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Characteristics of dust pollution
and its influencing factors during
cold period of open-pit coal
mines in northern China

Heng Wang1, Zhiming Wang2,3* and Ruixin Wang2,3

1National Mine Safety Administration, Beijing, China, 2State Key Laboratory of Coal Resources and Safe
Mining, China University of Mining and Technology, Xuzhou, China, 3High-Tech Research Center for
Open Pit Mines, China University of Mining and Technology, Xuzhou, China

Introduction: Winter dust pollution in China’s northern open-pit coal mines is
serious, and the prevention and control of winter dust pollution is one of the
important problems in the construction of green mines in northern open-pit
coal mines.

Methods: In this study, we collected dust concentration data, meteorological
data, and production data from the experimental mine from 1 December 2018,
to 28 February 2019. The characteristics of changes in meteorological factors,
production intensity and dust concentration in open-pit coal mines during the
cold period are introduced, and the correlation between these factors and
dust concentration was analyzed using multivariate statistical analysis methods,
dust concentration estimation model including near-surface meteorological
factors, high-altitude meteorological factors, and production intensity
was developed.

Results: The results show that the temperature inside the pit is lower the
humidity is higher and the wind speed is smaller than outside the pit
in winter; there is a long time inversion phenomenon inside the quarry,
and there is less vertical convection in the atmosphere (between 8 a.m.
and 12 a.m.). Humidity, noise and particulate mass concentration were
significantly positively correlated (the lowest correlation coefficient is 0.480
and 0.369 for humidity and noise); wind speed, solar radiation and boundary
layer height were significantly negatively correlated with particulate mass
concentration (the lowest correlation coefficient is −0.555, −0.280 and −0.510
for wind speed, solar radiation and boundary layer height). The relative
frequency of small particulate dust mass concentrations exceeding the
national ambient air quality standard limits is greater in winter, and there
is a good correlation between the mass concentrations of Total Suspended
Particulates (TSP), Particulate Matter 10 (PM10) and Particulate Matter 2.5
(PM2.5). The accuracy of the particulate matter concentration estimation
model constructed by considering the influence of multiple factors was
significantly higher (R2 for each model rose by nearly 0.3) than that of the
model constructed by considering only the near-surfacemeteorological factors.
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Discussion: The research results can provide a reference for the establishment
of a more accurate dust estimation model to help the mining sector to better
dust prevention and control.
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1 Introduction

Open-pit coal mining, with its advantages of large
production capacity, high resource recovery rate, and ease of
modern management, has become the preferred method for
regional coal resource extraction in China (Xie et al., 2019;
Liu G. et al., 2023). Various stages of open-pit coal mining
involve strong physical disturbances and destruction, leading
to the generation of high concentrations of dust pollution
(Huang, 2019; Wanjun and Qingxiang, 2018). The processes
of open-pit coal mining involves drilling, blasting, excavation,
transportation, crushing, and disposal (Ben-Awuah et al., 2016;
Jumabayeva et al., 2023). In each production stage, under the
influence of high-intensity destruction and disturbance, the
dust at the mining site exhibits significant characteristics such
as multiple sources, high dust generation, and unpredictable
dispersion patterns and directions, making dust control
difficult to achieve pinpoint capture and directional control
(Gautam et al., 2016; Su et al., 2020).

Dust in open-pit coal mines mainly consists of small particles,
predominantly PM10 and PM2.5, particles with aerodynamic
diameters below 10 μm and 2.5 μm, respectively (Shekarian et al.,
2021). These fine particles can remain suspended in the air for
extended periods and readily binds to toxic substances, severely
damaging the respiratory system and causing occupational diseases
such as pneumoconiosis and silicosis (Li et al., 2021; Zazouli et al.,
2021; Kamanzi et al., 2023). According to the “Statistical Bulletin
on the Development of Health and Healthcare in China” released
in 2019, a total of 15,898 cases of occupational pneumoconiosis
were reported nationwide (Fan et al., 2020). Furthermore, large
dust particles settle on the surfaces of mining equipment under the
influence of gravity, accelerating equipment wear and shortening
its lifespan (Zhang H. et al., 2021; Zou, 2021). Additionally, fine
dust in open-pit coal mines can disperse into the surrounding
area under the influence of natural forces and wind, carrying
toxic substances that harm plant growth (Singh et al., 2021;
Trechera et al., 2021; Shen et al., 2023). Currently, over 90%
of the production capacity of open-pit coal mines in China
comes from regions north of the 38th parallel, characterized by
a cold and arid climate, making dust pollution more severe in
these areas (Yuan et al., 2022).

High concentration pollution is jointly determined by
high emission intensity and unfavorable meteorological factors
(Liu et al., 2023b; Wu et al., 2021; Boente et al., 2022). In
winter, the frequency of calm winds is high, atmospheric
stability time is long, and low temperatures and high humidity
lead to a significant temperature inversion effect (Du et al.,
2022; Raj, 2015; Liu et al., 2023c), making dust pollution
in open-pit coal mines particularly severe. Reduced visibility

is a significant characteristic of winter dust pollution and a
major factor affecting normal mining operations (Zhao et al.,
2023; Zhao et al., 2024; Lu et al., 2021). Moreover, traditional
large-scale water spraying for dust suppression is limited
in its application during winter in extremely cold regions
(Zhang Z. et al., 2021; Luo et al., 2021).

Several scholars have studied the characteristics of dust pollution
and its factors in surface coal mines. Ma’s study showed that
dust pollution is most serious in winter in open-cast coal
mines (Li et al., 2017). Liu’s research has shown that dust
concentrations in open pit mines are higher in March, November
and throughout the winter months, lower in summer and autumn,
and higher when humidity is higher and temperatures are lower
(Ma et al., 2022). Wang’s study also showed that dust pollution
from opencast coal mines is most severe in winter, followed
by autumn, spring, and summer (Wang et al., 2022a). Luo’s
research showed the ranking of factors affecting dust concentration
at open-pit mine in winter is humidity > temperature > wind
speed > temperature difference (inverse temperature intensity)
(Wang et al., 2022b). The dust concentration prediction model can
be developed from the factors influencing the dust concentration.
A number of scholars have developed prediction models for
dust concentration in surface coal mines using meteorological
factors and dust concentration data, for example, Qi proposed
a short-term prediction model for dust concentration based on
a random forest model and hybrid particle swarm optimization
(Qi et al., 2020). Liu used a particle swarm optimisation algorithm
optimised gradient lifter for regression and classification analysis
of dust concentration in surface mines (Liu et al., 2020). Zhang
proposed a hybrid model based on long and short-term memory
network and attention mechanism and applied it to the prediction
of PM2.5 concentration in surface mines (Zhang et al., 2020).
Luan proposed a prediction model for dust concentration in
surface mines based on the integrated Random Forest and
Markov chain (Luan et al., 2023).

This paper we collected dust concentration data, meteorological
data, and production data from the experimental mine from
1 December 2018, to 28 February 2019, and analyses the
characteristics of dust pollution and its influencing factors
during the cold period in surface coal mines, and establishes
a dust concentration estimation model. Different from other
studies, this paper introduces satellite meteorological data and
production intensity data, and the accuracy of the established
estimation model is higher than that of the dust concentration
estimation model that only includes near-surface monitoring
meteorological data. The results of this study can provide some
reference for the establishment of high-precision dust concentration
estimation models.
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FIGURE 1
Location of Haerwusu open-pit coal mine.

2 Materials and methods

2.1 Study area overview

2.1.1 Mining area overview
The research location is the Haerwusu open-pit coal mine

(hereinafter referred to as Haerwusu Mine), which is one of
China’s five major open-pit coal mines. Haerwusu Mine is located
approximately 13 km from Xuejiawan Town, the seat of Zhenggeer
Banner, Ordos City, Inner Mongolia Autonomous Region. It
is under the jurisdiction of Hadaigaole Township, Zhenggeer
Banner, with specific geographical coordinates: E Longitude:
111°13′18″∼111°15′20″, N Latitude: 39°43′34″∼39°45′02″

as shown in Figure 1. The current mining area at Haerwusu Mine
is the initial mining area, with a working line length of 2 km, a
stripping working line length of 2–2.3 km, and a maximum relative
depth of the mining face of approximately 200 m.

2.1.2 Climate characteristics of the mining area
Haerwusu Mine is located in a typical temperate continental

climate zone. In recent years, the general climate is characterized
by long and cold winters, hot and short summers, and drastic
temperature changes in spring and autumn. The average annual
temperature is 6.2°C–8.7°C, and the average annual wind speed is
1.9–3.4 m/s. The annual rainfall is low and concentrated, mostly in
the 3 months of July, August and September, with an average of about
400 mm per year, and the evaporation is about 2,000 mm per year
on average.

2.1.3 Monitoring sites and plan
To understand the characteristics of winter dust pollution

at Haerwusu Mine, two monitoring points were set up to
monitor dust concentrations and meteorological factors inside
and outside the mine pit. The locations of the monitoring points
are shown in Figure 1, with monitoring point 1 set up at the 1,130
level of the northern end slope, and monitoring point 2 set up to
reflect the pollution situation at the bottom of the pit due to the
influence of Han Liubao’s land acquisition. The vertical distance
between monitoring points 1 and 2 is approximately 200 m, and the
horizontal distance is approximately 800 m.

2.1.4 Monitoring instruments and methods
Considering the actual terrain and climate conditions at

Haerwusu Mine, the selected monitoring equipment should have
moisture resistance, cold resistance, low-temperature resistance,
and data storage and transmission capabilities. Currently, the
instruments used for monitoring dust concentration mainly
include dust detectors and dust sensors. Dust detectors can
quickly measure the dust concentration in the environment
using methods such as weighing and beta-ray detection, but
they cannot continuously monitor dust concentrations online.
Dust sensors, on the other hand, can achieve continuous
online monitoring of dust concentrations, mainly using laser
scattering methods.

2.1.4.1 Equipment selection
Taking into account the equipment performance and the

meteorological characteristics of Haerwusu open-pit coal mine,
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TABLE 1 Equipment technical parameters.

Power supply AC220V

Communication interface GPRS wireless transmission

Air temperature sensor
Range: 40°C–70°C, Resolution: 0.1°C

Accuracy: ±0.2°C

Air humidity sensor
Range: 0%–100%, Resolution: 0.1%

Accuracy: ±3%

Wind speed sensor
Range: 0–60 m/s, Resolution: 0.1 m/s

Accuracy: ±0.3 m/s

Wind direction sensor 8 directions

Dust (TSP, PM10, PM2.5) sensor
Range: 0–1000 μg/m³, Resolution: 1 μg/m³

Accuracy: Error ≤12%

Relay output 1 channel, connected to secondary relay

Equipment bracket 2-m pole

the RS-ZSYC-9S-G dust monitoring station, certified by the
National Metrology Bureau, was chosen. This equipment is
specifically designed for monitoring in construction projects.
The equipment includes 1 air baffle box (temperature, humidity,
PM2.5, PM10, TSP, etc.) for collection, 1 wind speed collection,
1 wind direction collection, 1 relay output, and 1 485 slave
station output. The equipment can upload data to the monitoring
software platform via GPRS. Specific technical parameters
are shown in Table 1.

2.1.4.2 Equipment installation
The equipment was installed on-site based on the location of

the monitoring points. The monitoring equipment at monitoring
point 2 is solar-powered, with a base made of a movable base
that can be adjusted in position using a forklift. The monitoring
equipment at monitoring point 1, located at the 1,130 level of
the northern end slope, is powered by 220V AC power. The
monitoring equipment uploads data to the cloud server in real
time via the 4G network. To minimize systematic errors in
the monitored values, the data collection frequency was set to
5 min and the monitoring data is relatively complete, assuming
30 days in a month, the total complete data should be 8,640 records.
The monitoring period ranged from 1 December 2018, to 28
February 2019.

2.2 Data processing and analysis methods

2.2.1 Data sources
Themass concentrations of particulate matter (Total Suspended

Particulates (TSP), Particulate Matter 10 (PM10) and Particulate
Matter 2.5 (PM2.5)) and some meteorological factors (temperature,

humidity, wind speed, and wind direction) in this paper were
obtained from on-site measurement points, and the raw data from
each measurement point during the valid monitoring period were
exported to the cloud server.

The data for mixing layer height, solar radiation intensity,
and hourly rainfall values in the paper were obtained from
the HYSPLIT-4 (Hybrid Single Particle Lagrangian Integrated
Trajectory Model) software developed by NOAA/ARL (National
Oceanic and Atmospheric Administration U.S./Air Resources
Laboratory) and calculated using the online website (http://ready.
arl.noaa.gov/HYSPLIT.php).

2.2.2 Data processing
During data collection, measurement errors and random errors

may lead to anomalous values in the monitored data, i.e., values
that significantly deviate from the majority of values in the
observed sample. Various methods can be used to detect anomalous
values, such as boxplot analysis, scatterplot analysis, and descriptive
analysis. In this paper, the SPSS 25 (Statistical Product and Service
Solutions) software’s descriptive statistics function was used to
detect anomalous values. The SPSS provides a rule for identifying
anomalous values as being greater than 3 standard deviations. After
data analysis, a Z-score was added to the data list, and any Z-
score below −3 or above 3 was considered an anomalous value.
The anomalous values detected in this paper were replaced by
the daily average values. Some data are missing due to factors
such as long monitoring time, network problems and equipment
failures. In this paper, mean estimation is used to fill in the
missing data.

2.2.3 Temperature inversion formula
The magnitude of the inversion effect can be expressed as

the intensity of the inversion. The intensity of the inversion is
defined as the increase in air temperature per 100 m of altitude
rise (°C/100 m), usually expressed as I, and is calculated by the
Equation 1:

I = ΔT
ΔH
× 100 =

T1 −T2

H1 −H2
× 100 (1)

Where: - the temperature difference of the inverse temperature, °C;

- temperature at the bottom of the inversion layer, °C;
- temperature at the top of the inversion layer, °C.

3 Results and discussion

3.1 Characteristics of meteorological
factor variations

3.1.1 Temperature variation characteristics
Daily average temperatures for different locations in

different months were calculated based on measured data,
as shown in Figure 2. It can be observed that temperatures in
Haerwusu Mine during winter are relatively low, with December
being the lowest (average temperature −11.01°C and −12.0°C for
point 1 and point 2), followed by January (average temperature
−9.55°C and −10.36°C for point 1 and point 2) and February
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FIGURE 2
Characteristics of daily temperature changes in winter.

(average temperature −7.32°C and −6.62°C for point 1 and point
2). The temperature variations in different months roughly exhibit
a sinusoidal pattern. The temperature at point 2 (altitude 930 m) is
mostly lower than or equal to the temperature at point 1 (altitude
1130 m) throughout most of the time, indicating the presence of
temperature inversions or isothermal layers at Haerwusu Mine
for most of the time. The dissipation times of the temperature
inversions vary by month but are generally concentrated between 8
a.m. and 12 a.m.

The probability distribution of the inversion intensity was
calculated based on the given formula, as shown in Table 2. The
table indicates that the inversion intensity inside and outside
the pit is mainly concentrated between 0°C and 1°C/100 m,
with peak inversion intensity being less than 2°C/100 m. When
I < 0, it indicates the presence of convection in the vertical
direction, suggesting relatively limited vertical air convection
during the study period, especially in December. However,
from December to February, the proportion of convection
gradually increases, indicating that low temperatures are not
conducive to vertical atmospheric convection and reduce the
exchange of atmospheric gases between the pit and the external
natural atmosphere.

3.1.2 Humidity variation characteristics
Daily average humidity for point 1 and point 2 in December,

January and February was calculated based on measured data, as
shown in Figure 3. It can be observed that the relative humidity
exhibits a trend opposite to that of the temperature, in line with Liu’s
and Luo’s research (Liu et al., 2023b; Luo et al., 2021). During the
winter months, the daily variation in humidity at Point 1 generally
ranged from 28.98% to 64.19% and at Point 2 from 30.18% to
66.74%. The relative humidity in December and January is closer,
with peak humidity being lower than in February. The difference in
humidity between the two points is not significant in December and

TABLE 2 Probability distribution of inversion intensity.

Intensity
(°C/100 m)

Probability (%)

December January February

I ≥ 2 0 0 0

1 ≤ I < 2 3.8 5.8 6.4

0 ≤ I < 1 84.4 80.3 78.4

I < 0 11.8 13.9 15.2

January, but it is more pronounced in February, mainly occurring
from sunset to the next day’s sunrise.

Higher humidity, combined with pollutant concentrations,
determines the formation of fog and haze in open-pit mines,
significantly reducing visibility inside the pit, which is an important
factor affecting normal mining operations. Under high humidity
conditions, when there is low wind speed, atmospheric stability,
and near-surface temperature inversions, fog and haze are more
likely to form (Liao et al., 2018), and these are typical natural
characteristics inside open-pit mines, especially in winter. A relative
humidity of 60% serves as a dividing line; above this level, it favors
the hygroscopic growth of fine particulate matter, and increasing
relative humidity also accelerates the conversion of gaseous
precursors into particulate matter, leading to a rapid increase in
particulate matter concentrations. Based on the characteristics of
humidity variations, it can be inferred that before sunrise, humidity
reaches its peak, which is near 60%, indicating potentially low
visibility inside the pit. After sunrise, humidity sharply decreases to
below 60%, suggesting a significant improvement in visibility inside
the pit within a short period.
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FIGURE 3
Characteristics of daily humidity changes in winter.

FIGURE 4
Characteristics of daily wind speed changes in winter.

3.1.3 Wind speed variation characteristics
The diffusion of pollutants from the open-pit mine is

significantly influenced by wind flow. Daily average wind speeds
for different locations in different months were calculated based
on measured data, as shown in Figure 4. It can be observed that
the daily average wind speed in winter fluctuates between 0 and
3 m/s, and the trend of wind speed variation is similar at both
measurement points. Before sunrise, wind speeds are mainly
below 1 m/s, gradually decreasing, and then rapidly increasing
after sunrise, peaking around noon. After noon, wind speeds
begin to decrease until the next day’s sunrise, which is similar
to the trend in temperature variations. Additionally, wind speeds

inside the pit are generally lower than those outside the pit at
corresponding times.

Figure 5 presents the wind direction and wind speed diagrams
and the wind direction dust concentration diagram at point 1 and
point 2 in winter. As shown in Figures 5A, B, the frequency of
calm winds is high in winter at Haerwusu (58.4% at point 1%
and 41.0% at point 2). When there is wind, the predominant wind
direction outside the pit is mainly from the northwest, followed
by the west and north winds. Inside the pit, the predominant
wind directions are from the northeast, east, south, and west,
and there is a significant difference in wind direction between
the two points, indicating that the topography of the open-pit

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1458847
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1458847

FIGURE 5
Wind direction and wind speed diagram and wind direction dust concentration diagram at different measuring points. (A) Wind direction at point 1 (B)
Wind direction at point 2 (C) Wind direction dust concentration.

FIGURE 6
Characteristics of daily changes of solar radiation and boundary layer height.

mine significantly influences the flow of air passing through the
pit bottom. As shown in Figure 5C, the dust concentration in
the quarry was higher under conditions of southwest and west
winds at point 1 and northeast and west winds at point 2, and
there was an inverse relationship between the wind directions at
points 1 and 2. This suggests that when the wind direction is
southwest and west, the bottom of the pit may be attended by
circulation, which prevents the dust from spreading outward and
increases the pollution of the quarry.

3.1.4 Characteristics of solar radiation and
boundary layer height variations

Particle concentration is not only influenced by near-surface
meteorological factors but also by regional meteorological factors
such as rainfall, solar radiation, and boundary layer height. Using
HYSPLIT online software, hourly values of rainfall, solar radiation,
and boundary layer height for the Haerwusu region were calculated,
and the daily variation characteristics of regional meteorological
factors were analyzed, as shown in Figure 6.
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FIGURE 7
The change characteristics of the concentration of particulate matter in winter at the two measurement points.

Rainfall data indicate that there was no rainfall in Haerwusu
in December and January, with very little rainfall occurring in
February. Therefore, only the daily variation characteristics of solar
radiation and boundary layer height are shown. The solar radiation
characteristics in winter exhibit consistency across differentmonths,
with solar radiation values being 0 from 00:00 to 08:00, significantly
increasing from 08:00 to 14:00, and gradually decreasing to 0 from
14:00 to 00:00. Additionally, the radiation values in February are
higher than those in December and January. The boundary layer
height characteristics in winter also show good consistency, with
minimal differences and a slight decreasing trend from 00:00 to
08:00, a rapid increase from 08:00 to 14:00, a sharp decrease from
14:00 to 20:00, and a relatively stable level from 20:00 to 00:00. The

trend in boundary layer height changes is similar to that of solar
radiation changes, primarily due to the influence of daytime thermal
uplift. Additionally, the boundary layer height in winter follows the
order of January < December < February.

3.2 Characteristics of dust particle
pollution

3.2.1 Monthly variation characteristics of
particulate matter concentration

Figure 7 shows the characteristics of particulate matter variation
at two measurement points during winter. It can be observed that
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FIGURE 8
Changes of particulate matter.

TABLE 3 Limits of mass concentration of particulate matter.

Particle Average
time

Concentration limit Unit

First level Second
level

TSP

average
concentration

0–120 121–300

μg/m³PM10 0–50 51–150

PM2.5 0–35 36–75

the variation of particulate matter at both measurement points is
mainly concentrated below 100 μg/m³. As the particle size decreases,
the range of variation gradually diminishes. Over time, although
the anomalous concentration values show inconsistent changes,
the overall trend of particulate matter indicates a decrease, with
the pollution level ranking as December > January > February.
Comparing the specific changes in particulate matter at points 1 and
2, it is noted that the pollution level at point 1 is slightly higher
than at point 2, possibly due to the proximity of point 1 to the
dumping site. Point 1 is located at the northern end slope, with
minimal operations, making its pollution level less significant. On
the other hand, point 2 is situated at the pit bottom, the primary
area for coal mining operations. Therefore, this chapter primarily
analyzes the pollution variation characteristics of particulate matter
at point 2.

3.2.2 Daily variation characteristics of particulate
matter concentration

The latest “Ambient Air Quality Standards” (GB3095-2012)
in China clearly stipulate the first and second-level standards
for the daily average concentration of particulate matter, as
shown in Table 3. The actual measured results for TSP, PM10,
and PM2.5 at point 2 (pit bottom) were statistically analyzed
to obtain the daily average concentrations for each month,
as shown in Figure 8.

From Figure 8, it is evident that the TSP mass concentration at
the pit bottom in winter did not exceed the national second-level
standard limit, but exceeded the national first-level standard limit
for a cumulative total of 6 days, specifically 2 days in December
and 4 days in January. The PM10 mass concentration did not
exceed the national second-level standard limit, but exceeded
the national first-level standard limit for a cumulative total of
25 days, specifically 13 days in December, 11 days in January, and
1 day in February. The PM2.5 mass concentration exceeded the
national second-level standard limit for a cumulative total of 5 days,
specifically 1 day in December and 4 days in January, and exceeded
the national first-level standard limit for a cumulative total of
26 days, specifically 13 days in December, 11 days in January, and
1 day in February. It is evident that the pollution at the pit bottom
is relatively severe during winter, especially in December and
January, with the concentration of fine particulate matter exceeding
the national standard limits being more pronounced. Additionally,
the variation patterns of TSP, PM10, and PM2.5 show significant
consistency.
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FIGURE 9
Daily variation characteristics of the mass concentration of particulate matter.

TABLE 4 Particulate matter correlation.

TSP PM10 PM2.5

TSP

Pearson Correlation 1 0.98a 0.966a

Sig. (Two-tailed) 0.000 0.000

N 864 864 864

PM10

Pearson Correlation 0.988a 1 0.972a

Sig. (Two-tailed) 0.000 0.000

N 864 864 864

PM2.5

Pearson Correlation 0.966a 0.972a 1

Sig. (Two-tailed) 0.000 0.000

N 864 864 864

aCorrelation is significant at the 0.01 level (two-tailed).

3.2.3 Hourly variation characteristics of
particulate matter concentration

Figure 9 illustrates the diurnal variation patterns of particulate
matter mass concentration in winter, showing significant
consistency in the daily variation characteristics of different
particulate matter. The diurnal variation pattern of particulate
matter exhibits an approximate unimodal distribution, with no
significant differences in the trend of variation between different
months, except for substantial concentration differences. Before

sunrise, the atmosphere is in a stable state, and there is no exchange
of air between the pit and the external atmosphere,making it difficult
for particulate matter to diffuse out of the mine, leading to an
increase in mass concentration until sunrise (around 9 a.m.). After
sunrise, solar radiation intensifies, the atmospheric temperature at
the pit bottom sharply rises, turbulence strengthens, and the mass
concentration of particulate matter rapidly decreases until 4 p.m.
After 4 p.m., the pit bottom is no longer under direct sunlight,
turbulence within the pit diminishes, wind speed decreases, and
relative humidity increases, causing the mass concentration of
particulate matter to increase again until the next day’s sunrise
(around 9 a.m.). Furthermore, around 7 p.m., there is a sudden
change in the mass concentration of particulate matter, showing
a short-term decrease or near-stable trend. The reasons for
this include reduced mining activities after 7 p.m., leading to a
decrease in overall pollutant emissions, and the descent of cold
air along the slope towards the pit bottom after 7 p.m., bringing
in some fresh air and reducing the concentration of pollutants at
the pit bottom.

3.2.4 Particle correlation and regression analysis
The analysis indicates that the mass concentration changes of

TSP, PM10, and PM2.5 exhibit significant consistency, suggesting a
strong correlation between them.Therefore, using the daily variation
characteristic data of particulate matter concentration, a correlation
analysis was conducted, and the results are shown in Table 4.
It is evident that the correlation coefficients between the mass
concentrations of particulate matter exceed 0.9, passing both-
tailed tests, indicating a significant correlation between the mass
concentrations of particulate matter, suggesting similar sources
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TABLE 5 Particulate matter regression analysis.

Method of analysis R2 F-test for significance T-test for significance

Linearly 0.976 0.000
TSP 0.000

constant term 0.003

Logarithmic 0.919 0.000
ln (TSP) 0.000

constant term 0.000

Inverse function 0.753 0.000
1/TSP 0.000

constant term 0.000

Quadratic term 0.976 0.000

TSP 0.000

TSP^2 0.142

constant term 0.918

Cubic 0.976 0.000

TSP 0.000

TSP^2 0.706

TSP^3 0.553

constant term 0.572

Composite Functions 0.925 0.000
TSP 0.000

constant term 0.000

Power Functions 0.985 0.000
ln (TSP) 0.000

constant term 0.000

S-shaped functions 0.919 0.000
1/TSP 0.000

constant term 0.000

Growth Functions 0.925 0.000
TSP 0.000

constant term 0.000

Exponential 0.925 0.000
TSP 0.000

constant term 0.000

TABLE 6 Coefficients.

Unstandardised coefficient Standardised coefficient t Significance

B Standard error β

ln (TSP) 0.981 0.004 0.992 236.503 0.000

(constant) 0.895 0.014 62.696 0.000

for the three types of particulate matter. To further quantify the
relationship between the mass concentrations of particulate matter,
regression analysis was performed.

The PM10 mass concentration was selected as the dependent
variable and the TSP mass concentration as the independent

variable, and the curve estimation analyses of the two were
carried out using SPSS software, and the results of the analyses
are shown in Table 5.

Regression analysis was conducted for the mass concentrations
of PM10 and TSP, revealing that the power function yielded
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FIGURE 10
Fitting function of different particle concentrations.

TABLE 7 Rank correlation coefficients between particulate matter
concentrations and meteorological factors.

T RH WS SR MLH TD

TSP −0.097 0.480∗∗ −0.555∗∗ −0.376∗∗ −0.510∗∗ 0.062

PM10 −0.096 0.483∗∗ −0.556∗∗ −0.373∗∗ −0.510∗∗ 0.066

PM2.5 −0.147 0.574∗∗ −0.575∗∗ −0.280∗∗ −0.547∗∗ 0.052

∗∗indicates p < 0.01.

the best fit, with an R2 value of 0.985 and passing the
significance test. The specific coefficients are presented in
Table 6.

In summary, the regression equations for the mass
concentrations of PM10 and TSP are shown as Equation 2:

ln (PM10) = ln 0.895+ 0.981 ln (TSP) (2)

Into a general form, as shown in Equation 3:

PM10 = 0.895 ∗ TSP0.981 (3)

Similarly derived, regression analyses of PM2.5, TSP and PM2.5,
PM10 revealed that still the power function fit best, 0.959 and
0.966, respectively.It can be obtained that the regression equations
for the mass concentrations of PM2.5 and TSP are shown as
Equation 4:

PM2.5 = 1.047 ∗ TSP0.855 (4)

The regression equations for the mass concentrations of PM2.5
and PM10 are shown as Equation 5:

PM2.5 = 1.168 ∗ PM100.868 (5)

The final fitted functions obtained for the different particulate
concentrations are shown in Figure 10.

3.3 Analysis of factors affecting dust
concentration

3.3.1 Correlation analysis of particulate matter
concentration and meteorological factors

In order to analyse the influence ofmeteorological factors on the
dust concentration, the correlation between the daily average values
of dust concentration and meteorological parameters at the bottom
of the pit (point 2) in winter was carried out by Spearman’s rank
correlation analysis, which can analyse the degree of covariance of
random variables under linear correlation or non-linear correlation,
and can reflect the real correlation of variables in a more objective
way, and the results are shown in Table 7.

It can be seen that the concentration of particulate matter is
significantly negatively correlated with wind speed, solar radiation
and boundary layer height, and the correlation coefficients are in
the order of wind speed > boundary layer height > solar radiation,
which indicates that the concentration of particulate matter at the
bottom of the pit in winter is greatly affected by wind speed,
boundary layer height and solar radiation, and the concentration
of particulate matter decreases with the increase of wind speed,
boundary layer height and solar radiation; the concentration of
particulate matter is significantly positively correlated with the
relative humidity, that is, the concentration of particulate matter
increases with the increase of humidity. That is, the particulate
matter concentration gradually increases with the increase of
humidity; the correlation coefficients of the particulate matter
concentration with temperature and temperature difference are
small, which indicates that the particulate matter concentration at
the bottom of the pit in winter is less influenced by temperature
and temperature difference. The correlation coefficients with
temperature and temperature difference are small, indicating that
the particulate matter concentration at the bottom of the pit is
less affected by temperature and temperature difference in winter.
In addition, the correlation coefficients of TSP concentration
and PM10 concentration with meteorological factors are very
close to each other, which indicates that PM10 is the main
constituent of TSP.

The concentration of particulate matter at the bottom of the
pit in winter shows a significant negative correlation with wind
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TABLE 8 Total variance explained.

Ingredient Initial eigenvalues Extracting the sum of squared
loads

Rotating load sum of squares

Total Variance
per cent

Cumulative
%

Total Variance
per cent

Cumulative
%

Total Variance
per cent

Cumulative
%

1 3.791 42.121 42.121 3.791 42.121 42.121 3.399 41.100 41.100

2 1.529 16.984 59.105 1.529 16.984 59.105 1.533 17.034 58.134

3 1.398 15.536 74.641 1.398 15.536 74.641 1.486 16.507 74.641

4 0.858 9.533 84.174

5 0.669 7.433 91.607

6 0.414 4.603 96.211

7 0.326 3.626 99.837

8 0.014 0.154 99.991

9 0.001 0.009 100

FIGURE 11
Rotating space components.

speed, boundary layer height and solar radiation, mainly because
when the wind speed, boundary layer height and solar radiation
are large, the atmospheric structure is unstable and the turbulence
is intense, which is conducive to the dilution and diffusion of
the pollutants; the concentration of particulate matter shows a
significant positive correlation with the humidity, mainly because in
winter, the relative humidity is low, and the water vapour content
of air is not enough to make the particulate matter particle size
increases and a large amount of precipitation, but instead, the haze

phenomenon is formed, reducing solar radiation to the pit and
aggravating particulate matter pollution.

In order to better reflect the relationship betweenmeteorological
factors and particulate matter mass concentration, further factor
analysis can be performed by means of principal component
analysis (PCA). Before factor analysis, KMO (Kaiser-Meyer-Olkin)
sample measure and Bartlett’s sphere test are required, which is
used to compare the simple correlation coefficient and partial
correlation coefficient of the variables, and the closer the value is
to 1, the more suitable the variables are for the factor analysis,
and the statistic of Bartlett’s sphere test is obtained according
to the rows and columns of correlation coefficient matrix. The
Bartlett’s sphere test statistic is obtained based on the determinant
of the matrix of correlation coefficients, and if it passes the test of
significance it is suitable for factor analysis. In the factor analysis,
the variables with significant multicollinearity were excluded, and
nine variables, namely, temperature (T), relative humidity (RH),
wind speed (WS), solar radiation (SR), boundary layer height
(MLH), temperature difference (TD), TSP, PM10, and PM2.5, were
selected for factor analysis. KMO and Bartlett’s sphere tests were
first performed on the study data, and a KMO value of 0.692
and significance of 0 were obtained, which passed the Bartlett’s
sphere test. It indicates that the correlation coefficient matrix is
significantly different from the unit matrix and is suitable for
factor analysis.Through factor analysis, three principal components
were extracted, and the cumulative variance contribution rate
was 74.641%, indicating that the information of the original
variables was lost less, and the variance contribution rate of
the three components changed after rotation, but the cumulative
variance contribution rate did not change, i.e., it did not affect the
commonality of the original variables, so the effect of the factor
analysis was more desirable, as shown in Table 8.The common
factor 1 includes TSP, PM10, PM2.5, MLH and WS, common
factor 2 includes T and SR, and common factor 3 includes RH
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FIGURE 12
Relationship between PM10 and coal production.

TABLE 9 Rank correlation coefficient of noise and particle
concentration.

TSP PM10 PM2.5

Noise 0.369∗∗ 0.375∗∗ 0.397∗∗

∗∗indicates p < 0.01.

TABLE 10 Particulate matter concentration regression model (only
including near-surface meteorological factors).

Particulate
matter

Estimation
model

R2 F P

TSP y = 1.1931x1-
8.198x2+4.207

0.276 16.574 0.000

PM10 y = 0.9971x1-
6.783x2+3.219

0.276 16.560 0.000

PM2.5 y =
0.9021x1-5.0322-6.838

0.348 23.239 0.000

x1 is humidity and x2 is wind speed.

and TD, as shown in Figure 11. It can be seen that wind speed,
boundary layer height and particulate mass concentration are most
significantly correlated under the combined influence of multiple
meteorological factors.

3.3.2 Analysis of production intensity on particle
mass concentration
3.3.2.1 Relationship between coal production and
particle concentration

Coal production directly affects the intensity of dust generation
at the pit bottom. Taking PM10 as an example, the relationship
between the daily average mass concentration of particulate
matter and daily coal production was analyzed. Based on

the 30-day production data provided by the mine, it was
plotted against the corresponding PM10 mass concentration,
as shown in Figure 12. It is evident that the trend of PM10
concentration differs from the trend of coal production,
indicating that dust concentration is also influenced by
other factors.

3.3.2.2 Relationship between noise and particle mass
concentration

Due to the limited coal production data and the fact that
pit bottom pollution is determined by both dust generation
intensity and meteorological conditions, it is necessary to introduce
one or more variables that can represent the intensity of dust
generation. During coal production, the operation of mining
equipment generates a certain level of noise, with higher operational
intensity resulting in greater noise at the pit bottom. Therefore,
noise can be used to represent the dust generation intensity to
a certain extent. Noise was processed into daily average values
and rank correlation analysis with particulate matter concentration,
and the results are shown in Table 9. It can be seen that noise
and particulate matter concentration show significant positive
correlation, i.e., the larger the noise, the higher the particulate
matter concentration.

3.4 Model for estimating particle mass
concentration under the influence of
multiple factors

By using multiple monitored parameters, the estimated particle
mass concentration can be established to reflect the atmospheric
pollution at the pit bottom by establishing the relationship between
meteorological parameters, production intensity, and pit bottom
particle concentration. This study utilizes a multivariate stepwise
regression analysis to construct a model for estimating particle
mass concentration. The process involves removing variables with
insignificant effects on the dependent variable and then introducing
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TABLE 11 Particulate matter concentration regression model (including solar radiation and boundary layer height).

Particulate matter Estimation model R2 F P

TSP y = 1.399x1-0.461x2-0.036x3-5.855x4+56.302 0.494 20.750 0.000

PM10 y = 1.167x1-0.380x2-0.030x3-4.857x4+46.195 0.490 20.403 0.000

PM2.5 y = 0.997x1-0.228x2-0.025x3-3.475x4+21.463 0.524 33.659 0.000

x1 is humidity, x2 is solar radiation, x3 is boundary layer height, and x4 is wind speed.

TABLE 12 Particulate matter concentration regression model (including noise).

Particulate matter Estimation model R2 F P

TSP y = 1.133x1-0.468x2-0.037x3-6.930x4+1.211x5+16.045 0.553 17.723 0.000

PM10 y = 0.949x1-0.387x2-0.030x3-5.739x4+0.994x5+13.156 0.556 17.389 0.000

PM2.5 y = 0.882x1-0.232x2-0.026x3-3.937x4+0.520x5+4.178 0.603 19.193 0.000

x1 is humidity, x2 is solar radiation, x3 is boundary layer height, x4 is wind speed, and x5 is noise.

variables with significant effects one by one. This method effectively
identifies meteorological factors significantly affecting particle mass
concentration.

3.4.1 Estimation model of near-surface
meteorological factors and particle
concentration

Using near-surface meteorological factors (temperature,
humidity, wind speed, temperature difference) as independent
variables to construct a regression model for particle mass
concentration, the results are shown in Table 10. The results
indicate that only humidity and wind speed among the near-surface
meteorological factors significantly affect particle concentration.
The constructed estimation model has a maximum R2 of 0.348,
indicating a relatively poor model performance. This suggests
that using only near-surface meteorological factors to establish
the estimation model is not appropriate, and the influence of
multiple meteorological factors on particle concentration should
be considered.

3.4.2 Estimation model of multiple
meteorological factors and particle
concentration

Using solar radiation intensity and atmospheric boundary
layer height data obtained from HYSPLIT online calculations as
regional meteorological factors for Haerwusu, and combining
them with monitored near-surface meteorological factors as
independent variables to construct a regression model for particle
concentration including solar radiation and atmospheric boundary
layer height, the results are shown in Table 11. It is evident that
introducing solar radiation and atmospheric boundary layer
height significantly improves the accuracy of the constructed
particle concentration estimation model, especially with the
regression model for PM2.5 reaching an R2 value of 0.524. This
indicates that solar radiation and atmospheric boundary layer

height significantly affect particle concentration, and these two
meteorological factors should be considered when constructing the
estimation model.

3.4.3 Estimation model of multiple factors and
particle concentration

The particle concentration in a region is not only related to
meteorological factors but also influenced by emission intensity.
Many current studies constructing particle estimation or prediction
models often do not consider the influence of emission intensity,
mainly due to the difficulty in quantitatively characterizing
pollutant emission intensity. The daily production volume of an
open-pit coal mine directly determines the emission intensity
of pollutants. As the daily production volume of an open-pit
coal mine can be quantitatively recorded, constructing a dust
estimation model for an open-pit coal mine can introduce dust
emission intensity. Due to the lack of some production data
provided by the mine, this study uses noise as a substitute for
emission intensity. Using noise and meteorological parameters
as independent variables to construct a particle concentration
estimation model, the results are shown in Table 12. It is
evident that introducing noise significantly improves the
accuracy of the constructed particle concentration estimation
model, with the R2 value of the PM2.5 regression model
reaching 0.603.

The model constructed considering noise and multiple
meteorological factors shows the best performance,
indicating that particle concentration is influenced
by multiple factors. Furthermore, the model results
demonstrate that the accuracy of the estimation model
for PM2.5 is higher than the corresponding models
for TSP and PM10, once again indicating that small
particle size particles are more significantly affected by
meteorological factors.

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1458847
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1458847

4 Conclusion

This article introduces the characteristics of winter
meteorological factors and dust concentration at the Haerwusu
mine, and analyzes the correlation between these factors and
particle mass concentration. It then explains the impact of
production intensity on particle mass concentration and establishes
a model for estimating particle mass concentration under
the influence of multiple factors. The main conclusions are
as follows:

(1) In winter, the temperature inside the pit is lower, humidity is
higher, and wind speed is lower compared to outside the pit.
There is a prolonged inversion phenomenon in the mining
area, with minimal atmospheric vertical convection. From
December to February of the following year, the duration of
inversion inside the pit gradually decreases, while humidity,
wind speed, solar radiation intensity, and boundary layer
height gradually increase. And there is less vertical convection
in the atmosphere between 8 a.m. and 12 a.m.

(2) Humidity andnoise show a significant positive correlationwith
particle mass concentration (the lowest correlation coefficient
is 0.480 and 0.369 for humidity and noise), while wind speed,
solar radiation, and boundary layer height exhibit a significant
negative correlation with particle mass concentration (the
lowest correlation coefficient is −0.555, −0.280 and −0.510 for
wind speed, solar radiation and boundary layer height). Factor
analysis indicates that wind speed and atmospheric boundary
layer height have the most significant impact on particle mass
concentration.

(3) The average dust mass concentration in winter follows the
order: December > January > February. The relative frequency
of exceeding the national environmental air quality standard
limit is higher for fine particle dust (PM10, PM2.5).Thediurnal
variation characteristics of particles exhibit an approximate
unimodal distribution.

(4) There is a strong correlation between the mass concentrations
of TSP, PM10, and PM2.5. Power functions provide the best
fit for pairwise particle relationships, with the fitting formulas
as follows: PM10 = 0.895∗TSP0.981, PM2.5 = 1.047∗TSP0.855,
PM2.5 = 1.168∗PM100.868.

(5) The accuracy of the particle concentration estimation
model constructed considering multiple factors significantly
improves compared to themodel constructed only considering
near-surface meteorological factors (R2 for each model rose by
nearly 0.3). Small particle size particles are more significantly
affected by meteorological factors.
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