results.

2 Overview of the study area

2.1 Geological environment analysis

The study area is Lianhe village, Jianfeng Township, Shizhong
District, Leshan City, Sichuan Province. The survey area is located
in a deep-seated hilly area extending in a beaded shape from the
Northeast, and location and general situation of the study area
is shown in Figure 1.

As shown in Figure 1, the landslide is developed on the slope
on the north side of the dome, with the direction of the slope in
the West and North, a width of 80–130 m, and a slope of 10°–17°;
The lower section is a steep slope with a length of 60–150 m and a
slope of 30°–55°; The gentle slope area is a long and gentle slope,
with a slope of 10°–20°. Most residential houses are located on
this slope. The stratum above the hill scarp is the sandstone of
the upper Cretaceous Jiaguan formation, locally intercalated with
thin mudstone. The slope at the foot of the slope is composed
of silty mudstone and argillaceous siltstone of the lower hill 3,
members of the Penglaizhen formation of the upper Jurassic system.
The Neogene Holocene collapse (residual) diluvium in this area is
sporadically distributed. The present talvium in the landslide area
is mainly composed of gravel. The geological structure of this area
is adjacent to the Xinqiao fault of the NNE trending fault, which is
located in the Northeast (hanging wall) of the fault. It is affected by
the pull bending folds of the two walls and is about 350 m away from
the fault. The rock occurrence in this area is 315°, ∠12, which is a
monoclinic structure. Compressed by geological structure, the rock
mass fissure is developed, mainly including two groups of 80°∠78°
and 133°∠75°.The landslide area is a typical clockwise slope terrain.
On this basis, follow-up research was carried out.

2.2 Analysis and extraction of landslide
impact factors

The causes of landslides are complex and can be attributed
to two categories of influencing factors: controlling factors and
inducing and promoting factors. The controlling factor is the basic
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FIGURE 1
Location and general situation of the study area.

condition of landslide occurrence and plays a decisive role in the
formation of landslides.The inducing and promoting factors further
stimulate or accelerate the landslide process on the basis of the
controlling factors (Duan et al., 2023).

2.2.1 Control factor analysis

1) Geomorphic factors: These factors jointly shape the
topographic background of landslide occurrence, such as
steep slope, unfavorable slope direction (such as towards the
direction vulnerable to erosion) and complex topographic
relief, increasing the risk of landslide.

2) Geological factors: Rock combinations of different lithologies
have different resistance to landslides. The stability of slope
structure directly affects the occurrence of landslides, while
the fault distance reflects the potential impact of regional
geological structure on landslides (Anand et al., 2023a).

3) Hydrological factors: Hydrological conditions are very
important for triggering landslides, especially rainfall,
which is one of the most common triggering factors for
landslides.

2.2.2 Analysis of inducing and promoting factors

1) Surface coverage: The type, thickness and stability of surface
vegetation, soil layer and other coverings have an important
impact on landslides. The bare surface without vegetation
coverage is more likely to be washed by rain, accelerating the
landslide process (Chang et al., 2023).

2) Seismicity: The propagation and energy release of seismic
waves in rockmasswill cause damage to the structural integrity
of rock mass, lead to slope instability and induce landslides.

3) Human activities, such as farming, deforestation, urban
construction, and road construction, can have negative
impacts on natural slopes, thereby increasing their landslide
risk. In addition, unreasonable excavation, stacking and other
behaviors are also direct causes of landslides (Fan et al., 2022).

In summary, this paper extracted 18 influencing factors,
including elevation, slope gradient, slope orientation, slope length,
terrain curvature, terrain undulation, engineering rock formation,
slope structure, fault distance, water system distance, watershed
area, flow path length, Landslide Susceptibility (LS) coefficient,
Melton strength, terrain humidity index, rainfall, land use, and road
distance for further research. The impact of these 18 influencing
factors on landslide occurrence is as follows: Elevation factor:
Elevation affects climate, vegetation, and indirectly affects landslide
occurrence. Generally speaking, high-altitude areas may have lower
temperatures, frequent freeze-thaw cycles, severe rock weathering,
and an increase in the amount of loose material. Meanwhile,
vegetation growth conditions in high-altitude areas are relatively
poor, and the reinforcement effect of vegetation roots on soil is
weak, making landslides prone to occur. Slope factor: Slope is
one of the key factors affecting landslide occurrence (Melati et al.,
2024). A steeper slope will subject the rock and soil mass to greater
gravitational forces, increasing the sliding force and affecting the
runoff velocity and infiltration of surface water. When the slope
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exceeds a certain limit, the stability of the rock and soil mass will
significantly decrease, making it prone to landslides. Slope aspect
factor: Slope aspect affects conditions such as light, temperature,
precipitation, and vegetation growth.The sunny slope receives more
solar radiation, with higher evaporation and relatively lower soil
moisture content (Li et al., 2023). The vegetation type and coverage
may differ from the shady slope. On shady slopes, the humidity may
be high, and in some cases, excessive soil moisture can increase the
risk of landslides. Slope length factor:When the slope length is long,
the runoff distance of surface water on the slope increases, and the
erosion and scouring ability of runoff is enhanced. It is easy to carry
away loose materials on the slope, reduce the stability of the slope,
and easily form gullies, which can lead to geological disasters such
as landslides. Terrain curvature factor: Terrain curvature reflects
the degree of curvature of the terrain. At the curvature of normal
terrain (convex terrain), the rock and soil mass are easily subjected
to tensile stress, leading to internal structural damage to the rock
and soil mass. In areas with negative terrain curvature (concave
terrain), it is easy to accumulate water, increase soil moisture
content, reduce the shear strength of rock and soil mass, and
increase the possibility of landslides. Terrain undulation factor: A
large terrain undulation means a large height difference, and the
gravity effect on the rock and soil mass varies greatly, which can
easily lead to stress concentration. Meanwhile, areas with large
terrain undulations are often accompanied by complex geological
structures and different lithological combinations, increasing the
potential risk of landslides. Engineering rock formation factor:
Different engineering rock formations have different physical and
mechanical properties, such as hardness, weathering resistance,
permeability, etc. Weak rock formations (such as shale, mudstone,
etc.) are prone to weathering, have low strength, and are prone
to deformation and damage when subjected to external forces,
leading to landslides. Slope structure factor: Slope structure includes
the bedding structure of rock and soil, the development of joints
and fissures, etc. If the bedding tendency of the rock and soil
mass on the slope is consistent with the slope inclination, and the
inclination angle is smaller than the slope inclination angle, this
forward slope structure is more prone to sliding under the action of
gravity (Di et al., 2023). The integrity of the rock and soil mass with
developed joints and fissures is destroyed, and the shear strength is
reduced. The rock and soil mass along the slope are prone to sliding
along the bedding plane, causing landslides. Fault distance factor:
The rock and soil mass near the fault is strongly affected by crustal
movement, resulting in rock fragmentation, crack development, and
damage to the integrity and stability of the rock and soil mass. The
closer to the fault, the stronger the impact and the higher the risk
of landslides. Water system distance factor: Areas close to water
systems have higher groundwater levels and higher soil moisture
content. Meanwhile, lateral erosion of the water systemmay weaken
the support force at the foot of the slope, causing the rock and
soil mass to lose balance and leading to landslides. Watershed
area factor: A larger watershed area means more catchment areas,
resulting in larger runoff during rainfall. A large amount of surface
water runoff will increase the erosion and scouring ability of the
slope, reducing the stability of the slope. Flow path length factor:
When the flow path length is long, the energy accumulation of
water flow in the slope or valley is greater, and the erosion and
scouring ability is enhanced. Long flow paths may also lead to more

slope material being transported, affecting the stability of the slope.
Length Slope (LS) coefficient: the LS coefficient comprehensively
considers the effects of slope length and slope gradient on soil
erosion and landslides. It reflects the comprehensive effect of terrain
on the erosion force of water flow and the stability of rock and soil
mass. The larger the coefficient, the greater the potential impact of
terrain on landslides. The LS coefficient is relatively high, making
landslides more likely to occur under triggering factors such as
rainfall. Melton intensity factor: Melton intensity is an indicator
that measures the relationship between terrain humidity conditions
and potential landslide risks. A higher Melton strength indicates a
higher terrain humidity, which increases the likelihood of soil being
supersaturated and reduces the shear strength of the rock and soil
mass, thereby increasing the risk of landslides. Terrain moisture
index factor: The terrain moisture index reflects the influence of
terrain on soil moisture distribution. It comprehensively considers
the relationship between terrain slope, slope orientation, slope
length, and soil moisture. A higher terrain moisture index indicates
a high soil moisture content, which reduces the shear strength of the
rock and soil mass and makes it prone to landslides (Oyda et al.,
2024). Rainfall factor: Rainfall is one of the main triggering factors
for landslides. On the one hand, rainfall increases the weight of the
rock and soil mass, and increases the sliding force. On the other
hand, rainwater infiltration into the rock and soil mass will reduce
its shear strength, making it easier for the rock and soil mass to
slide. Land use factor: Different land use methods have varying
impacts on landslides. For example, forest vegetation can improve
the stability of soil and rock through root system stabilization,
interception of rainfall, and othermethods. Construction land (such
as building construction, road construction, etc.) may damage the
original terrain and soil structure, increasing the risk of landslides.
Road distance factor: In areas close to the road, excavation, filling,
and other engineering activities during road construction can alter
the stress state and hydrological conditions of the rock and soil
mass. The drainage system of the road may also affect the soil
moisture content in the surrounding area. The closer to the road,
the more obvious these effects are, and the higher the risk of
landslides.

3 Sensitivity analysis of landslide
influencing factors based on
deterministic coefficients

After completing the extraction of landslide impact factors,
the deterministic coefficient theory is introduced to conduct a
sensitivity analysis of landslide impact factors. Sensitivity analysis
of influencing factors helps determine which influencing factors are
closely related to landslides (He et al., 2022; Ji et al., 2022). The
formula for calculating the determination coefficient of landslide
impact factors is as follows:

CF =
{{{{
{{{{
{

PPa − PPs
PPa(1− PPs)

,PPa ≥ PPs

PPs − PPa
PPs(1− PPa)

,PPs ≥ PPa
(1)

In the formula, PPa represents the probability of landslide being
affected by factor a; PPs represents the probability of landslide
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TABLE 1 Classification and grading information of certainty coefficient.

Number Coefficient range Describe Stability partition

1 −0.1 > CF ≥ −1 There is very little certainty of geological hazards occurring, and it is basically impossible for
geological hazards to occur

Stabilize

2 0.1 > CF ≥ −0.1 The possibility of geological disasters is difficult to determine Indeterminacy

3 0.4 > CF ≥ 0.1 Potential for geological hazards to occur Less stable

4 0.7 > CF ≥ 0.4 There is a high possibility of geological disasters occurring Instability

5 1 > CF ≥ 0.7 Geological disasters are highly prone to occur Extremely unstable

occurrence in the study area, and its calculationmethod is as follows:

PPa =
Spa
Sa

(2)

PPs =
Sp
S

(3)

In the formula, Sa represents the area of landslide occurrence
in a; Spa represents the area of data class a; Sp represents the area
where landslides occur within the region; S represents the total area
of the region (Guo et al., 2022).

According to Equations 1–3, it can be seen that the maximum
and minimum values of the coefficient of certainty for the landslide
impact factor are 1 and −1, respectively. When the coefficient of
certainty is greater than 0, it indicates a high degree of certainty
that a landslide will occur in the area. When the coefficient of
certainty is equal to 1, it indicates that a landslide will inevitably
occur, with a probability of 100%; When the coefficient of certainty
is less than 0, it indicates that the certainty of landslide occurrence
is low, and the probability of landslide occurrence in the evaluation
unit at the location is low; When the coefficient of certainty is equal
to −1, it indicates that the unit is stable and will not experience
landslides; When the coefficient of certainty is approximately
equal to 0, it indicates that there is no correlation between the
event occurrence and the evaluation unit, and it is impossible to
determine whether it is prone to landslides (Zhou et al., 2022).
The classification and grading information of the determination
coefficient is shown in Table 1:

Next, calculate the determination coefficients of the influencing
factors and combine the determination coefficients of different
factors using the following formula to obtain the factor weights:

Z =
{{
{{
{

x+ y− xy,xy > 0
x+ y

1−min (|x|, |y|)
,xy < 0

(4)

In the formula, x represents the susceptibility factor of
landslides; y represents the frequency of regional landslides under
the influence of influencing factors. According to Equation 4, merge
the deterministic coefficient values of each factor to complete
the factor weight calculation. To prevent multicollinearity caused
by multiple influencing factors, calculate the Pearson correlation
coefficient between each pair of features. If the absolute value of
the correlation coefficient is greater than the threshold of 0.7, it is

considered that these two features have strong collinearity. When
collinearity is found, priority is given to retaining factors with higher
weight values and discarding another factor.

4 Construction of spatial distribution
prediction model for landslide
susceptibility

The geological structure, soil type, rock properties, and other
factors vary significantly in different regions, and the availability
and quality of landslide historical data, geological survey data, etc.,
directly affect prediction. The PSO (particle Swarm Optimization)
algorithm is used to optimize the parameters of the SVM model.
Introduce an insensitive loss function and set the parameters of
the particle swarm reasonably, such as particle number, inertia
weight, and acceleration coefficient. Find the optimal parameter
combination, select and extract effective features, and predict the
spatial distribution of landslide susceptibility.

4.1 Construction of prediction model
based on sensitivity and SVM

SVM is a supervised machine learning algorithm based on
statistical learning theory.The occurrence of landslides is a complex
geological process that is influenced by multiple factors. It is not
easy to collect sufficient data points on landslide occurrence and
non-occurrence comprehensively. SVM has good generalization
ability in small sample situations. It separates samples of different
categories by finding the optimal classification hyperplane rather
than relying excessively on a large amount of sample data to fit
the model like other algorithms. In addition, the susceptibility of
landslides is influenced by numerous factors, which form a high-
dimensional feature space. When constructing prediction models,
it is necessary to consider the comprehensive impact of these factors
simultaneously. SVM can effectively process high-dimensional
data by mapping the original high-dimensional data to a higher
dimensional feature space through kernel functions, and finding the
optimal classification hyperplane in this high-dimensional space.
There will be no “curse of dimensionality” due to the increase in
data dimensions, thus accurately capturing the complex relationship
between various factors and landslide susceptibility. Therefore,
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FIGURE 2
Schematic diagram of support vector machine.

SVM is used to construct the prediction model. In the process of
constructing a landslide susceptibility spatial distribution prediction
model based on SVM, a core issue is to optimize the position of the
hyperplane to ensure the maximization of the classification interval
between different categories, namely, landslide points and non-
landslide points, while minimizing the error of misclassification
of training samples (Wang et al., 2022). This challenge requires
finding the optimal balance between maximizing classification
interval and minimizing classification error. To achieve this goal,
an insensitive loss function is introduced, which defines an error
tolerance range ε. When the difference between the predicted value
f(x) and the observed value y is less than ε, the prediction is
considered accurate, meaning no loss occurs at that point. The
principle is shown in Figure 2.

From Figure 2, it is evident that support vector machines fit all
sample points by finding a regression equation. Assuming dataset
(xi,yi), xi represents the influencing factor data, and yi represents
the coefficient of determination of the factor (Nirbhav et al., 2023b),
a prediction model is constructed as follows Equation 5:

F =min 1
2
‖ω‖2 +C

n

∑
i=1
(ξi − ξ

′
i )

s.t.
{
{
{

−ε− ξi ≤ yi − f(x) ≤ ε+ ξ
′
i

ξ′i ≥ 0

(5)

In the formula, ω represents the weight vector orthogonal
to the hyperplane, ξi represents the relaxation variable, and C
represents the penalty parameter; ε represents the insensitive loss
function (Bui et al., 2023). By analyzing the sampling points, a new
kernel function is proposed and solved, resulting in the following
regression as follows Equation 6:

f(x) = Z
n

∑
i=1
(αi − α

′
i )e
−γ‖xi−yi‖2 + Fb (6)

In the formula, αi represents the regression factor; γ represents
the nuclear parameter; b represents distance deviation. Thus,
the construction of a landslide susceptibility prediction model is
completed.

FIGURE 3
The overall prediction process of the prediction model.

4.2 Deep optimization solution of
prediction model based on integrated
particle swarm algorithm

Due to the lack of precise and unified methods for selecting
the penalty coefficient C and kernel parameter γ in support vector
regression (SVR), the choice of model parameters has a direct and
significant impact on the generalization performance of SVR. In
addition, if all the influencing factors of the landslide point are
indiscriminately used as input values for the SVR model, not only
will increase the computational complexity of the model due to
the inevitable redundancy of information between each factor,
but the complex non-linear relationship between these factors and
landslide occurrence, as well as the coupling between factors, will
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TABLE 2 Information on data sources and types in the research area.

Data base Data sources Data type

Landslide point disaster data Sichuan Provincial Geological Environment Monitoring Center Scalar quantity

DEMmodel Geospatial data cloud 30 m × 30 m grid

Geological environment data Leshan city 1:50,000 geological map data Complexor

Rainfall data Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences 1 km × 1 km grid

Landsat TM Image data Geospatial data cloud 30 m × 30 m grid

River network road data Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences Complexor

further exacerbate the complexity of the model. Therefore, it needs
to be deeply optimized and solved. Due to the complex non-linear
relationship between landslide influencing factors and landslide
occurrence, and the coupling between factors, the prediction
model may have multiple local optimal solutions (Zhang et al.,
2023). Traditional optimization algorithms may easily fall into
local optima, resulting in the inability to find globally optimal
model parameters. The particle swarm algorithm has good global
search capability. It searches for the optimal solution in the solution
space through a group of particles, and each particle continuously
adjusts its position based on its own experience and the collective
experience. This search method can cover most of the solution
space, making it more likely to find the global optimal solution
and improving the accuracy of landslide predictionmodels, even in
complex non-linear relationships and factor coupling. In addition,
when dealing with complex models such as landslide prediction,
themodel becomes complex due tomultiple influencing factors and
coupling relationships. However, the particle swarm optimization
algorithm has relatively fewer parameters, which makes it more
convenient to optimize and solve complex landslide prediction
models, reducing the complexity of the optimization algorithm
itself.Therefore, the particle swarm optimization algorithm is used
to solve the prediction model. This process involves introducing
simulated annealing and mutation operations into the particle
swarmalgorithm simultaneously, and the training process seeks the
optimal model parameters to maximize the model’s generalization
ability, thereby achieving an effective prediction of the spatial
distribution of landslide susceptibility. In this optimization, the
particle swarm optimization algorithm was selected as the main
optimization-solving tool (Yang and Zhu, 2021).

The integrated particle swarm algorithm is applied to solve the
problem, and the specific process is as follows:

(1) Initialize particles and related parameters, set the particle
swarm size to n, maximum iteration times to K, simulated
annealing probability threshold to δd, mutation probability
threshold to δm, and inertia weights to ωmax and
ωmin (Xiong et al., 2022).

(2) Calculate the fitness value of particles according to theEquation 7:

dik =min{‖xi,k − xj,k‖:i ≠ j} (7)

In the formula, dik represents the closest distance of particle
i in the k dimension; xi,k represents the position of the i particle

in the k dimension; xj,k represents the position of the j particle in
the k dimension; ‖xi,k − xj,k‖ represents the Euler distance between
particles i and j in k dimensions. Assign a random number between
(0,1) to the i particle. If the random number is less than δd, perform
simulated annealing algorithm. If not, execute (3). On this basis,
first generate a new position for the particle based on its current
position and velocity, and calculate its fitness at the new position;
For a particle, if its fitness is better than its original optimal solution
dbest, it is set as dbest; Calculate the overall maximum value Dbest by
taking the maximum value dbest of each particle; Update the velocity
of the particles according to Equation 8 and limit it to within Vmax;
According to Equation 9, update the current position of the particle,
which is limited to region Xmax; Calculate the change in fitness
value between two positions, i.e., ΔE; If ΔE is less than the allowed
deterioration range of the objective function and ΔE<0, keep the
value; otherwise, discard the value.

Vk+1
id = f(ωV

k
id) + c1r1(dikd

k
id −X

k
id) + c2r2(d

k
gd −X

k
id) (8)

Xk+1
id = X

k
id +V

k+1
id (9)

In the formula, ω is the inertia weight, k is the number of
iterations, Vid is the particle velocity, Xid is the particle position,
and c1,c2 is the acceleration coefficient; r1, r2 represents a random
numberwithin [0,1];Vk+1

id ,V
k
id represents the iteration rate of particle

i through k+ 1 and k; Among them, dkid represents the best position
of particle i in history; dkgd is the best choice for all dkid; X

k+1
id ,X

k
id

represents the position of i during k+ 1 and k iterations.

(3) dbest comparison was made between the suitability of particles
and their optimal value A. If the current value is better than
dbest, then set dbest to the current value and use dbest as the
current position in the D dimension.

(4) A comparison was made between the fitness of particles
and the optimality of the population. If the current value is
better than Dbest, then set Dbest as the fitness of the current
particle.

(5) Update the direction and step size of particle motion, generate
a new population, and verify whether its velocity and position
are outside the interval.

(6) Perform mutation operation. Assign a random number to the
i particle within the range of [0,1]. When the random number
is smaller than δm, a variable operation is performed.

(7) Continue k = k1 + 1 until the termination condition is met.
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FIGURE 4
Determination coefficient calculation results of influencing factors.

By combining SVM, a powerful classification algorithm,
with regression tools and integrated particle swarm optimization
algorithms, the spatial distribution characteristics of landslide
susceptibility can be solved. By selecting the features that have the

greatest impact on landslide susceptibility, such as slope, elevation,
rainfall, etc., as landslide influencing factors, the spatial distribution
of landslide susceptibility can be predicted.The overall flow chart of
the predictions described above is shown in Figure 3.
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5 Example validation and result
analysis

5.1 Data sources

The dataset used in this study includes landslide hazard data,
geological environment data, Landsat TM image data with a
resolution of 30 m × 30 m, and river network road data in the study
area. The specific data sources and types are shown in Table 2.

In the research area, a total of 148 landslide disaster points were
identified and recorded. To evaluate the application effectiveness
of the proposed method scientifically, the dataset was divided in
a 7:3 ratio. Study the geographic information data of the research
area, such as topography, geological structure, rainfall, vegetation
coverage, soil type, etc., as influencing factors for landslide
susceptibility prediction. 104 landslide points were selected as the
training dataset, while the remaining 44 landslide points were used
as the validation dataset. The processing method for the above
data is as follows: clean the landslide point data, remove duplicate
or erroneous records, and convert the coordinates uniformly to
the UTM (Universal Transverse Mercator Projection) coordinate
system. Digitize the geological map and encode geological
information such as lithology according to classification standards to
ensure consistency in data format. Perform radiometric calibration
on Landsat Terrain Modeling (TM) image data, convert the original
digital quantification value (DQ) value into radiance value, and
then perform atmospheric correction to eliminate the influence
of atmospheric scattering and absorption on the image, obtaining
surface reflectance data. Register all data (landslide disaster data,
geological environment data, Landsat TM image data, river network
road data) to the same spatial reference frame UTM coordinate
system to ensure spatial consistency of the data. The spatial
resolution of different data is inconsistent, and bilinear interpolation
is used to resample low resolution data tomatch high-resolution data
in spatial resolution. Use clipping tools in ArcGIS to manipulate the
boundary vector data of the study area as the clipping range.

The initial penalty parameter is 10, the kernel function is 0.1, 30
particles are set, the inertia weight is 0.7, and the learning factors
are set to 2.05 and 2.05, respectively, which affect the speed at
which particles learn from individual and global optima. Adopting
a dynamic adjustment strategy, the initial value is set to 0.9 and
gradually decreases as the number of iterations increases. The
maximum number of iterations is 400.

Construct a grid with an ε value, such as ε ∈ [0.01,1], and take
values at a certain step size (such as 0.01). For each ε value, train
an SVM regression model and calculate the evaluation metric R2
coefficient on the test setThe closer R2 is to 1, the better themodel fit,
and the final determination of the optimal ε value for the evaluation
index is taken as the error tolerance range.The error tolerance range
determined in this paper is ±0.5.

5.2 Prediction function verification

Simulate annealing operation on particles with a probability
of 0.1 (e.g.,), accept a certain range of poor solutions to escape
from local optima; Perform mutation operation on particles with
a probability of 0.05 (e.g.,) The proposed method was applied

TABLE 3 Weight information of influencing factors.

Influencing
factors

Weight Influencing
factors

Weight

Altitude 0.10 Water system distance 0.12

Slope 0.15 Basin area 0.08

Slope direction 0.05 Flow path length 0.13

Slope length 0.10 LS coefficient 0.12

Terrain Curvatures 0.07 Melton strength 0.11

Terrain undulation 0.08 Terrain humidity index 0.07

Engineering rock
formation

0.10 rainfall 0.15

Ramp structure 0.08 land use 0.05

Fault distance 0.10 Road distance 0.05

FIGURE 5
Prediction results of landslide susceptibility spatial distribution.

to extract landslide influencing factors, and the determination
coefficient of the influencing factors was calculated. The results
are shown in Figure 4.

As shown in Figure 4, six samples of the 18 influence factors
were greater than-1 and less than 0.5. Normalize the determination
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coefficients of each influencing factor in Figure 4, calculate the
entropy and difference coefficients of each determination coefficient,
and finally normalize the difference coefficients to obtain the weight
values of each influencing factor as shown in Table 3.

The experiment conducted collinearity analysis on 18
influencing factors and calculated the Pearson correlation
coefficients between each pair of influencing factors, such as slope
and aspect, using the following Equation 10:

r =

n

∑
i=1
(xi − x)(yi − y)

n

∑
i=1
(xi − x)

2
n

∑
i=1
(yi − y)

2
(10)

In the formula, n is the number of influence factor samples, xi
and yi is the i observation of slope x and slope direction y, x and y
the observed mean of slope x and slope direction y, respectively.

The Pearson correlation coefficient calculation results of the 18
influencing factors do not conform to values greater than 0.7 or less
than −0.7, indicating that there is no linear correlation between all
influencing factors. Therefore, 18 influencing factors were retained.

The spatial distribution prediction of landslide susceptibility was
completed, and the results are shown in Figure 5.

From the analysis of Figure 5, it can be seen that the high
and relatively high prone areas of landslide disasters in the study
area are mainly concentrated on both sides of the valley and the
low mountain and hilly areas adjacent to the town, with a total
area of 907.45 km2, accounting for 33.61% of the total area of the
study area. The terrain and landform conditions in this area are
particularly complex, with crisscrossing gullies and significant river
erosion, resulting in relatively sparse vegetation coverage and severe
soil erosion problems. In addition, the risk of geological disasters
is further exacerbated by the influence of rainfall factors. Research
has shown that there are a total of 138 landslide hazards in the
area, accounting for 93.24% of the total number of landslides in the
region. The density of disaster points is 15 per 100 km2, making it a
typical geological hazard-prone area. Landslide disasters are mainly
distributed in the border areas between high mountains and low
hills, with an area of 459.20 km2, accounting for 17.01% of the total
area. Although the number of geological hazard points in this area
is relatively small, with only 5 landslide hazard points investigated,
accounting for 3.38% of the total number of landslides, the density
of hazard points has also reached 1 per 100 km2, indicating that we
still need to be vigilant about the occurrence of geological hazards.

The low landslide-prone areas and lower landslide-prone areas
are widely distributed in the middle and high mountain areas above
3,000 m altitude and the towns and plain areas below 2,500 m
altitude, with a total area of 1,178.66 km2, accounting for 49.39%.
Among them, 5 landslide disaster points were found in the low-risk
area, accounting for 3.38% of the total number of landslides, while
no landslide disaster occurred in the low-risk area. Specifically, the
mountainous area in the north and south of the river is a middle
and high mountain area eroded by tectonic erosion. The area is
mainly composed of old bedrock mountains, with good vegetation
coverage and relatively superior geological environment conditions.
However, due to the steep terrain, some rocks are damaged by
geological structures, resulting in landslides and other geological
disasters. Although the area is generally stable and the probability
of geological disasters is low, its potential risk is still worth noting.

FIGURE 6
ROC curve of three methods.

TABLE 5 Comparison of three methods for predicting the spatial
distribution of landslide susceptibility over time/ms.

Number of
landslide
points/one

The
landslide
prediction
method

The
landslide
prediction
method
based on
information
model

The
proposed
method

10 32 45 16

20 57 51 19

30 62 58 21

40 74 67 28

The geomorphic type of town and farmland plain area is an
erosion accumulation plain, and the stratum is mainly composed
of Quaternary gravel pebbles and loess. Although the intensity of
human activities is high, the threat to villagers' houses and farmland
is low due to the flat terrain and relatively scattered geological
disasters such as landslides. However, this does not mean that the
risk of geological disasters in the region can be completely ignored,
and monitoring and prevention still need to be strengthened.

In conclusion, the proposed method can be used to predict
the spatial distribution of landslide susceptibility in the study area.
Through the investigation and analysis of landslide disaster points
in the study area, combined with multiple data such as topography,
geological structure, meteorology and hydrology, different types of
areas with high, high, medium, low and low landslide disasters can
be identified. This spatial distribution prediction result is helpful
in understanding the potential risk of landslide disasters, and the
application effect is good.
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5.3 Comparison performance verification

Taking the landslide prediction method based on WIV
(Yang et al., 2023) and landslide prediction method based on
information model (Wang et al., 2023) as the comparison method,
the spatial distribution of landslide susceptibility in the study area is
predicted with the proposed method. Thus, the comparison results
are shown in Table 4 below.

It can be seen from Table 4 above that the three methods can
predict the spatial distribution of landslide susceptibility in the study
area, and all have certain functionality. This time, the ROC curve is
used to compare the prediction accuracy of the three methods. Using
thismethod to detect the susceptibilitymapmainlymeans judging the
area under the curve (AUC). If the AUC value is larger, the evaluation
result is better. Thus, the comparison results are shown in Figure 6.

The AUC in the figure represents the region surrounded by
the intersection of the two ends perpendicular to the dashed line.
As shown in Figure 6 above, the AUC values of the landslide
prediction method (Yang et al., 2023), the landslide prediction
method based on information model (Wang et al., 2023) method
and the proposed method are 0.74, 0.81 and 0.91, respectively. The
test results show that the proposed method has higher accuracy
and better application effect in the spatial prediction of landslide
geological hazard susceptibility in the study area. This is because
this paper considers the complex non-linear relationship between
influencing factors and landslide occurrence, as well as the coupling
between factors. Using a simulated annealing algorithm andmutation
operation to optimize the generalization ability of the particle swarm
algorithm avoids getting stuck in local optimal solutions and obtains
higher prediction accuracy.

Due to the real-time requirement of landslide prediction, the
prediction efficiency of the three methods was further tested based
on the prediction accuracy.Theprediction time of the threemethods
is shown in Table 5.

According to Table 5, for 40 landslide locations, the prediction
time of our method is less than 28 ms, while the prediction
time of other methods is higher than 60 ms, indicating that the
prediction efficiency of our method is higher. This is because this
paper uses an optimized particle swarm optimization algorithm to
solve the landslide prediction model, reducing the complexity of
the coupling model of influencing factors and thus reducing the
prediction time.

6 Conclusion

1. In order to strengthen the scientific and effective management
of regional landslide disaster risks, this paper takes Lianhe
Village, Jianfeng Township, Shizhong District, Leshan City,
Sichuan Province as the research object, and studies a landslide
susceptibility spatial distribution prediction method based on
integrated particle swarm optimization.

2. The innovative content of the paper is the introduction of
simulated annealing and mutation operations to improve
the traditional particle swarm algorithm, proposing an
integrated particle swarm algorithm to more accurately
quantify the contribution of various factors to landslide
occurrence.

3. The focus of this study is to apply integrated particle swarm
optimization algorithm to support vector machine parameter
optimization, improve its ability to avoid local optima, and
make accurate predictions.

4. After verification, this method has high prediction accuracy
and efficiency. The application of integrated particle swarm
optimization algorithm and support vector machine in
predicting the spatial distribution of landslide sensitivity
enriches the theoretical framework system of landslide
disaster prediction and provides a new approach to improve
landslide warning and prevention capabilities. In the
future, while exploring more innovative technologies and
methods, it is expected that this method can be promoted
to more regions, continuously improving the ability to
predict and prevent geological disasters, and contributing
to the construction of a safer and more harmonious living
environment.
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