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Mineral exploration is becoming increasingly challenging because the depths at
which undiscovered mineral deposits can be found are progressively increasing
under barren cover. Therefore, detecting metal resources under barren cover
is a significant step for industrial progress. The application of optimized
machine learning algorithms is critical for detecting undiscovered deposits
under barren cover. One of the most significant issues in mineral exploration
is the detection of multi-element geochemical anomalies that could indicate
the presence of undiscovered mineral deposits under barren cover. Recently,
many machine learning approaches have been developed and employed to
model and map multi-element geochemical anomalies, where the important
hyperparameters are generally regulated through trial-and-error processes.
However, employing swarm-intelligence optimization techniques can reduce
the training time and assists with obtaining more precise results. In the present
study, a known swarm-intelligence procedure called grasshopper optimization
algorithmwas implemented to optimize the known hyperparameters of support
vector machine (SVM) for identifying multi-element geochemical anomalies in
the Takht-e Soleyman district of northwest Iran. The grasshopper-optimized
support vector machine was proven to be a rigorous approach for detecting
multi-element geochemical anomalies and can also be extended to other
geoscientific applications. An optimized SVM algorithm was developed herein
using polynomial and radial basis kernel functions that resulted in multi-element
geochemical anomaly models with accuracies exceeding 95% in the shortest
possible time without trial-and-error approaches.
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1 Introduction

The complexity and diversity of geological structures have
influenced geochemical signatures related to mineral deposits
(Carranza, 2008; Cheng et al., 2000; Sabbaghi et al., 2024). Hence,
selecting a suitable machine learning (ML) model for classifying
geochemical data into reliable categories is one of the basic steps
in mineral prospectivity mapping (MPM) (Ghezelbash et al.,
2020; Sabbaghi and Tabatabaei, 2022). Classification techniques
employing various traditional ML algorithms are gradually
becoming obsolete (Sabbaghi and Tabatabaei, 2020, 2023a, 2023b).
ML approaches are extremely useful in different fields owing
to their high competency in extracting high-level information
from geochemical data. Most ML approaches can be generally
categorized into unsupervised and supervised models. Supervised
ML models include artificial neural networks (Hinton et al., 2006),
deep belief networks (LeCun et al., 2015), convolutional neural
networks (LeCun et al., 2015), ensemble learning (Anderson,
1972), random forest (Dietterich, 2002), logistic regression (Cox,
1958), and support vector machines (SVM) (Vapnik, 1999),
which are focused on classifying features based on predefined
labels. Unsupervised methods recognize the hidden features of
unlabeled inputs and include algorithms for density estimation
(Scott and Knott, 1974), dimension reduction (Redlich, 1993),
feature extraction (Coates et al., 2011), and clustering.

ML algorithms are more robust than traditional classification
approaches because they (i) convert the relationships between
the inputs and outputs into a representation, (ii) fulfill complex
predictions without supposition of data patterns, and (iii) expose
new unpredicted structures, patterns, and relationships. Some
supervised ML models were recently explored for MPM to detect
mineralization occurrences that are inherently associated with
great uncertainties and excessive costs (Sabbaghi and Tabatabaei,
2023b). However, ML algorithms can be made more effective with
appropriate optimization of their structures. The SVM is a robust
and practical approach that can be reinforced through appropriate
optimization algorithms. The SVM algorithm includes known
hyperparameters, for which users commonly obtain ideal values via
trial-and-error procedures. These trial-and-error processes cannot
be used for reliable mineral exploration targeting. Hence, users
commonly prefer to apply linear kernel functions without tuning the
kernel scale or polynomial-order parameters of the SVM (Sabbaghi
and Moradzadeh, 2018). Accordingly, application of the radial basis
function (RBF) and polynomial function (PF) kernels has mostly
resulted in more accurate conclusions (Abedi et al., 2012; Zuo and
Carranza, 2011).

Recently, swarm-intelligence optimization algorithms have
been introduced for optimization of ML algorithms applied
in medical, industrial, agricultural, and geoscientific fields. In
fact, swarm-based optimization algorithms have been widely
employed owing to their nature-inspired characteristics, which
allow consideration of problems as black boxes with great
avoidance of local optima, gradient-freemechanisms, and simplicity
(Saremi et al., 2017). The grasshopper optimization algorithm
(GOA) is a strong swarm-intelligence optimization technique that
has been used alongside genetic algorithm (GA) and particle
swarm optimization (PSO) (Saremi et al., 2017). Optimization
algorithms are commonly selected based on the following criteria:

1) which hyperparameter of an ML model needs to be optimized
and 2) should that hyperparameter be maximized or minimized.
Accordingly, the SVM as an ML model was selected because
of its simplicity, popularity, and computational attractiveness.
Furthermore, the GOA was chosen for hybridization with SVM.
Then, two hyperparameters of the RBF-SVM and PF-SVM were
optimized using the GOA, and their accuracies were compared.
Although the accuracies of both optimized models were above 95%,
the optimized PF-SVM had greater accuracy.

2 Geology and mineralization

The Takht-e Soleyman area is an important segment of the
Takab mineralization zone in northwest Iran; it is located between
the Sanandaj-Sirjan Zone (SSZ) and Urumieh-Dokhtar Magmatic
Belt (UDMB) within 47°0′0˝ E and 47°30′0˝ E longitudes and
36°30′0˝ N and 37°0′0˝ N latitudes (Figure 1). Its extensional
faults display northeast–southwest or east–west trends. This area
includes carlin-type gold, epithermal gold, and Mississippi valley
type (MVT) Pb–Zn mineralizations (Sabbaghi and Tabatabaei,
2023c). The common rock types in the Takht-e Soleyman area
are sedimentary, metamorphic, and carbonate units, while volcanic
occurrences are rarely seen. The passive margin settings are the
best locations for the formation of MVT Pb–Zn resources as large
and continuous stratiform orebodies. These deposits are weakly
related to silicification and dolomitization (Wei et al., 2020). The
MVT Pb–Zn resources provide over 20% of the global requirements
of the elements Pb and Zn. Hence, these resources are highly
sought in mineral exploration activities. Carbonated rocks such
as limestone and dolostone that are commonly found in foreland
basins of orogenic belts are suitable hosts for the formation of
these resources (Wei et al., 2020). The main associated minerals
of MVT Pb–Zn mineralization include sphalerite, Fe sulfides, and
galena (Hosseini-Dinani andAftabi, 2016).The elements Pb, Zn, Ag,
and Cd demonstrate great correlations with Pb–Zn mineralization
occurrences in the study area, and a deep-learning framework
presented by Sabbaghi and Tabatabaei (2023c) was employed to
confirm these elements as pathfinders in the study area. Hence, the
geochemical data table of these elements was applied to train the
model presented in this work.

3 Methodology

3.1 SVM algorithm

This ML model includes heuristic algorithms based on statistics
(Abedi et al., 2012; Geranian et al., 2016; Gonbadi et al.,
2015; Maepa et al., 2021). A dataset of vectors (training data)
with predefined (priori knowledge) class labels is commonly
used to design the SVM hyperplane for delineating classes
(Geranian et al., 2016). This approach employs different kernel
functions for transferring the training data to a higher-dimension
space (Abedi et al., 2012). A support vector in the SVM method
represents a point that has the least distance from the hyperplane
and regulates the orientation of the hyperplane (Figure 2). The
decision boundary of the hyperplane is commonly determined using
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FIGURE 1
Simplified geological map (1:100,000) of the Takht-e Soleyman area in northwest Iran.

a number of input features. The two-class SVM entails training
data with l feature vectors, where xi ∈ R and i = (1, …, n) is the
number of the feature vector in the training data. The class label yi is
assigned to each sample and is equal to 1 or −1 (Zuo and Carranza,
2011). The separating hyperplane is formulated as the following
decision function:

f(x) = sgn(wx+ b), (1)

where parameters w and b are optimized using the
following equation:

L(w,b,α) = 1
2
‖w‖2 −

l

∑
i=1

αi(yi((xiw) + b) − 1). (2)

Here, αi is the Lagrange multiplier. The Lagrange function is
minimized with respect to w and b and maximized with respect to
αi > 0. The Lagrange multipliers are determined as follows:

Maximize
l

∑
i=1

αi −
1
2

l

∑
i,j=1

αiαjyiyj(xixj). (3)

Next, the classification based on the optimal hyperplane is
obtained using the following decision function:

f(x) = sgn(
l

∑
i=1

yiαi(xxi) + b). (4)

Positive slack variables ξi along with a penalty value C
for misclassification errors are considered to improve the
classification. Accordingly, the following objective function
should be minimized:

S = 1
2
‖w‖2 +C(

l

∑
i=1

ξi)
k

. (5)

When the training data are not linearly separable, an RBF
kernel K(xi, xj) is employed to transfer the training data to
the Hilbert space. Then, Equations 3, 4) can be reformulated
as follows:

Maximize
l

∑
i=1

αi −
1
2

l

∑
i,j=1

αiαjyiyjK(xixj). (6)

f(x) = sgn(
l

∑
i=1

yiαiK(xxi) + b). (7)

In addition to the RBF kernel, the PF kernel was applied to the
SVM model in this study and is expressed as follows:

K(xi,  xj) = (xixj + 1)
d. (8)

Then, the relevant parameters like the kernel size (σ) of
the RBF, kernel order (d) of the PF, and objective function
parameter (penalty value C) for both kernels must be optimized for
credible results.
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FIGURE 2
Dataset of vectors (training data) and hyperplanes for discriminating classes in the support vector machine (SVM) approach.

3.2 GOA

Grasshoppers are generally observed individually but belong to
one of the largest swarm of creatures. Exploitation and exploration
of the search space are the two logical attitudes of most nature-
inspired optimization algorithms. Here, the search agents are
supported for sudden movements in the exploration tendency
and local movements in the exploitation tendency. Grasshoppers
naturally demonstrate these two tendencies to seek their targets.
Therefore, mathematical modeling of their behaviors has been used
to construct a new nature-inspired algorithm (Saremi et al., 2017).
The simulated behaviors of grasshoppers can be expressed as follows:

Yi = Pi + Si +Wi, (9)

whereW i,Pi, Si, andY i refer to thewind advection, gravity intensity,
social interaction, and position of the ith grasshopper, respectively.
Moreover, their random behavior can be expressed as Y i = r1Pi +
r2Si + r3W i, where r3, r2, and r1 are random values in [0, 1]. The
social interaction (Si) can be calculated as follows:

Si =
N

∑
j=1

s(dij)ďij(j ≠ i), (10)

where dij is the distance between the ith and jth grasshoppers
computed as dij =|xj − xi|, N is the number of grasshoppers, and s is
the strength of social forces depicted as a function and determined
using Equation 11. Moreover, ďij =

xj−xi
dij

is a unit vector between the
jth and ith grasshoppers.

s(r) = fe
−r
l − e−r, (11)

where l and f are the attractive length scale and intensity of
attraction, respectively.The repulsion and attraction of grasshoppers
as social interactions are exhibited in Figure 3A, where the distances
are considered in the range of [0, 15] and repulsion commonly

occurs in [0, 2.079]. When two grasshoppers are separated by a
distance of 2.079 from each other, there is neither repulsion nor
attraction (Saremi et al., 2017); in this case, both are at a comfortable
distance or in the comfort zone. Furthermore, attraction increases
in the range of [2.079, 4] and then decreases slowly. In Equation 11,
variations in the factors f and l can result in different social behaviors
of the grasshoppers. The s function is independently replotted based
on changes in f and l, as shown in Figure 4. Thus, the factors f and
l can meaningfully change the repulsion region, attraction region,
and comfort zone between the grasshoppers. It is worth noting
that factors l and f are empirically considered as equal to 1.5 and
0.5, respectively, for better results (Saremi et al., 2017). Figure 5
conceptually depicts the comfort zone based on the function s
and interactions between the grasshoppers; the spaces between the
grasshoppers for the repulsion region, comfort zone, and attraction
region can be discriminated from the function s, which assigns
distances higher than 10 to values closer to 0 (Figures 3, 4). Hence,
the function s is not appropriate when the forces between the
grasshoppers are strong and the individuals are separated by large
distances from each other. Therefore, this problem is solved by
plotting the distances between the grasshoppers in the range of [1,
4]. Thus, the function s for the range [1, 4] is as shown in Figure 3B.
The gravity intensity (Pi) in Equation 9 is calculated as follows:

Pi = −gĥp. (12)

where ĥp is a unit vector into the center of the earth and g is the
gravity coefficient.Thewind advection factor is computed as follows:

Wi = zĥw, (13)

where ĥw and z are the unit vectors in the wind direction and
constant value of the drift, respectively. Expanding Equation 9 using
Equations 10–13, we obtain

Yi =
N

∑
j=1

s(|xj − xi|)
xj − xi
dij
− gĥp + zĥw. (14)
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FIGURE 3
Compacting the repulsion and attraction between grasshoppers as social interactions in the ranges of (A) [0, 15] and (B) [1, 4].

FIGURE 4
Effects of varying the values of parameters l and f on the function s(d).

FIGURE 5
Conceptual plan of the comfort zone employing the function s and
interactions between grasshoppers.

This model cannot be optimized because it is meant for
swarms in free space, and its application avoids the exploration
and exploitation procedures around a solution in the desired space
(Saremi et al., 2017). Therefore, a modified version of Equation 14 is
presented as follows:

Yd
i = c(

N

∑
j=1

c
ubd − lbd

2
s(|xdj − x

d
i |)

xj − xi
dij
)+ Ĉd, (15)

where c is the optimizer coefficient related to themodified attraction
zone (promising exploitation region), repulsion zone (exploration of

the search space), and comfort zone (balance between exploration
and exploitation). Here, lbd and ubd are the lower and upper bounds
of s(r), respectively, and Ĉd is the value of the target. Figure 6 shows
an example of the swarm behavior based on Equation 15. Here, s is
calculated similarly based on the factor S in Equation 10. Moreover,
the components W i and Pi are always considered toward a target
(Ĉd) in this work. The grasshoppers should achieve balance between
the exploration and exploitation procedures to reach the optimal
comfort zone such that the GOA does not fall into a local minimum
and provides an accurate estimation of the global optimum point.
Factor c is the most significant director parameter of the GOA and
is updated as follows:

c = cmax − l
cmax − cmin,

L
(16)

where cmin = 0.00004, cmax = 1, and L and l are the total number of
iterations and current iteration, respectively.

3.3 Fitted validation tool

3.3.1 Confusion matrix
The confusion matrix is an efficient tool that is frequently

employed to estimate the prediction accuracy of a supervised
ML algorithm (Bigdeli et al., 2022; Ge et al., 2022;
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FIGURE 6
Example of grasshopper swarm behavior.

TABLE 1 Applied criteria for assigning the training data labels.

Criterion (transformed values) Population Label

Pb + Zn + Ag + Cd ≥ 2.726 Anomaly 2

2.726 > Pb + Zn + Ag + Cd > 0 Background 1

Liu et al., 2005; Parsa et al., 2018). This matrix assesses the exact
performance of the supervised classification model. For a two-
class classifier with data labels 0 and 1 indicating the respective
negative and positive solutions, the confusion matrix produces four
consequences, namely, false negative (FN) that introduces a feature
with class label 0 and incorrect classification, true negative (TN) that
introduces a feature with class label 0 and correct classification, false
positive (FP) that introduces a featurewith class label 1 and incorrect
classification, and true positive (TP) that introduces a feature with
class label 1 and correct classification. Additionally, the confusion
matrix presents the degrees of efficiency, precision, and accuracy of
a supervised classifier. The parameters of the confusion matrix for a
supervised model are calculated as follows:

Specificity = TN
TN+ FP.

(17)

Sensitivity = TP
TP+ FN

. (18)

Precision = TP
TP+ FP

. (19)

Negative predictive value (NPV) = TN
TN+ FN.

(20)

Accuracy = TP+TN
TP+ FP+TN+ FN

. (21)

Thus, the confusionmatrix was employed to compare the degree
of efficiency of the grasshopper-optimized support vector machine
(GSVM) with various kernel functions.

3.3.2 Receiver operating characteristic (ROC)
curve

The ROC curve is employed as an aggregated classification
method to validate the geochemical data. The area under the ROC
curve (AUC) is measured to determine the reliability, influence, and
numerical assessment of model performance or data classification.
The AUC value mostly lies in the range of [0.5, 1]. When the
AUC value is 0.5, the performance of the applied ML model or
classified data is similar to a random guess. When the AUC is 1, the
performance of the applied ML model is considered to be perfect; in
other words, AUC = 1 means that the applied ML model has been
trained perfectly or that the training data are categorized correctly.

4 Results and discussion

4.1 Preparing training data

A total of 800 stream sediment samples were collected to check
the changes rates of the concentrations of 38 elements using the
induced coupled plasma mass spectrometry (ICP-MS) technique
with precision less than 10% (Sabbaghi, 2018). The isometric log-
ratio (ilr) transformation was employed to remove the data closure
problem as per Equation 22 (Sadeghi et al., 2024; Wang et al.,
2014). Then, the geochemical data of the stream sediments were
transformed into the range of [0, 1] to train the applied models.

ilr(x) = √ D− i
D− i+ 1

(log(
xi
g(x)
))(i = 1,2,…,D− 1), (22)

where x, xD, and g(x) indicate the vector of a composition with D
dimensions, Euclidean distances between the distinct variables, and
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FIGURE 7
Schematic of the grasshopper-optimized support vector machine (GSVM) framework.

TABLE 2 Optimized values of the hyperparameters of the GSVMmodel
for both kernels.

RBF-GSVM PF-GSVM

σ C d C

0.8269 56.8524 4 53.5697

geometric mean of the composition x, respectively (Aitchison et al.,
2000). Accordingly, a geochemical data table comprising the
transformed values of elements Pb, Zn, Ag, and Cd was constructed
to delineate the geochemical populations in the study area.Thus, the
geochemical data table had four columns, including the transformed
values of the pathfinder elements, with one column including the
labels and 800 rows including the individual collected samples to
train the model. To assign the predefined labels of the training
data, we applied several ranges of transformed values (Table 1).
Accordingly, the label 2 was assigned to geochemical samples

with the criterion Pb + Zn + Ag + Cd ≥ 2.762 and label 1 was
allocated to samples with the criterion 2.726 > Pb + Zn + Ag +
Cd > 0. For example, a geochemical sample with the transformed
values of Pb = 0.612, Zn = 0.751, Ag = 0.648, and Cd = 0.806
is a member of the geochemical anomaly population and has
the label 2.

4.2 Training the GSVM model

The ability of the GOA to seek search spaces for discovering
the optimal solutions of challenging problems is shown in Figure 6.
Here, the GOA is fittingly attracted to optimal solutions in the
best locations of the search spaces, and the number of random
parameters is restricted in theGOA.Therefore, the initial population
of grasshoppers is significant in this algorithm. The relevant
hyperparameters, including kernel size (σ) of the RBF, kernel
order (d) of the PF, and objective function parameter (penalty
value C), are important such that differences in their values can
produce various classification conclusions of the SVM model.
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FIGURE 8
Confusion matrices for training the GSVM network with (A) radial basis function (RBF) and (B) polynomial function (PF) kernels.

FIGURE 9
Cost function values for optimizing the GSVM model with (A) RBF and (B) PF kernels.

FIGURE 10
Multi-element geochemical maps (Pb–Zn–Ag–Cd) plotted using the GSVM algorithm with (A) RBF and (B) PF kernels.
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FIGURE 11
Confusion matrices for testing the GSVM network with (A) RBF and (B) PF kernels.

FIGURE 12
Receiver operating characteristic (ROC) curves for testing the GSVM network with (A) RBF and (B) PF kernels.

Furthermore, trial-and-error procedures are time-consuming and
onerous that may not always provide reliable results. Therefore,
the hyperparameters of the RBF-SVM and PF-SVM models should
be optimized using a metaheuristic optimization algorithm that is
quick, easy, and also provides reliable results. The present study
entails reliable optimization of the aforementioned hyperparameters
using a known swarm-intelligence optimization algorithm that is
not time-consuming. A schematic of the GSVM framework is
presented in Figure 7; here, MATLAB R2022a was applied to the
GSVM model. After preprocessing, the 800 collected samples were
divided into the testing (30%) and training (70%) data in terms of
the percentage of anomaly and background population. For model
training, the required parameters are number of grasshoppers,
maximum number of iterations, K-fold cross validation, lower
bound, and upper bound, which were empirically set to 20, 100, 10,
0, and 10, respectively. The optimized values of the hyperparameters
are presented in Table 2, and the results of the training data
classification are shown in Figure 8. Accordingly, the precision and
accuracy of training the GSVM with the RBF kernel are 90.48%

and 98.21% (Figure 8A), while the results with the PF kernel
are 92.86% and 98.75% (Figure 8B), respectively. Furthermore, the
specificity and sensitivity of the trained GSVM are suitable. In
fact, the specificity (99.22% and 99.42%) as well as sensitivity
(86.36% and 90.7%) of the GSVM with the corresponding RBF
(Figure 8A) and PF (Figure 8B) kernels prove that the GSVM model
has been trained efficiently.

In the present work, we also decreased the root mean-squared
error (RMSE) associated with the cost function values, as shown in
Equation 23, during training.

RMSE = √ 1
n
(

n

∑
i=1
(CR −Cp)), (23)

where n, CR, and Cp are the number of geochemical samples, real
class allocated to the sample, and predicted class of the sample,
respectively. Figure 9 shows that the GSVM models with both
kernels can achieve the most optimized states of classification. SVM
optimization with the RBF kernel was implemented to 42 iterations,
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at which point the value converged to 0.088 (Figure 9A). Figure 9B
depicts that SVM optimization with the PF kernel was implemented
to 45 iterations and that the converged value is 0.052. Both cost
functions (Figure 9) are noted to have been in their steady states for
more than 40 iterations, thereby ensuring good model optimization.
The effects of these procedures on the mapping of the geochemical
testing data are shown in Figure 10. Figure 10A shows the multi-
element geochemical map of the testing data classified using the
RBF-GSVM, and Figure 10B shows the corresponding map when
using the PF-GSVM. Although both kernels can detect multi-
element geochemical anomalies with the GSVM model, the PF
kernel (Figure 10B) obviously has more accuracy. Figure 11 exhibits
the validation of the GSVM model with the testing data; it can
be observed that the results of the GSVM model for both kernels
have precision of 100% and impressive accuracies (98.33% and
99.17%), making them the ideal choice for classifying the testing
data. Here, the sensitivity of the RBF-GSVM is lower than that
of the PF-GSVM because the number of predicted FN values has
increased. The GSVM with RBF kernel labels more background
samples as anomalies than the GSVM with PF kernel. The ROCs
presented in Figure 12 show the comparison of the prediction
abilities of the trained models in this work. The PF-GSVM has
greater accuracy than that of the RBF-GSVM model as the AUC
values of the testing data classification (class 2 = 0.973, class
1 = 0.961) with the PF-SVM (Figure 12B) are greater than the
AUC values (class 2 = 0.969, class 1 = 0.957) obtained with the
RBF-SVM (Figure 12A).

5 Conclusion

The present study involves successful optimization of the
effective hyperparameters of the PF-SVM and RBF-SVM, which are
popular and practical modeling approaches in various geoscientific
fields. The objective of this work was to propose an SVM for
classification of multi-element geochemical data that is not limited
by trial-and-error values of the hyperparameters because applying
the SVM with its non-linear functions requires optimization of
the relevant hyperparameters. Fortunately, the GOA was found
to reliably optimize the hyperparameters of the PF-SVM and
RBF-SVM in the shortest possible time without trial-and-error
procedures. The proposed model was successfully employed to
recognize multi-element geochemical anomalies related to Pb–Zn
mineralizations in the Takht-e Soleyman area of northwest Iran.
Confusion matrices of the training data show that the GSVM
model has been trained appropriately and can classify results
accurately for the testing data. Multi-element geochemical maps
of the testing data classification show that the GSVM with PF
kernel has more accuracy than the GSVM with RBF kernel.
Furthermore, reduced and constant cost function values of 0.08
and 0.05 were obtained following optimization, which proves that
the PF-SVM and RBF-SVM models can be reliably optimized
without excess time consumption. The present work can be
extended to the optimization of the hyperparameters of other
known ML models with various metaheuristic algorithms in
future studies.
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