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Linkage types, hydrocarbons and
their relationship with subsurface
fault zones width and
displacement scaling

Lijie Cui*, Pan Zhang, Yuxi Niu, Yawen Huang and Zening Chen

College of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay, China

The width-displacement (W-D) relationship of fault zones is significant
for deepening the understanding of subsurface faulting mechanisms, yet
quantitative research using seismic reflection data, especially for boundary
identification, remains challenging. This study focuses on the quantitative
characterization of the W-D relationship in fault zones using 3D seismic data
from the C36 Prospect in the Junggar Basin, China. The hybrid attributes
derived from several conditioning approaches, multiple-attribute calculation,
and a supervised artificial neural network (ANN) have effectively enhanced
images of the fault zones. Quantitative analysis using the computed hybrid
attributes reveals that the center and the bend positions of the single fault zone
respectively control the largest width and displacement values. Different fault
sets containing different fault linkage types with different geometry, standing for
different evolution stages, provide various contributions to theW-D relationship,
leading to the different scatter data distribution. This research clarifies the
relationship between the evolution of fault zones and the scatter data, offering
new insights into the mechanisms controlling hydrocarbon accumulation and
providing valuable guidance for future exploration.

KEYWORDS

width-displacement relationship, seismic attributes, fault linkage, artificial neural
network (ANN), Junggar Basin

Highlights

• Improved images of subsurface fault zones using seismic data conditioning, attribute
calculation, and artificial neural computation are presented.

• The width and displacement values of subsurface fault zones are measured and analyzed
mainly according to the computed hybrid attribute.

• The fault zone sets, including different linkage types, stand for different stages of fault
zone growth periodically, and exert divergent controls on hydrocarbon accumulation.

1 Introduction

In recent years, many publications have stated that fault zones play a crucial role
in subsurface fluid flow, such as geothermal, groundwater and hydrocarbon, and CO2
(Billi et al., 2003; Schueller et al., 2013; Dimmen et al., 2017; Peacock et al., 2017;
Torabi et al., 2019; Wu et al., 2019). The displacement and width (W-D) scaling relation
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of fault zones is an essential parameter for predicting subsurface
faulting mechanisms (Ma et al., 2019). However, The scaling
relationship is very complicated and easily influenced by the
accuracy of the methods (Ma et al., 2019) utilized to investigate
faults, the heterogeneities (Scholz et al., 1993; Childs et al., 1996;
Alaei and Torabi, 2017; Celestino et al., 2020) within the fault
rocks in 3D, and other vital parameters such as the nature of the
protolith, depth of faulting, tectonic environment (e.g., normal,
strike-slip or reverse faulting), layer thickness, various stress fields,
diagenesis and their interactions (Evans, 1990; Faulkner et al.,
2011; Torabi and Berg, 2011). Although segment linkage plays a
crucial role in fault evolution (Dawers, 1995; Imber et al., 2004;
de Joussineau and Aydin, 2007; Torabi and Berg, 2011; Choi et al.,
2016; Mayolle et al., 2019; Wu et al., 2020), different fault sets,
including different fault linkage types, play an essential factor for the
scaling relationship that is seldom discussed.

The methods of previous studies focused on the outcrop
observed (Mitchell and Faulkner, 2009; Putz-Perrier and Sanderson,
2010; Savage and Brodsky, 2011), logging identification (Liu et al.,
2017), the core observation (Zeng et al., 2012; Guerriero et al.,
2013; Liu et al., 2017), numerical simulation (González et al., 2008;
Guerriero et al., 2013), physical simulation (Liao et al., 2017), and
other additional means, such as using scanline fracture analysis
data techniques and topographic and aeromagnetometric data
(Celestino et al., 2020). However, the research on fault zones using
3D seismic data is challenging (Iacopini et al., 2016;Alaei andTorabi,
2017; Liao et al., 2019; Liao et al., 2020; Ma et al., 2019; Wu et al.,
2019) while themethod usingmultiple-attribute analysis techniques
effectively identify and analyze fault zones is also relatively lacked.
Although more and more seismic attributes (Bahorich and Farmer,
1995; Chopra and Marfurt, 2007a; Chopra, 2009; Hale, 2013; Wu
and Hale, 2016; Wu, 2017) sensitive to the fault zone response are
adopted to image fault zones, fault zone features are almost not
accurately characterized using the single seismic attribute derived
from seismic data. Seismic attributes (Iacopini et al., 2016; Alaei
and Torabi, 2017; Liao et al., 2019; Liao et al., 2020; Ma et al., 2019;
Wu et al., 2019; Zhao et al., 2021) recently have been adopted to study
the fault zone. However, seismic recognition of the boundary of the
fault zone (Alaei and Torabi, 2017; Liao et al., 2019; Ma et al., 2019)
is still relatively subjective to the interpreters, leading to a scatter in
the reported data attributed to the ambiguity in the definition of fault
zones and bringing out additional difficulties in studying the scaling
of fault zones objectively. Therefore, the enhancing interpretation
of fault zones using advanced workflows will likely help researchers
quantitatively study the fault zone via 3D seismic data.

Research progress has been made in post-stack seismic
processing technology, especially post-stack data conditioning and
seismic multi-attribute amalgamation methods. On the one hand,
some conditioning methods based on the dip-steered cube can
effectively improve the fault imaging of conventional geometric
attributes (Santosh et al., 2013; Odoh et al., 2014). On the other
hand, seismic multi-attribute amalgamation methods can further
weaken the deficiencies of single-attribute characterization ability
and effectively enhance its ability to characterize complex structural
features. It is worth mentioning that artificial neural networks
(ANNs), as a part of machine learning methods, have gradually
gained wide acceptance for the application of seismic multi-
attribute amalgamation over the years in the field of seismic

fault image (Tingdahl and de Rooij, 2005; Basir et al., 2013;
Mirkamali et al., 2013; Zheng et al., 2014; Kumar andMandal, 2017;
Srivastava et al., 2017; Kumar and Sain, 2018;Mandal and Srivastava,
2018; Kumar et al., 2019). It provides enhanced images of fault
zones, reducing the interpretation ambiguity to some extent and new
clues for our application of seismic multi-attribute amalgamation.
Now, the C36 survey within the Baijiahai subuplift from the Central
Depression of Junggar Basin is composed of four-fault sets with four
different linkage types in the base surface of the toutunhe member
of Jurassic formation (J2t) in the map view, and the 3D seismic
data are available for trying. Therefore, we believe that delineating
fault zone features and analyzing theW-D relationship based on the
hybrid attribute from3D seismic data likely provide newpossibilities
to investigate fault zones and compare the findings derived from
other data sources (like outcrops). Moreover, further geometric
classification of the fault zone may reduce data scattering about the
relationship between fault zone W-D (Choi et al., 2016) or gain
new insights.

This research focused on (1) enhancing the fault zone features
from the 3D seismic data by combining the seismic conditioning
process, seismic multi-attribute calculation, and an ANN; (2)
analyzing the width and displacement distribution features of fault
zones via the calculated hybrid seismic attributes; and (3) discussing
the relationship betweenW-D scaling of fault zones and fault linkage
types (or different evolution stages).

2 Geology settings

The Junggar Basin is located in the northwestern XinjiangUygur
Autonomous Region, China. It is a major Paleozoic to Cenozoic
sedimentary basin, covering approximately 1.3 × 105 km2.This basin
presents a triangular shape in the map view lying at the intersection
of the Kazakhstan, Siberia, and Tarim cratons (Chen et al., 2005;
Cao et al., 2006). It is a typical “walled” sedimentary basin (Gao et al.,
2020), bounded by mountains from the northeastern, western,
and southern sides (Bian et al., 2010; He et al., 2018). To the
northwest are the Zhayier, Halaalate, and Delun mountains; to the
northeast side lie the Kelameili and Qinggelidi mountains; and to
the south are the Yilinheibiergen and Bogeda mountains. Several
authors have documented the structural arrangement (Figure 1) of
the Junggar Basin (Liu et al., 2006; Qiu et al., 2008; Hao et al., 2011;
Cao et al., 2012; Xiang et al., 2014; Yang et al., 2015; Han et al., 2019;
Tao et al., 2019). According to the Permian tectonic framework,
the Junggar Basin comprises six principal structural units: the
Wulungu depression, the Luliang uplift, the Western uplift, the
Central depression, the North Tian Shan Fold-Thrust Belt, and the
Eastern uplift (Wang et al., 2018). Furthermore, each tectonic unit
contains several elements, such as structural highs, sedimentary
sags, or fault-fold belts. Therefore, the whole basin consists of 44
tectonic elements (He et al., 2005; Zhang et al., 2010). The studied
C36 3D Prospect (Figure 1b) lies in the center part of the Baijiahai
subuplift of the Central depression.

The Junggar basin has experienced four tectonic-sedimentary
periods (Zhu et al., 2017): Hercynian, Indo-Chinese, Yanshan, and
Himalayan.The strata contain the Carboniferous, Permian, Triassic,
Jurassic, Cretaceous, Tertiary, and Quaternary rocks with thickness
up to 14,000 m (Figure 2). The Junggar Basin has experienced a
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FIGURE 1
(a) Location of the Junggar Basin. (b) Regional geological map. It presents major structural features of the Junggar Basin [modified from Cao et al.
(2017)]. The blue rectangle area indicates the location map of the C36 3D Prospect.

protracted structural evolution with multiple compressional and
extensional phases since the Late Paleozoic period, closely related
to the evolution of the Central Asian Orogenic Belt (CAOB) and the

successive accretion onto the south Asian margin (Graham et al.,
1993; Zhang et al., 2006; Xiao et al., 2015; Han and Zhao, 2018;
He et al., 2018; Wang et al., 2018). This basin was initially formed in
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the Late Carboniferous period by the collision and amalgamation of
the CAOB (Carroll et al., 1990; Allen and Vincent, 1997). Although
the Permian formation and tectonic evolution of the Junggar Basin
are highly controversial, most researchers agree that there was an
orogeny in the Late Permian period (Şengör, 1990; Chen et al., 2005;
Wu et al., 2005). During the Triassic-Paleogene periods, the Junggar
Basin underwent overall subsidence (Şengör, 1990; Chen et al., 2002;
Wu et al., 2005). However, recent studies indicate strike-slip fault
activity is likely influenced by the rotation of Siberia (Yang et al.,
2015) occurred in the late Jurassic-early Cretaceous period. From
Neogene to Quaternary periods, the basin evolved as a near EW-
striking intracontinental foreland basin (Chen et al., 2005; Wu et al.,
2005; He et al., 2018) due to the collision of the Indian Plate with the
Eurasian Plate (Figure 1a).

3 Dataset and methodology

3.1 Dataset

The C36 3D seismic survey was of moderate quality with a 2 ms
sample rate, covering about 400 km2.The seismic data were prestack
processed with a common bin size of 25 × 50 m. The minimum and
maximum frequencies are 8.8 and 63 Hz, respectively, at −20 dB,
with a dominant frequency of 29.1 Hz within the Jurassic formation.
We determined and interpreted the Toutunhe (J2t) bottom based on
the most exploratory wells drilled into the Jurassic bottom in this
study area.

3.2 Methodology

The methodology utilized for the present research is shown
in the workflow of Figure 3a. We have presented an integrated
approach to achieve our objectives. The whole workflow contains
four phases: 1) data conditioning, 2) seismic attribute calculation,
3) ANN computation, and 4) displacement and width plot. In this
study, the workflow of the first three phases was performed using
Opendtect software (Zheng et al., 2014; Kumar and Mandal, 2017;
Srivastava et al., 2017; Kumar and Sain, 2018;Mandal and Srivastava,
2018; Kumar et al., 2019). The width and throw measurement
scheme of the fault zones is illustrated in a typical seismic profile
in Figure 3b, according to the previous definition and approach
(Ma et al., 2019). The two-way travel time (TWT) and plane
coordinate (X, Y) values of point 1 and point 2 in Figure 3b could be
obtained via the ways to extract background values easily along the
gridded horizon data. Thus, we could measure the very small W-D
values.They are not limited by the resolution of seismic data to some
extent. The fault zone throw is simply used as the displacement.

3.2.1 Seismic data conditioning
This phase was conducted to obtain conditioned seismic data.

Geological features on the seismic data are very complicated because
of acoustic disturbances influencing their effective visualization and
causing deterioration of data quality, making it very hard to image
them (Alves et al., 2015; Marfurt and Alves, 2015). Therefore, the
data quality should be optimally conditioned by removing unwanted
(noisy) information.

Initially, a dip-azimuth volume (also called steering cube) was
calculated from the original seismic data. The steering cube was
obtained by extracting dip and azimuth values along the seismic
reflectors (Tingdahl et al., 2001; Tingdahl and de Rooij, 2005).
Honoring our objectives, we extracted two different steering cubes:
(1) the detailed steering cubewas computed adopting amild filtering
step-out (set as inline/cross-line/sample: 1/1/3), preserving detailed
information of seismic reflectors; (2) the background steering cube
was generated adopting coarser filtering step-out (set as inline/cross-
line/sample: 5/5/5), storing their overall trend (Kumar and Mandal,
2017). The latter steering cube was utilized further as an input for
the seismic data conditioning.

Conditioning of the original seismic data (Figure 4a) improved
signal quality by effectively suppressing random noise. It further
improved the lateral continuity of the seismic events and highlighted
the sharpness of the geologic features via several structure-
oriented filters (Fehmers and Höcker, 2003). They could effectively
smoothen the seismic events using dip-steered median filtering
(DSMF), enhance their edges of fault zones via dip-steered diffusion
filtering (DSDF) (Weickert, 1999), simultaneously preserving all
their structural characteristics, logically merging the DSMF and the
DSDF for producing fault enhanced filtered (FEF) seismic data.

The DSMF was firstly used over the original seismic data
based on the pre-processed steering cube (Chopra and Marfurt,
2007b; Chopra and Marfurt, 2007a) to generate DSDM seismic
volume (Figure 4b). The DSMF seismic volume preserves edges and
improves the lateral continuity of seismic events within the seismic
data. After the events were smoothed, another filter called DSDF
was adopted to sharpen the edges of the seismic events. The filter
produced a new seismic volume called DSDF seismic volume.Then,
the DSDM and DSDF seismic volume were logically combined with
a pre-calculated similarity attribute applying a cut-off value (0.7 for
current research) via the FEF to obtain FEF seismic volume. This
filter will take the outputs as DSMF when the similarity value is
higher than the set threshold value mentioned above; otherwise,
the DSDF will be used. The corresponding output, called FEF
seismic volume (Figure 4c), improved the sharpness of the fault
zones and reduced the random noise. During the second phase, the
FEF seismic volume, integrated with the detailed steering cube, was
used to extract sensitive attributes related to fault zones.

3.2.2 Seismic attribute calculation
This second phase was intended to select and calculate sensitive

attribute sets regarding fault zones. Seismic attributes play a critical
role in imaging complex geologic structures from 3D seismic data.
We used several time windows and inline/crossline parameters
for testing to extract an appropriate attribute set. The attribute
calculation is time-consuming, so the result was quality-checked
over a few vital seismic lines. If only the results were judged to
be suitable, these attributes were further extracted over the entire
seismic cube. Several seismic attributes, e.g., similarity, polar dip,
curvature, laplacian, and energy attributes, are sensitive to fault
zones and finally selected in this research.

3.2.3 Artificial neural computation
This third phase was aimed to implement the precomputed

sensitive attribute sets amalgamation and produce hybrid attributes
via the supervised ANN. This phase contains the following three
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FIGURE 2
Central Junggar Basin generalized stratigraphic column [modified from Cao et al. (2017)]. The target strata in this research are labeled in pink. J2t
stands for the toutunhe formation of the Jurassic.

procedures: (a) fault and non-fault location picking, (b) neural
network design, and (c) network operation as well as validation.

Fault zone locations are generally picked as zones characterized
with bed terminations and associated breaks in seismic events,
commonly showing low-similarity value, abrupt dip changes, and
loss in signal amplitude. However, the non-fault zone locations were
picked as zones avoiding such characteristic features. As input data
from fault and non-fault zones were prepared according to FEF
seismic data and extracted seismic attribute data, they were used

for a supervised ANN. Moreover, the input data were split into
training and testing data sets. The network underwent a training
schedule to obtain an optimum output to effectively discriminate
fault and non-fault cases in the input sets through learning from the
network. All example sets, including fault zone and no-fault zone
locations, were manually picked from the conditioned seismic data
to attain this objective. According to extracted seismic attributes (as
mentioned in Section 3.2.2), the interpreters picked these locations
based on their own experience and the other judgment.
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FIGURE 3
(a) Workflow used for the current research. It comprises four phases: data conditioning, attribute extraction, ANN computation, and W-D plot. (b)
Typical definitions of the W-D values from seismic profile. The TWT and plane coordinate (X, Y) values of point 1 and point 2 could be easily obtained by
extracting background values along the green horizon data.

The non-linear neural network chosen in this paper
is a fully connected multilayer perceptron (MLP) network
(Meldahl et al., 2002; Aminzadeh andDe Groot, 2006).Three layers:
(1) the input layer, (2) the hidden layer, and (3) the output layer are
designed in the neural network.These layers are interconnectedwith
each other via a form of a fully connected MLP network.The neural
network training was performed via several iterations to achieve a
minimum normalized root mean square (N-RMS) error between
the two sets of the train and test data.

Seismic attributes serve as test data sets in this computation.
Fault zone features are commonly associated with reflector
terminations, abrupt changes in reflector dip and orientations, and
signal amplitude loss. Therefore, selecting sensitive attributes is
crucial to effectively highlight these variations and help the adopted
network gain optimum output. We carefully selected such attributes
(as mentioned in Section 3.2.2) to provide a maximum contribution
for capturing reliable signatures of fault zones from the seismic data.
These attributes were initially tested for their efficacy in imaging
fault zone variations. Suitable attributes were finally grouped as
input sets for the neural network computation.

Once the input (test) data sets were prepared for training via the
network to produce optimum output. Thus, the training data sets
were required to train the network to learn through these examples.
To attain this objective, 400 example sets, including fault zone
and no-fault zone locations, were carefully picked from time slice
4,500 ms. Fault zone locations are commonly associatedwith seismic
event terminations, presenting low similarity, low most positive
curvature, low energy, and variable dip. Conversely, non-fault zone
locations are not such characteristic features.

During network operation, 30% of input data was assigned for
testing the network, and the rest of the input data was assigned
for training purposes, respectively. The training set was applied for
updating the network weights, while the test set was used to evaluate
the performance, preventing over-fitting problems (Atakulreka and
Sutivong, 2007; Singh et al., 2016; Kumar and Mandal, 2017). Once

a minimum error was achieved between the train and test data sets,
the training process was stopped. The result was further adopted
over the entire seismic volume to produce a fault probability cube
(FPC). It includes sample values from 0 to 1, representing the lowest
and highest probability of fault zones. This FPC was firstly validated
by comparing it with the fault zone distribution of the studied area.
Furthermore, its validation would be assessed again according to the
later analysis of thewidth anddisplacement distribution features and
the W-D relationship based on the computed hybrid attribute.

3.2.4 W-D measurements
This final phase was to gain the W-D values. The W-

D measurement schemes were shown in the seismic section
(Figure 3b), co-rendered with the hybrid attribute, perpendicular to
the strike of the fault zones. Most of the fault zones in this survey are
commonly steep in the seismic section andpresent as slightly normal
throws (Figure 4c). The throw is used as a proxy for displacement
in this research. We measured the W-D data set at almost all fault
zones by the 90 numbered seismic sections from the TVSS structure
map co-rendered with the FPC attribute indicating the fault traces.
Theboundary of the displayed FPCattribute, comprehensively based
on the original seismic profile and similarity attribute, is considered
the boundary of the fault zone, including the fault core and the
damage zone (Ma et al., 2019) in seismic profile. Thus, it is easily
taken as the united identification criterion in this research. Fault
zoneW-Dmeasurements were taken every 350 m along every single
fault trace from northeast towards southwest.

Fault traces were digitized based on the attribute volumes in
the map view. We digitized 52 fault zones, and 45 fault zones
were numbered from the TVSS structural map corresponding to
the base surface of the toutunhe formation of the Jurassic (J2t).
We plotted the digitized fault traces to investigate their linkage
types along these fault zones. Based on the united FPC attribute
boundary, we only manually determine the two-point locations
where correspond to the intersection points from the navigation
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FIGURE 4
(a) Original seismic for inline 450. The geologic structures are heavily masked with noisy reflections. (b) DSMF seismic for the same inline. DSMF
effectively improves image quality by removing random noises and enhancing the lateral continuity of seismic reflects. (c) FEF seismic for the same
inline. This result exhibits that the sharpness of the fault zones in the seismic section gets improved and is illustrated using blue ovals. Moreover,
reflections closer to fault zones are also enhanced.

line and the boundary of the numbered fault zones. The fault zone
width and the corresponding displacements of Figure 3b could be
easily calculated via extracting background values (including X, Y
and TWT values) of these corresponding two points at the gridded
time structural map. In total, their width and the corresponding
displacement of fault zones weremeasured at 174 points distributed,

including four different sets and well representing the development
trend of fault zones. The constant relationship between travel time
and depth is depth (meter) = TWT (millisecond) × 0.89, converting
the time domain into the depth domain of all fault geometry data.
All the displacement values of the depth domain mentioned below
are derived from the TWT domain by this relationship.
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4 Results

These results of the current research are illustrated in two
main parts. Firstly, the present study presents the efficiency of
the hybrid attribute in enhancing fault zone images, aiding in
identifying the boundary of the fault zones. Secondly, linkage types
of fault zones and the responding measure values were derived from
four fault zone sets dominantly displaced clastic rocks within the
studied strata.

4.1 Enhancing interpretation of fault zones

The current approach of using non-linear multiple seismic
attributes significantly improved the detailed features of the fault
zones presented on the seismic data. The FEF seismic data
(Figure 4c) have sharpened the structures near the fault zones
by eliminating unwanted seismic noises masking critical fault
signatures from the subsurface. This FEF seismic data further
improve attribute extraction for a better understanding of the
subsurface. Seismic attributes extracted from the FEF data generate
the fault zone features, providing a better way for reliable
interpretation of fault zone features. This similarity attribute
calculated from the original seismic data (Figure 5a) delineates
the discontinuity of fault zone locations closely related to low
similarity values. However, the results of this similarity attribute
extracted from FEF seismic data (Figure 5b) can be better. This
attribute depicts the structural trend of the fault zones as southwest
to northeast (SW-NE), consistent with the general trend of the
Baijiahai subuplift. In addition, the sharpness and visibility of the
fault zone features are much more apparent by this similarity
attribute (Figure 5b), which takes both the steering cube and FEF
seismic data as input. The non-steered similarity (mid window)
attribute, which only uses the original seismic data as input, could
image these fault zone features. However, enhanced interpretation
of fault zones could not be realized. We observed that the fault
zones were associated with higher polar dip values from the polar
dip attribute than those in non-fault zones (Figure 6a). The lowest
values are apparently visualized by displaying the most positive
curvature attribute (Figure 6b) due to the presence of fault zones.
The laplacian showed the sharpness response, with the largest and
lowest values (Figure 6c) of the fault zone. The energy response
(Figure 6d) near the fault zones is sudden change due to that these
signatures are commonly characterized by amplitude distortions.
The fault zones present vertical segmented characteristics in the
seismic section (Figure 6).

The neural computation based on these seismic attributes and
the picked fault and non-fault locations (Figure 7a) produced an
FPC attribute.Thenon-linearMLPnetwork designed for the current
work consists of 17 fully connected nodes: 10, 5, and 2 nodes
responding to the input, hidden, and output layers (Figure 7b).
In our study, 30% of the picked data were randomly taken as
test sets, and the rest of the data were taken as train sets. The
neural training was performed iteratively to update the weights for
overcoming over-fitting problems. The relative contribution made
by each of the input attributes is listed in Table 1. It is shown that

similarity short windows, polar dip offered maximum contribution
for training the network. It is also observed that the N-RMS
error values for both trained and tested data produce a minimum
value that varies between 0.34–0.38 (Figure 7c). The minimum
misclassification value (%) for both the train and test data sets ranges
from 3.27% to 3.36% (Figure 7d). This indicates that the careful
selection of attributes, along with their appropriate combination,
plays a crucial role in designing the FPC attribute that effectively
highlights fault zones and non-fault zones. The neural training
finally produced a hybrid seismic attribute used for processing over
the full seismic volume to gain the FPC attribute volume, which
(Figure 8a) captures and contains all possible fault zone features.
The volume values range from 0 to 1, where 1 stands for higher
confidence of fault zone locations. It is observed that the extracted
FPC attribute is co-rendered with the FEF seismic time slice
4,500 ms (Figure 8b), capturing and containing fault zone details
within the Jurassic formation. The image details of the fault zone
(marked with two blue dotted ellipses in Figures 5b, 8a) were further
enhanced via multiple-attribute amalgamation. Figure 9 presents
eight attributes shown in Figure 7, excluding the Non-steered
similarity (mid window) and Steered similarity (mid window)
attributes displayed in Figure 5. The fault response characteristics
of these attributes are comparatively less distinct than those of
the extracted FPC attribute. The computational environment for
the experiment was as follows: A Dell Precision 5,760 workstation
equipped with an Intel Xeon W-11955M processor (8 cores),
64 GB DDR4 memory (3,200 MHz), and an NVIDIA RTX A3000
laptop GPU (6 GB of video memory). Using OpendTect version
6.2.1, 400 example sets, including fault zone and no-fault zone
locations, were selected from the 4,500 ms time slice. The ten
attributes listed in Figure 7b served as inputs, with Figures 7c, d
used for quality control.The computation of the weight file required
approximately 1 min, while the FPC attribute calculation for the
4,500 ms horizontal slice, as shown in Figure 8a, took approximately
20 min. This provides a solid foundation for supporting subsequent
research efforts.

The FPC attribute has efficiently depicted the spatial and
temporal distribution of fault zones and within the Jurassic
formation (Figure 10). The fault zones mostly strike NE-
SW structural trends and are divided into four different sets
based on their curvature degree and linkage types, named I,
II, III, and IV (Figure 11), marked with blue dashed ovals),
according to the TVDSS structure map co-rendered with the
FPC attribute (Figure 11a). It is also observed set I, presenting
straight segments, mostly containing soft-linked fault zones with
some typically isolated fault zones, is structured with minor
fault discontinuities no longer than 3 km and mostly located on
the northeast part of this study area. About ten numbered fault
zones consist of set II, mostly presenting sub-straight segments
and containing typical soft-linked fault zones, and located on
the center part of this study area. Set III, roughly presenting
sub-curved segments and including typical coalesced fault zones
with some bends at the linked locations, is located on the
northern part of the studied area. Set IV, mostly showing curved
segments and typical hard-linked fault zones, presents more
complicated distribution features.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1460680
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cui et al. 10.3389/feart.2025.1460680

FIGURE 5
(a) Non-steered similarity (mid window) attribute. It is extracted from the original seismic data displayed over time slice (t = 4,500 ms) cuts the Jurassic
formation. The attribute illustrates the presence of fault zones and discontinuities characterized by low similarity values. (b) Steered similarity (mid
window) attribute. It is extracted from FEF seismic data displayed for the same time slice. Fault zones are more sharpened and prominent that are
marked with red arrows and blue ovals.
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FIGURE 6
(a) Polar dip attribute. This calculated attribute is presented for inline 450. High polar dip values are closely related to the fault zones marked with red
ovals. (b) Most positive curvature attribute. This calculated attribute is presented for the same inline. Low positive curvature values exhibit within the
fault zones marked with black ovals. (c) Laplacian attribute. This calculated attribute is presented for the same inline. The lowest and highest laplacian
values simultaneously present within the fault zones marked with green ovals. (d) Energy attribute. This calculated attribute is presented for the same
inline. Sudden changes in the energy occur from high to low within the fault zones marked with white ovals.

4.2 The W-D distribution features of fault
zones

The W-D values were measured along four sets containing the
different linkage types of fault zones at the base of the toutunhe
formation of the Jurassic (J2t) (Figure 11a) using the depth converted
displacements. Displacement values within set I vary between 0.3
and 26.4 m (Figure 12a).The largest displacement is from the central
locations of F8 (pro. 11), located at the middle zones of set I. The
northeastern tip of the fault zone is spread beyond the studied
seismic survey range. The fault zone width ranges between 43.4

and 160.5 m within the same fault sets (Figure 12a), with the widest
position located at the fault bends of F10 (pro. 17).The displacement
measurements within set II (Figure 12b) exhibit variations from 2.8
to 28.7 m, with the largest displacement from the central position
(pro. 40) of F20 (Figure 12b). The fault zone width varies from 47.3
to 138.1 m, and the largest width (Figure 12b) has been measured
near the bend position (pro. 35) of F17 (Figure 12b). Within set III,
displacement (Figure 12c) varies between 1.1 and 27.8 m, with the
largest displacement from the central position (pro. 49) close to the
central location of F26. Displacement decreases toward the western
tip of the fault zone. Their width ranges from 37.7 to 236.2 m, and
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FIGURE 7
(a) Example locations. They are manually picked from the time slice (4,500 ms) of FEF seismic volume and grouped into fault-yes (blue color) and
fault-no (pink color) data sets. (b) Non-linear MLP network. It is applied for artificial neural calculation. (c) N-RMS error between the test data (blue
curve) and the train data (red curve). (d) Corresponding misclassification percentage between the two data sets.

local increases in width (Figure 12c) are shown where the largest
width value was measured from the fault bend position (pro. 59)
of F28 (Figure 12c). Their displacement measurements within set
IV (Figure 12d) demonstrate variations from 1.2 to 49.9 m, with
the largest displacement from the western position (pro. 83) of F36
(Figure 12d), hard-linked with F38. Their width (Figure 12d) varies
from 47.3 to 326.7 m, and the largest width has been measured near
the fault bend positions (pro. 87) of F38.

We have also plotted the W-D relation of the fault zone and
further compared our latest results with previous related studies.
Our plot presents a similar trend to the previous studies (Figure 13)
for theW-D relationship of the fault zone. Moreover, our plot clearly
exhibits such evident distribution characteristics of horizontal
extension and local aggregation. Furthermore, most of the largest
displacement values are almost located on the center locations
of single fault zones, while most of the largest width values are
almost located on the bend parts of single fault zones. However,

the displacement data from the different fault sets with different
curved features and linkage types demonstrate significantly different
relationships with fault zone width. The W-D of the fault zone
data showed a roughly positive correlation in Figures 14a–d, with
different R2 values. Conversely, Figure 14d exhibits a significant
negative W-D correlation of the fault zone.

5 Discussion

5.1 The hybrid attribute for fault zones
enhancing imaging

The computed hybrid attribute using ANN networks, jointly
combined with post-stack conditioned process and seismic multi-
attribute analysis, opens new opportunities to investigate fault zones
at seismic scales further and could compare with the previous
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TABLE 1 Attribute-weight chart illustrating the weight from each
attribute adopted for neural training in this research.

Attributes Weights

Similarity (SW) 100

Similarity (MW) 74

Polar dip 73.2

Similarity (MW) No-Steering 67.4

Similarity (LW) 59.1

Most Negative Curvature 55.9

Energy 32.3

Most Positive Curvature 14.9

Laplacian (ID) 11.4

Laplacian (CD) 11.4

SW, Short window; MW, Mid window; LW, Long window; ID, Inline Dip; D, Crossline Dip.

studies, whose data obtained fromother sources, including outcrops.
The results indicate that the workflows we proposed, especially the
computed hybrid attribute, are valid and widely applied to other
3D surveys.

Some attempts, especially applying seismic attributes to define
some characteristics, have been constructed, and part of them
could be correlated to the studies from the outcropped fault zones.
Dutzer et al. (2010) adopt the seismic fault distortion zone concept
containing inner and outer zones. Iacopini et al. (2016) adopt the
fault seismic disturbance zone (SDZ) concept and present workflows
for imaging the SDZby comprehensively using amplitude, waveform
similarity (coherence), and phase attributes. Alaei and Torabi (2017)
extract the segment length and width data of the fault zones by
using frequency decomposition and fault attribute analysismethods.
Liao et al. (2019) try to adopt seismic coherence to investigate
the subsurface characterization of fault zones. Ma et al. (2019)
integrate seismic coherence and amplitude attributes to image fault
zones, proposing an evolution process of damage zone growth
within carbonates. Liao et al. (2020) analyze the internal architecture
and fracture distribution within composite damage zones (CDZ-
s), jointly applying seismic attributes, such as variance, curvature,
and dip-azimuth, defining three classes of CDZ-s. However, using
only a single seismic attribute or jointly using several attributes is
still arguable or subjective for the reliability of fault interpretation.
Therefore, we strongly support that the advanced workflow for
attribute amalgamation, mostly including the ANN approach, is
adopted to image fault zones and bring out more details than before.
The fault zones could be displayed in the 3D space, and quantitatively
analyzed the W-D distribution features using the hybrid attribute.
This method could reduce the subjectivity of the interpreter during
the measuring stage of W-D according to the united identification
criterion of the boundary of fault zones to some extent. It is observed
that the boundary of fault zones is more apparent than before,
and the hybrid attribute brings out a relatively fixed or uniform

standard about the boundary. Therefore, the quantitative analysis of
fault zone W-D is easy and useful for measuring enough samples
for including much different geometry or order fault zones. It also
provides convenience for selecting the fault zones to avoid these
conditions cutting through various lithologies and measuring at
various depths for reducing the unnecessary influence factor of
scattering in the sampled data.Thus, we consider that the workflows
could be widely applied to other surveys to study the W-D scaling
relationship in the future.

The hybrid attribute demonstrates new possibilities of studying
fault zones based on 3D seismic data and could compare the
latest results with other data sources, especially outcrops. Our
proposed workflow, which adopts several post-stack seismic data
conditioning processes and multi-attribute amalgamation using
a neural network approach (unlike traditional single or several
attributes), provides enhanced images of fault zones. The compared
image results of fault zones from Figure 5 indicate that data
conditioning is necessary and plays an essential role in improving
the image quality. Table 1 also illustrates that the multi-attribute
amalgamation using a neural network approach could avoid the
deficiencies of single-attribute characterization ability to some
extent. Figures 5, 9 collectively illustrate the ten input attributes
shown in Figure 7b. When compared with Figure 8a, each attribute
demonstrates fault response characteristics consistent with the
weight contributions listed in Table 1. These methods effectively
enhance their ability to image complex structural features (Figure 8).
In addition, the additional threshold setting further improves
the boundary sharper signatures of fault zones, bringing out
the united boundary identification criterion. These considerable
improvements in imaging out the boundary of the fault zone
allow us to study its scaling relation with displacement efficiently,
at least eliminating the interference of boundary inconsistent to
some extent. Figure 12 demonstrates that all measured fault zones
have thicker fault zones (varies between 37.7 and 326.7 m) with
respect to their corresponding displacement compared to previous
findings (Alaei and Torabi, 2017). Although seismic attributes are
commonly efficient in highlighting fault zones (Botter et al., 2016;
Iacopini et al., 2016; Wan et al., 2016; Ma et al., 2019; Liao et al.,
2020), identifying fault zone boundaries according to a single
or several common seismic attributes remains bias. The use of
integrated workflows in this research further enhances the sharper
characteristics of the fault zones. Thus, the latest identification of
the boundary of the fault zone is more transparent and objective
than the previous study, which used the coherence and amplitude
attributes (Wan et al., 2016).

Moreover, we have also plotted the scaling relation between
the W-D of the fault zone and compared our latest results with
previous studies (Figure 13). Our latest research results could be
compared well with previous studies. It implies that our approach
is feasible and that the result is reliable. Thus, our studies suggest
that the boundary identification of fault zone based on the hybrid
seismic attribute and the following research of theW-D relationship
is feasible. Our current approach provides more possibilities using
3D seismic data to investigate the W-D relationship of fault zones,
especially for the area lacking drilling data and outcrop data.
Therefore, we strongly suggest that the workflows could be widely
applied to other surveys to study the fault zones. Although, this study
only presents a related case regarding shallow machine learning,
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FIGURE 8
(a) FPC attribute. This attribute is presented for time slice 4,500 ms. Higher fault probabilities are marked with deep black color, while lower fault
probabilities are marked with white color. This attribute brings out better visibility of the fault zones and improves seismic reflect continuity. (b) Same
attribute. They are co-rendered with FEF seismic data for the same time slice. The green color indicates a higher probability of fault locations.

not deep learning. It has demonstrated an effective imaging result
of the subsurface fault zones. Therefore, we consider that deep
learning must also be extended to study fault zone identification

and quantitative interpretation in future research.The application of
deep learning will likely bring out more insight into understanding
the subsurface fault zones.

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1460680
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cui et al. 10.3389/feart.2025.1460680

FIGURE 9
(a) Similarity (SW) attribute. (b) Polar dip attribute. (c) Similarity (LW) attribute. (d) Most negative curvature attribute. (e) Energy attribute. (f) Most positive
curvature attribute. (g) Laplacian (ID) attribute. (h) Laplacian (CD) attribute. All these attributes are presented for time slice 4,500 ms.
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FIGURE 10
(a) Overall display of the 3D volumetric. The FEF seismic data volume is co-rendered with the FPC attribute within the Jurassic. (b–d) Detailed display of
the fault signatures. These fault zones are indicated by the FPC attribute. The different fault zones with different geometry could be observed detailedly.

5.2 The W-D influencing factors of fault
zones

The largest strength of our work is that the sample data
collected are enough and derived from the same lithological
combinations, deformation element, united boundary definition,
and at approximately the same depth range. This enables us to
isolate the influence of the aforementioned overlapping factors on
fault zones. Consequently, such data is essential for more effectively
analyzing other controlling factors of fault zones through the
width-displacement relationship. Furthermore, as fault zones are
rarely completely exposed in 3-D, especially the examples from
outcrops, interpreting the 3-D distribution of fault zones seems
always challenging.Therefore, the seismic data seem very important
to study the fault zones, avoiding the incomplete observations of
fault zones, especially in the outcrops. In addition, the fault zones
with four typical geometry characteristics, such as different curved
features and linkage types in the map view, are available for direct
comparisons. All the data are well used for analyzing the influence
for the attribute of W-D of the fault zone.

Most researchers have focused their researches on the influence
factors of the W-D of fault zones. The protolith nature, the depth

range of faulting, tectonic environment (such as normal, strike-slip,
or reverse faulting), layer thickness, and various stress fields are
prone to affect the damage zone width (Faulkner et al., 2011). In
addition, the fault damage types, including tip damage, wall damage,
and link damage, are not differentiated, probably explaining a part
of the D-T data scattering (Mayolle et al., 2019). Although some
researchers consider that fault linkage types likely influence the
scaling of fault zones, the sampled data they used has a common
defect: the data are not enough or typical. Our W-D measurements
could meet these three conditions (Evans, 1990) from (1) different
points along the same fault, (2) families of faults in similar rock
types with different amounts of slip, such as different numbered
fault zones, and (3) faults with similar amounts of the net slip in
similar structural settings. The latest interpretation results indicate
that fault linkage-type including isolated, soft-linked, hard-linked,
and coalesced fault traces co-occur in theC36 Prospect, with enough
sampled and continuous data in this research. It provides a typical
case for unlocking the fault geometry influencing for W-D of fault
zones because the data set in this study comes from the same
lithological combination and deformation histories.

Moreover, the survey locates nearly the same depth range,
varying between 2,510 and 3,100 m, and the studied area roughly
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FIGURE 11
(a) TVDSS structure map of the base surface of J2t from the C36 seismic volume. The TVDSS structure map, co-rendered with the hybrid seismic
attribute, presents the distribution and orientation of the fault zones. (b) Fault zones. They are digitized, according to (a). J2t stands for the toutunhe
formation of the Jurassic. Here, “Pro.” is an abbreviation for “Profile.” It is used to denote the locations of seismic profiles selected perpendicular to the
strike of fault zones.
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FIGURE 12
Fault zone W-D values. They were measured by seismic profiles roughly perpendicular to fault zones according to the digitized fault distribution map of
the base surface of J2t (See Figure 11b for location). The W-D values cover four named fault sets: I (a), II (b), III (c), and IV (d). J2t = toutunhe formation
of the Jurassic.

presents a uniform slope characteristic without any local strata
folding, without apparent width or displacement change patterns
along the depth even within the same set. Consequently, the

influence of lithology and burial effects on fault zones could be
negligible.Thus, we consider that perhaps the fault geometry, acting
as the most crucial factor, influences both attributes of fault, such
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FIGURE 13
Log-log plots of width versus displacement of strike-slip fault zones. They exhibit a comparison between this research and the previous studies (Alaei
and Torabi, 2017). The measured values from four sets with different curved segments and link types are marked with different color circles. DB stands
for deformation band.

as W-D, further leading to the different W-D correlations. Fault
zone W-D values were detailedly measured along with four sets
at the base surface of the toutunhe formation of the Jurassic (J2t)
(Figure 11). It is shown that the largest width of a single fault zone
seems always locates the bend of the single fault zone, while the
largest throw values are commonly from the locations where located
in its center part (Figure. 11) to some extent.

5.3 The fault linkage types and the scatter
data from their scaling

The width and corresponding displacement data for all fault
zones were plotted against each other in both log-log and linear
space. Although the displacement in the present study refers to the
throw measured easily (the true displacement values are difficult
to measure continuously), our latest research results bring out
new insights about the four sets and the scatter data from their
scaling, while the fault zones could also be available to unlock the
influence of the evolution of fault zone growth for scattering data.
The average throw can approximately reveal the activity strength

of strike-slip faults (Han et al., 2020). Thus, the activity strength of
fault zones, from fault zone I to III, II, and IV, gradually becomes
stronger according to their average throws (9.2–11.4, 12.6, and
15.9 m, respectively) and approximately stand for four the different
evolution stages of fault zones.

Although the fault zone width mostly demonstrates a positive
correlation with the displacement (Figures 14a–c), the W-D
relationship of the fault zone presents no simple linear or power-law
relation with scattering data. Our plot (Figure 13) clearly exhibits
a longitudinally extending feature, similar to the data trends from
previous studies (Alaei and Torabi, 2017) to some extent. The W-
D data of the fault zones showed a roughly positive correlation
in Figures 14a–c, with different R2 values. Conversely, Figure 14d
demonstrates a significant negative W-D correlation. These figures
present two main characteristics. The first one is that although all
of the relationships exhibit mostly the same distribution trend, such
as same gradients of best-fit trends or same magnitudes within
the plot, the relationships still do not present a positive linear
trend. It concludes that the scattering relationships between W-
D of the fault zone may not be visible. The second one is that
although the scattering relationships are largely reduced, their
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FIGURE 14
Linear plots of fault zone width versus displacement for the base of J2t in the C36 area, Junggar Basin: (a) Set I, (b) Set II, (c) Set III, (d) Set IV, and (e)
combined data from Sets I-IV showing overlapping zones and different fault zone growth stages. The values from different sets are also marked with
different color circles.

data scattering still occurs, presenting different R2 values in each
relationship.

The data compiled from the fault zones with different
geometrical characteristics indicates (Figures 14a–d) that the fault
linkage type is an important controlling factor that results in
different W-D relationship features, simultaneously presenting a
scatter distribution characteristic. It is easily observed that almost all
of the largest displacement values are located at the center part of the
single fault zones, not identified easily from hard-linked fault zones
(set IV) due to their complicated linkage relationship, while almost
all of the largest width values are from the bends (Figures 12, 13) of
the corresponding fault zones. Whatever the scaling relationships,
especially from Figures 14a–c, may help predict geometries of fault
zones from the Junggar Basin and possibly elsewhere. Figure 14e
contains data from Sets I-IV. This figure indicates that the fault
zones with different geometric characteristics have some of the
same numerical distribution range of the W-D relationship in the

linear plot, especially in the same 3D area with similar tectonic
activity history. Our latest research demonstrates that although
four sets with different fault geometric features stand for different
evolution or growth stage, all of them still have a broad overlap range
of W-D distribution (marked with a black rectangle dotted box in
Figure 14e) in the plot. Therefore, it is challenging to unlock the
evolution process of the fault zones in the linear plot. However, our
latest research still could bring out important notes about fault zone
evolution with different trend scattering data marked with different
color dotted lines in the same plot. The I set, locating the center
part of the plot and approximately standing for the isolated fault
zone evolution stage, presents both W-D growths simultaneously
(marked with a pink arrow in Figure 14e). This pink arrow trend
could also roughly stand for the growth of the process zone stage,
occurring in the initial evolution stages of fault zones. The II set,
mostly standing for the soft-linkage fault zone evolution stage,
presents a slight difference in W-D growth, illustrating that the
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displacement growth ismore pronounced (markedwith a blue arrow
in Figure 14e). This blue arrow trend also could be understood as
roughly standing for fault zone growth stage. The III set, roughly
standing for the coalesced fault zone evolution stage, presents a
moderate growth difference ofW-Dgrowth, showing that the scaling
of width growth is more pronounced (marked with a green arrow
in Figure 14e). This green arrow trend also could be considered to
stand for the inactive fault zone stage roughly. The IV set, typically
standing for the hard-linked fault zone evolution stage, exhibits great
growth differences of W-D growth simultaneously (marked with
two red arrows in Figure 14e). These two arrow trends also could
be understood as roughly standing for inactive damage zone stage
and damage zone growth stage. Therefore, a fault zone can grow
periodically (Fossen, 2010), mostly consisting of the process (or
damage) zone growth and throw/displacement accumulation stages
as shown in Figure 14e. Four different sets containing different fault
linkage types, standing for four different fault growing stages and
presenting four different W-D growing trends, obviously provide a
deep understanding of the scatter data.

5.4 Relationship between different types
the fault zones and hydrocarbons

Previous studies have primarily focused on the architecture
types of fault zones or W-D relationship, lacking further analysis on
their control over hydrocarbons combinedwith well data (Liao et al.,
2019; Liao et al., 2020; Ma et al., 2019; Wu et al., 2019). In this study,
we conducted a comprehensive analysis by integrating drilled well
data from the C36 3D area. Wells C521, C34, and C36 (Figure 11)
are respectively located within fault zones I to III, and IV, and each of
these wells shows good potential for hydrocarbon containment.The
up-dip directions of wells C34 andC36 are obstructed by fault zones,
leading to the formation of reservoirs. In contrast, well C521 formed
a reservoir due to the absence of a fault zone in its up-dip direction. It
can be inferred that the fault zones I to III in the up-dip directions of
wells C34 and C36 likely played a role in laterally sealing these wells
to prevent hydrocarbon lateral migration. On the contrary, some
fault zones in the down-dip direction of well C521 may play a role
in facilitating the drainage of hydrocarbon. Currently, there are no
wells within fault zone II, so its role in hydrocarbon accumulation
cannot be confirmed from the plan view.

Figure 11a illustrates that different sets are constituted by
distinct fault linkage types. Section 5.3 discusses how various fault
linkage types are associatedwith unique fault zone growth processes,
corresponding to different growth cycles; evidently, these differing
growth cycles probably exert distinct controls on hydrocarbons. To
investigate the control exerted by various fracture linkage types
on hydrocarbons, this study projects and compares the maximum
displacement data of fault zones for different linkage types against
prior research (Figure 15). The trends in the projected data suggest
that sets I and II are predominantly characterized by extensional
activities within the damage zones of fractures, whereas sets III and
IV are mainly defined by cumulative displacement activity periods.
Fault damage zones contains fracture commonly provide a high-
permeability conduit for fluid flow (Billi et al., 2003) and can act as a
preferential corridor for fluid flow in the subsurface (Martinelli et al.,

2020). In addition, these fault zones display characteristics of strike-
slip movement (Cui et al., 2022), and the wells C34 and C36 have
been proven to contain hydrocarbons, likely due to obstruction
by fault zones. So set I and set II probably act as facilitating
the drainage of hydrocarbon. On the contrary, set III and set IV
probably play a role in laterally sealing to prevent hydrocarbon
lateral migration.This conclusion is likely to provide some potential
constraints for future drilling plans in this block and exploration
in other blocks. However, this conclusion will require more drilling
data and examples in the future to substantiate this viewpoint.

The W-D data of the fault zones with different linkage types
showed different R2 values (Figures 14a–d), and presents data
scattered characteristics (Figure 14e). These characteristics implie
that the relationship between different types the fault zones and
hydrocarbons is complicated. In the future, more detailed work is
needed to explore the control of hydrocarbon from the perspectives
of fault zones with different linkage types or growth cycles with
greater precision. This study only analyzes the control of fault
zones on hydrocarbons from the “set” perspective. Future research
might need to focus on the influence of segmented fault zones
within each sets on hydrocarbons, which could be more meaningful
for subsequent drilling plans in the Junggar Basin and other
petroliferous basins with similar settings (Figure 1).

6 Conclusion

Jointly using post-stack conditioning, seismic attribute
calculation, and the ANN approach yielded a hybrid attribute,
which provided enhanced images of fault zones from 3D seismic
reflection data and could be widely applied to other surveys to
quantitative study the W-D relationship in the future. We have
imaged and analyzed fault zones, mostly including the W-D, within
the C36 Prospect of the Baijiahai subuplift using the hybrid attribute.
Furthermore, a comprehensive analysis of the fault linkage types and
their W-D relationships has also been carried out. The following
main conclusions can be made:

The present work presents a better path for improving fault zone
features from 3D seismic data. The conditioned seismic volume
with enhanced and sharpened fault features is carried out by
several structure-oriented filtering steps in this work. The attribute
calculation and neural training performed based on adopting this
conditioned seismic data are integrated to produce the optimum
hybrid seismic attribute, which has efficiently enhanced the image
of fault zones, providing new paths for gaining the united boundary
features of fault zones.

The current interpretation strategies provided here enhance
boundary features by making them applicable to the fault zones. We
gain new insights about the W-D distribution features of different
fault sets with different fault linkage types in the map view. The
computed hybrid seismic attribute is effectively used tomeasure and
analyze the W-D of the fault zones. The largest width values are
closely related to the bend of a single fault zone, while the largest
displacement values commonly distribute its center.

The latest statistical results of fault zones provided new insights
about the fault linkage types and the scatter data from their W-D
relationship of fault zones, simultaneously including isolated, soft-
linked, coalesced linkage, and hard-linked by the hybrid attribute.
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FIGURE 15
Schematic illustration shows shows the relationship between the width of the damage zone and the corresponding maximum displacement, using data
from data sets I, II, III, and IV for the base of J2t in the C36 area, Junggar Basin. The max displacement data sets are selected from four sets. J2t stands
for the toutunhe formation of the Jurassic. The schematic demonstrates how a damage zone can grow periodically [modified from Fossen (2010)].

Our results suggest that the fault zone sets, including different
linkage types with different geometry features, stand for different
stages of fault zone growth periodically, with different fault zone
width or displacement value growth process and accordingly provide
different contributions for the W-D relationship in the linear plot.

The trends in the projected data suggest that sets I and II
predominantly correspond to extensional activities of the fractured
damage zones, and sets III and IV mainly associate with cumulative
displacement activities of strike-slip fault core zones. Furthermore,
based on a comprehensive analysis of drilling data, it is believed that
sets I and II are likely to facilitate hydrocarbon drainage, while sets
III and IV are believed to play a crucial role in lateral sealing, thereby
preventing the lateral migration of hydrocarbons.
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