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Modeling snow optical
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wavelength airborne lidar in
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Airborne lidar is a powerful tool used by water resource managers to map snow
depth and aid in producing spatially distributed snow water equivalent (SWE)
when combined with modeled density. However, limited research so far has
focused on retrieving optical snow properties from lidar. Optical snow surface
properties directly impact albedo, which has a major control on snowmelt
timing, which is especially useful for water management applications. Airborne
lidar instruments typically emit energy at a wavelength of 1,064 nm, which
can be informative in mapping optical snow surface properties since grain size
modulates reflectance at this wavelength. In this paper we present and validate
an approach using airborne lidar for estimating snow reflectance and optical
grain size at high spatial resolution. We utilize three lidar flights over the Boise
National Forest, United States, during a winter season from December 2022
to March 2023. We discuss sensitivities to beam incidence angles, compare
results to in situ measurements snow grain size, and perform spatial analyses
to ensure reflectance and optical grain size varies across space and time as
anticipated. Modeled optical grain size from lidar performed well (Root mean
squared difference = 49 μm; percent mean absolute difference = 31%; n = 28),
suggesting that aerial lidar surveys can be useful in mapping snow reflectance
and optical grain size for dry snow, and may support development of other
remote sensing technologies and aid water resources management.
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1 Introduction

Snow albedo is a crucial variable in snow remote sensing and water resource
management because of the magnitude of incoming solar radiation reflected
(Warren, 1982). Since snow covers 12%–33% of the global land mass, snow
albedo is a major control on global energy balance. However, snow grains at
the surface undergo constant change across the landscape from the time snow
falls until it melts (Colbeck, 1982). In the absence of light absorbing particles
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(e.g., soot, dust, algae) and liquid water, the visible near-infrared
(VNIR) reflectance of snow is almost entirely controlled by optical
grain size (Warren, 1982), and to a smaller extent by grain shape
(He et al., 2017). Determining optical grain size is a benefit
to water resource management decisions, as it influences the
energy balance of snow and consequent grain metamorphism,
which changes albedo and therefore melt (Painter et al., 2016).
Tracking global snow metamorphism and its impact on albedo
will improve estimation of snowmelt timing, which has large scale
financial and societal implications for communities and ecosystems
(Sturm et al., 2017). Monitoring global snowpack reservoirs is
important, as about one-sixth of the world’s population relies
on snowmelt (Barnett et al., 2005).

Better methods for mapping optical grain size are valuable
and required for improving energy balance modeling (He et al.,
2017; Räisänen et al., 2017), through model development, as well
as uncertainty quantification in data assimilation (Durand and
Margulis, 2008). There are many existing datasets for this purpose.
For example, Moderate Resolution Imaging Spectroradiometer
(MODIS) can be processed with algorithms such as Snow Property
Inversion From Remote Sensing (SPIReS) (Bair et al., 2020)
and MODIS Snow Covered Area and Grain-size (MODSCAG)
(Painter et al., 2009) to estimate snow properties. Additionally,
there has been extensive research to create highly accurate
optical grain size maps from hyperspectral AVIRIS flights (Nolin
and Dozier, 1993; Nolin and Dozier, 2000) and assess the
uncertainty of these quantifications (Painter et al., 2013). The
high solar zenith angles–a fact of winter in the sub-arctic and
cryosphere–are a large limitation for grain size retrieval methods
relying on passive sensors (Bohn et al., 2021; Fair et al., 2022;
Yang et al., 2017).

Topography provides an additional challenge in collecting
signals with already high solar zenith angles–further changing
the local surface incidence angle and creating possible sources
for error (Dozier et al., 2022). Precise characterization of the
optical path (incoming and outgoing) is therefore important.
High resolution lidar measuring both structural and optical
information can meet these challenges in complex topography
and less than ideal illumination conditions, allowing us
to attempt to solve optical grain size from the received
lidar signal.

Previous work has established a proof of concept for estimating
optical grain size using spaceborne lidar with pulse wavelength at
1,064 nm (Yang et al., 2017), since reflectance of snow is highly
sensitive to changes at this wavelength (Warren, 1982). Yang et al.
(2017) modeled optical grain size using analytical asymptotic
radiative transfer theory (AART) (Kokhanovsky and Zege, 2004)
over polar icesheets with ICESAT GLAS as input, finding general
patterns of optical grain size distributions consistent with past
research for these regions (Gay et al., 2002). Ackroyd et al. (2024)
demonstrated promising results using this same method for both
airborne and Unmanned Aerial System (UAS) platforms. In their
study, they found reliable optical grain size estimates (mean absolute
error = 32 μ m) when compared to in situ field observations in
Colorado, United States.

However, limited attention has been given to rigorously testing
uncertainty of optical grain size using airborne lidar. This is
especially important considering current spaceborne instruments

such as Environmental Mapping and Analysis Program (EnMAP),
Hyperspectral Precursor of the Application Mission (PRISMA),
and Earth Surface Mineral Dust Source Investigation (EMIT),
as well as upcoming missions such as NASA Surface Biology
and Geology (SBG) and ESA Copernicus Hyperspectral Imager
Mission for Environment (CHIME), which will be able to leverage
global imaging spectroscopy data to model snow properties at
the surface, like optical grain size and snow albedo (Cawse-
Nicholson et al., 2021; Cogliati et al., 2021; Kokhanovsky et al.,
2023; Thompson et al., 2024). However, solving uncertainties for
high incidence angle observations is needed to improve model
performance (Bohn et al., 2021). Airborne lidar derived optical grain
sizes are independent of sun illumination, therefore, if uncertainty
metrics are well known for lidar it could be a valuable in informing
such satellite missions. Also, lidar can penetrate canopy, which
remains a limitation for multispectral and hyperspectral remote
sensing (Dozier and Painter, 2004; Kane et al., 2008; Liu et al., 2004;
Muhuri et al., 2021; Nolin, 2010; Raleigh et al., 2013; Vikhamar
and Solberg, 2003). Accurately mapping snow properties in forest
ecosystems remains crucially important for our ability to monitor
and understand ecohydrological processes as snowmelt timing shifts
in a warming climate (Harpold, 2016). In North America alone,
forests make up approximately 40% of the snow-covered area
(Klein et al., 1998).

To these ends, we build upon past studies (Ackroyd et al., 2024;
Yang et al., 2017) and leverage helicopter-flown airborne lidar over
the Boise National Forest in Idaho, United States, to estimate optical
grain size and perform uncertainty testing in areas of forest cover
and high incidence angles. We address the following key questions
to develop the efficacy of this technique:

• At what incidence angle does retrieved reflectance from
airborne lidar over snowy terrain become unreliable using an
incidence angle correction method?

• Can airborne lidar be used to estimate snow reflectance and
optical grain size accurately in steep, forested terrain? And in
doing so, what are the associated uncertainties?

• How does lidar derived optical grain size vary throughout the
season and across a landscape, and do these distributionsmatch
what we would expect given past research and observations?

2 Methods

2.1 Study site

We analyzed helicopter-mounted lidar (Riegl VQ 580 ii; O’Neel
et al., 2022) over the Boise National Forest in Southwest Idaho,
United States (Figure 1). Three flights were analyzed including
8 December 2022, 9 February 2023, and 16 March 2023. The
35 km2 study site is covered predominately with conifers such as
lodgepole pine (Pinus contorta), ponderosa pine (Pinus ponderosa),
and Douglas-fir (Pseudotsuga menziesii). In 2016, the Pioneer
Fire burned approximately 767 km2 of the Boise National Forest,
and approximately half of our study area. We assumed light
absorbing particles at the surface to be minimal given the study
was conducted 7 years after the fire and during the accumulation
season (Gleason et al., 2019; Uecker et al., 2020). With this
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FIGURE 1
Study site in southern Idaho shown in WGS84 UTM 11 N (EPSG: 32611) with Sentinel-2 true color from February composite as the basemap (A), and
portion of study site shown from the helicopter on 9 February 2023 (B). Hourly air temperature was recorded across the site for December flight (C),
February flight (D), and March flight (E). Dashed lines represent window of flight time. Air temperatures were below freezing during flights suggesting
minimal liquid water content at surface.

assumption, and the fact that these constituents have a small
impact on the 1,064 nm wavelength (Miller et al., 2016), we
did not account for light absorbing particles in our study. We
also assumed no dust was present at our site; however, episodic
dust events can be common in the western United States and
can impact the VNIR reflectance depending on the dust radius
(Warren and Wiscombe, 1980).

The elevation range of our study area is 1,563 to 2,463 m above
mean sea level. The mean precipitation for this site ranges widely
based on elevation and interannual variability, but typically received
about 1,150 mmaccording to the last 10 years of data atMores Creek
SNOTEL #637. Snow depth was optically thick for all flights. Each
flight included a boresight calibration in a residential area in Eagle,
Idaho (60 km away from the study site) which is highlighted as in-
town calibration in Figure 1.

2.2 Snow conditions and collection of field
data

Estimating optical grain size from single wavelength airborne
lidar relies on the assumption of dry snow. This is because the
presence of liquid water will shift the ice absorption window,
therefore, requiring more than one wavelength to resolve grain size
andwater content (Donahue et al., 2022). Observed air temperatures
were below 0°C during the duration of all three flights for both
a station at Pilot Peak (elevation = 2,450 m) and at the nearby
SNOTEL station (elevation = 1,859 m), indicating minimal liquid
water at the surface during data collection (Figures 1C–E).

Low-lying clouds were present between the ground surface
and the lidar system mounted on the helicopter for some of the
flightlines of the 8 December 2022 flight, reducing the returned

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1487776
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wilder et al. 10.3389/feart.2025.1487776

intensity (Supplementary Figure S1). We discarded these flightlines
and retained 10 cloud-free flightlines for this date for our spectral
observations; all flightlines were used to create a high-resolution
terrain product for this date.

We collected a transect of in situ field spectroscopy for the
December and February flights, over a 1-h window during solar
noon. Locations of measurements were recorded at each point
using an Emlid Reach RS2 attached to a plumb 3 m survey pole to
ensure the ground (below snow) was reached. We collected diffuse
incoming solar irradiance, total incoming irradiance, and upwelling
diffuse radiance using anASDFieldSpec 4 (calibrated Summer 2022)
with the remote cosine receptor on the end of a 1 m aluminum
rod-held plumb held roughly waist high. We recorded the diffuse
component using a small cardboard disk on a pole to shade the
receptor (Supplementary Figure S2). We chose this method instead
of an 8-degree field of view fore-optic (Skiles et al., 2023), because
our points were in steep terrain (slopes to 21°), although solving for
grain size using hemispherical measurements is a difficult problem
in complex terrain. Alternative methods using instruments that are
terrain independent may be better suited for measuring optical
grain size, such as contact spectroscopy (Painter et al., 2007),
integrating sphere (Gallet et al., 2009), IRIS (Montpetit et al., 2012),
or IceCube (Zuanon, 2013). Future studies that seek to validate
grain size in sloped terrain may be interested in using terrain
independent methods.

2.3 Correcting ground data for sloped
terrain

Raw hemispherical data were collected and were converted
to intrinsic spectral albedo (αiλ) by accounting for the local solar
zenith angle due to the terrain (Bair et al., 2018) using following
Equation 1,

αiλ =
F↑λ,di f

F↓λ,di f + cF
↓
λ,dir

(1)

where F↑λ,di f is the upwelling diffuse radiation measured by pointing
the sensor down, F↓λ,dir is the downwelling direct irradiance
measured by pointing the sensor up, and F↓λ,di f is the downwelling
diffuse irradiance measured in the same location as the direct
irradiance measurement, but occluded (shaded) from direct sun.
Parameter c is the cosine of the local solar illumination angle (μs)
divided by the cosine of the solar zenith angle of a flat surface (μ0).
For this parameter we used the slope and aspect products derived
from coincident airborne lidar. The directional precision of the
measurements (up or down) was ensured via bubble level attached
to the aluminum rod.

Next, we used αiλ to estimate our ground truth optical grain
size. To do this, we minimized the root mean squared difference
(RMSD) between AART-derived plane albedo (Kokhanovsky et al.,
2021) between 1,100–1,300 nm, allowing optical grain size to vary
in a sequential least squares programming numerical optimization
method (Kraft, 1988). The AART radiative transfer model was
selected due to its simplicity and bi-directional reflectance
distribution function (BRDF) product. Therefore, we were able

to use the same model for both the inversion of snow properties
from spectroscopy, as well as from lidar (discussed in Section 2.4),
limiting any discrepancies in model assumptions. The range of
1,100–1,300 nm observed from spectroscopy was selected for
our inversion window because it captures the strong variation in
reflectance that is largely a function of optical grain size and also
contains a relatively smaller amount of diffuse light from passive
radiation.We also solved for each conditionwith μs +/− 0.01 to get at
an estimate ofmeasurement uncertainty using this retrievalmethod.

2.4 Estimating optical grain size from lidar
data

To retrieve optical grain size from the returned laser pulse,
we first needed to estimate the surface reflectance. Riegl (Horn,
Austria) software supplied a reflectance product which was a
function of the amplitude, range, and a white reference (Riegl,
2017), returned in raw dB (ρraw). However, more processing is
needed to account for factors that influence the attenuation of the
lidar pulse (Wu et al., 2021). We estimated a calibrated reflectance
(ρ) that accounts for local incidence angle, radiometric bias, and
atmospheric transmittance using following Equation 2:

ρ = 10
ρraw
10

μ
C
τ2

(2)

where ρraw is the relative reflectance output from Riegl in dB, τ
is the atmospheric transmittance, μ is the cosine of the incidence
angle of the lidar pulse and the surface normal, and C is the
radiometric correction factor. Computation of each parameter and
their required independent variables are described in the following
subsections. Figure 2 shows a conceptual model refereced with
subsection.

2.4.1 Estimating the cosine of the local incidence
angle (μ)

To estimate μ we first estimated Range (R) by computing
√X2 +Y2 +Z2, where X, Y, and Z are the vectors from surface
position to helicopter position. Onboard INSS IMU data were
collected every 0.005 s with accuracy on the order of several cm.
Based on our flight information (ground speed) and the speed
of light for the lidar pulse, this temporal mismatch is estimated
to contributed <0.1% errors in estimated μ which we consider a
negligible influence for our analysis. To match helicopter position
data with lidar pulses occurring at a higher frequency than the IMU,
we used the closest matching internal GPS time using a rolling
average function (“data.table”; Dowle et al., 2019). Surface normals
were computed based on the resulting snow-on DSM at 0.5 m from
all the flightlines merged (Beyer et al., 2018; Hoppinen et al., 2023;
PDAL Contributors, 2022).Weused bilinear interpolation to further
smooth out the snow-on DSM to 3 m spatial resolution for our
analysis in this paper. Surface normal vector < ni, nj, nk > were then
computed using the following Equations 3–5:

ni = sin (aspect) sin (slope) (3)

nj = cos (aspect) sin (slope) (4)
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FIGURE 2
Overview of airborne lidar data collection and processing to output calibrated reflectance and optical grain size. Numbers shown in bold correspond to
respective sub-section in the methods of this manuscript. Note we used all flightlines for a given date to create DSM and resulting surface normal.

nk = cos (slope) (5)

where ni, nj, and nk correspond to the x,y, and z components,
respectively. For each flightline, we extracted the gridded surface
normal at 3 m resolution, as well as snow depth and canopy height
using the lidR package (“lidR”; Roussel et al., 2020; Roussel and
Auty, 2023; Roussel and De Boissieu, 2023). Snow depth data were
obtained by differencing the coincident lidar data with the reference
snow-free DEM (Adebisi et al., 2022). Snow depth data were used to
filter out non-snow points where snow depth was less than 0.08 cm
(Stillinger et al., 2023) and canopy heightwas greater than 0 m.Then,
we computed μ using Equation 6.

μ =
X · ni +Y · nj +Z · nk

R · √ni2 + nj2 + nk2
(6)

Following previous research, we removed lidar returnswhere μ<
0.5 (i.e., incidence angles greater than 60°) due to the overcorrection
effect of μ in (3) at higher incidence angles (Ackroyd et al., 2024; Yan
and Shaker, 2017). To test where overcorrection effect occurred for
airborne lidar collection over snowwe randomly selected a flightline
from each of the three dates. We computed the corrected reflectance
and saved the corresponding μ to tables. We grouped by μ to the
nearest thousandth place, and then used the mean values of each
class to estimate the constrained, piece-wise linear function that best
fit the data (‘mcp’; Lindeløv 2020). We constrained the “good data
region” by strictly enforcing the slope to be zero (i.e., the region
where reflectance is no longer a function of μ). This breakpoint
analysis was carried out for each of the 3 flight dates and provided
a range of potential limits of μ. Note, that while this sensitivity

study was undertaken, we ultimately were more conservative in our
data products presented in this study by removing all data where
μ < 0.5 (Ackroyd et al., 2024).

2.4.2 Estimating the transmittance (τ)
τ is a function of extinction coefficient (a) and range (or path

length) (R) based on the Beer-Lambert Law (Swinehart, 1962),

τ = e−aR (7)

The extinction coefficient is dependent on the atmospheric
conditions during flight which is not known. However, we used the
AERONET station in Meridian, Idaho at altitude 0.808 km for daily
average water column vapor and aerosol optical depth (AOD) at
870 nm (Table 1). The Meridian AERONET site was roughly 10 km
away from the Eagle, Idaho, calibration site and roughly 75 km from
the study site. We assume that water column vapor and AOD at
870 nm were similar for the AERONET site, boresight location,
and study site for a given date. Assuming mid-latitude winter
atmosphere, we estimated τ for 12 altitudes ranging from 0–3 km
above sea level using libRadtran radiative transfer software, with
DISORT pseudo-spherical approximation and number of streams
equal to 16 (Mayer and Kylling, 2005). We then took the natural
log of both sides of (8) to create a linear relationship between τ
and changing altitude. The slope of this line is our approximation
of a, which, for example, on the 9 February 2023 flight gave us a
= 0.0064 km-1 (R2 = 0.99). This correlation is high because it is
a function of elevation, and we limit the elevation range strictly
to values of R we would expect to encounter during flight (e.g.,
0–3 km). τwas then calculated for each lidar return dependent on R
(Equation 7).
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TABLE 1 Atmospheric parameters from AERONET station “Meridian_DEQ” input into libRadtran for each of the flights. These values represent the
average reported value for each lidar flight date. Resulting a (extinction coefficient) is shown as well for each flight.

Flight Water column vapor [mm] Aerosol optical depth at 870 nm [unitless] a [km−1]

8 December 2022 6.27 0.052 0.0050

9 February 2023 5.93 0.095 0.0064

16 March 2023 4.79 0.073 0.0054

FIGURE 3
Average ASD spectra samples of asphalt (n = 46) shown in black with standard deviation bars collected in Herold (2004). The red line highlights the
linear relationship (R2 = 0.99) between wavelength and reflectance between 834 and 1,614 nm for asphalt. The wavelength at 1,064 nm is shown as a
dotted black line for reference. Data from this spectral library were not used in analysis and are shown only for reference.

2.4.3 Estimating radiometric calibration factor (C)
A target with a known reflectance at 1,064 nm can be used to

radiometrically correct lidar reflectance. However, this is not always
feasible and there are many practical limitations to this method.
Instead, we used a flat, asphalt target and assumed a strong linear
relation betweenBands 8 (centered∼834 nm) andBand 11 (centered
∼1,614 nm) of Sentinel-2A based on prior in situ field spectroscopy
measurements for a wide range of asphalt surfaces (Herold, 2004;
Herold et al., 2008; Herold et al., 2008; R2 = 0.99; Figure 3).

We used Sentinel-2A surface reflectance Bands 8 and 11 data
from the closest match for each flight (less than 1 day a part
for all flights). Using this interpolation method, we estimated
the Sentinel-2A reflectance at 1,064 nm. The resulting Sentinel-
2A reflectance was lower than the uncorrected lidar reflectance
(example in Figure 4, February flight). Therefore, our correction
factor (C) was found by dividing the median by interpolated
Sentinel-2A reflectance. Interestingly, we found C to vary slightly
between the three flights, with C = 0.76 on 8 December 2022, C =
0.70 on 9 February 2023, and C = 0.68 on 16 March 2023.

2.4.4 Estimating optical grain size from
reflectance

Finally, reflectance for each flightline was rasterized from point
cloud using the mean value per grid spacing of 0.5 m, and then
resampled to 3 m spatial resolution using bilinear interpolation.
We used a simplified version of the AART model (Kokhanovsky
and Zege, 2004) with assumptions of zero dust concentration, 0%

liquid water content, constant incidence angle due to normalizing
in the previous step (μ = μs = μv = 1), and scattering angle (φ)
as 180° (i.e., assuming direct backscattering direction) (Yang et al.,
2017) (Table 2). The latter of these assumptions may potentially
be a cause for error as AART is not well defined at 180°,
and newer developments in BRDF kernels may be of use in
future studies (Mei et al., 2022).

This allows us to solve Equation 8 to solve for r0 representing the
semi-infinite non-absorbing snow layer,

r0(μ,φ) =
1.247+ 1.186(2μ) + 5.157μ2 + (11.1(−0.087φ) + 1.1(−0.014φ))

4(2μ)
(8)

Given in our case that μ = 1 and φ = 180, r0 is constant and
is ≈1.108. The spherical albedo (rs) can be estimated for clean, dry
snow using the following Equation 9.

r(λ)s = exp
(−√( 4πkice(λ)

λ
)(ξd) )

(9)

where d is the optical grain size diameter and ξ is the grain shape
parameter. Based on our parameters in Table 2, ξ ≈11.38, which is
the same value used in Kokhanovsky et al. (2018). Note that using
other values for asymmetry parameter or absorption enhancement
parameter will yield different values for ξ. We also know that kice
is a constant at 1,064 nm and can be plugged in. The resulting
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FIGURE 4
Reflectance of Sentinel-2A over the asphalt intersection in Eagle, Idaho (n = 9 pixels) with respect to computed median reflectance for lidar before and
after applying the radiometric correction factor (n = 3,000) for 9 February 2023.

TABLE 2 Parameters used to build look-up table from AART model.

Parameter Value [units]

Scattering/phase angle 180°

Cosine of incidence angle 1.0

Asymmetry parameter 0.75

Absorption enhancement parameter 1.6

Liquid water content 0%

Dust concentration 0 μg g-1

Imaginary refractive index of ice at 1,064 nm via Warren and Brandt (2008)

reflectance, ρsnow, can be computed Equation 10.

ρsnow = r0[

[
exp(−√(

4πkice
λ
)(ξd))]

]

f

(10)

where f is the escape function defined in Kokhanovsky et al. (2021).
Because of the constants mentioned above, f is also constant, and
is ≈1.448. Therefore, we can rearrange Equations 9, 10 to yield the
optical grain size radius, (i.e., d/2),

radius =
{ln([ ρsnow

r0
]

1
f )}

2

2ξ( 4πkice
λ
)

(11)

We note that the resulting value in Equation 11 was multiplied
by 1E6 to convert to μm.This derivation neglects any diffuse energy;
however, given the active source lidar energy and low amount
of diffuse solar energy at this 1,064 nm wavelength, we treat this
effect as negligible. With these assumptions we were able to directly
compute optical grain size radius from ρsnow at 1,064 nm and is
demonstrated in Figure 5.

Important to note that both the asymmetry parameter and the
absorption enhancement parameter were held constant between
both the field estimates and the lidar estimates. We assumed
grain shapes as constants, however, grain shape at the surface
can vary spatially and temporally from snow redistribution and
metamorphism (Fierz and Baunach, 2000). The assumption in this
paper is that the grains are spheroid-like shapes, and homogeneous.
However, for dry snow conditions, the temperature gradient and
wind exposure play a large part in both variation of grain size
and shape. We use similar grain shapes in both our field and lidar
formulation, but different surface features (e.g., surface hoar), may
present additional uncertainties not presented in this work.

2.5 Assessing uncertainties in reflectance
and optical grain size

To assess temporal and spatial consistency of the calibrated
reflectance across the three dates, we compared four surfaces
that we assumed would have little change in the in-town site.
These included a well-watered grass lot in a neighborhood, roof
shingles on homes in a neighborhood, a concrete flat surface, and
grass in golf course fairway. We also compared reference spectra
at 1,064 nm (Meerdink et al., 2019) for these given surfaces.

We additionally computed the relative difference in reflectance
between pixels from independent flightlines for the same date, to
understand the precision in estimated reflectance. We performed
a similar technique for the study site in the Boise National Forest
and further compared these differences with respect to slope, to
better understand uncertainties and how they varied across the
landscape (Enderlin et al., 2022).

Finally, we computed the lidar-derived mean optical grain
size for 10 m buffers surrounding our 9 field sampling locations
to validate our method. Assuming each of the flightlines are
independent, this increased our sample size to 28. Validation of
grain size relies heavily on accuracy of the coincident snow-onDSM.
As noted in previous work, even a ± 1° error in surface slope can
greatly increase the error in retrieval of snow grain size from field
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FIGURE 5
Subset of rasterized lidar retrievals for one flightline on 9 February 2023 including incidence angle (A), transmittance (B) calibrated reflectance (C), and
optical grain size (D) at 3 m spatial resolution.

spectroscopy (Tanikawa et al., 2020). In our case this also applies to
the DSM-derived aspect. We do not know the absolute accuracy of
our lidar derived slope and aspect maps, and thus to showcase how
this may influence our retrieval, we have computed our uncertainty
from spectroscopy inversions using ±0.01 of μs.

2.6 Spatial and temporal relationships of
lidar derived reflectance and optical grain
size

To test how optical grain size varied spatially across the
landscape, and to ensure the data products represented what we
understand about interactions with terrain, we tested all pixels
over all three dates with the corresponding snow-on elevation and
Solar Radiation Index (SRI; Kane et al., 2008; Keating et al., 2007).
The SRI co-variate is a function of slope, aspect, and latitude,
and therefore provided information to test how optical grain size
varied with respect to the amount of sunlight received by slopes
for the day. Based on prior research, we assumed SRI closer
to zero (i.e., shaded slopes) would have higher reflectance and

smaller grains (Seidel et al., 2016). Then, we computed a distance
to closest tree raster using our derived canopy height model and the
Proximity Analysis tool in QGIS. Pixels were assumed to be canopy
if the canopy height was at least 3 m or taller. Finally, we constructed
simple linear regressions to determine the magnitude and direction
of Pearson correlation of each of these co-variates for each flight
based on a confidence interval of p = 0.05.

3 Results

3.1 Break point analysis of incidence angle

Using a break point analysis, we determined the optimal
incidence angle where the signal was degraded (Figure 6). We found
the best fit occurred with a break point of 42.0°, 68.5°, and 74.0°
for the December, February, and March flights, respectively. This
resulted in an average break point of 61.5° (μ = 0.48). Interestingly,
the break point increased across the season andmay be due in part to
increased anisotropy for smaller grains (Painter and Dozier, 2004).
To be conservative, and considering the added complexity of bright

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1487776
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wilder et al. 10.3389/feart.2025.1487776

FIGURE 6
Breakpoint analysis for standardized reflectance (mean centered around 0) on the y-axis, and incidence angle (degrees) on the x-axis for each of the
three flights, 8 December 2022 (A), 9 February 2023 (B), and 16 March 2023 (C). Grey lines and density distribution represent the derived uncertainty in
the analysis from the MCP R package (Regression with Multiple Change Points).

surfaces, we removed lidar returns where μ <0.5 (i.e., greater than
60°) in all our products (Ackroyd et al., 2024).

3.2 Assessing retrieved reflectance in town

While we focused primarily on obtaining accurate snow
reflectance measurements, we also used flightlines in-town in Eagle,
Idaho, to ensure calibrated reflectance accurately represented other
surfaces (Figure 7; Table 3). We followed a similar computational
procedure; however, we did not resample to 3 m spatial resolution,
and instead kept the DSM and reflectance data at 0.5 m resolution.
This approach was reasonable because in-town surfaces were
more variable at less than 3 m. When compared to reference
spectra (Meerdink et al., 2019) and overlapping surfaces, calibrated
reflectance values agreed across the season, especially for the
housing shingles which varied only slightly from 0.06 to 0.08. When

we compared two overlapping flightlines on 9 February 2023 at
the flat, asphalt intersection, we found a mean absolute error of
0.016 (n = 2,432), which we interpreted as our in-town reflectance
uncertainty over a flat surface. This uncertainty may help explain
the differences we saw across the season in Table 3. Additionally, we
observed high spatial variability in calibrated reflectance at 1,064 nm
for asphalt (Figure 7), ranging from 0.04 to 0.30 across our flightline.
This range represents different neighborhood developments with
varying distributions of reflectance.

3.3 Assessing retrieved reflectance and
optical grain size over Boise National Forest

Notable grain size patterns are demonstrated in Figure 5D.
Steep, sunny slopes are shown with a darker blue that represents
larger grain sizes. Also, on the north (top) side of the masked-out
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FIGURE 7
Estimated surface reflectance at 1,064 nm for Eagle, Idaho on 9 February 2023. Surfaces S1, S2, S3, and S4 represent grass, roof shingles, concrete, and
grass at golf course, respectively (refer to Table 3).

TABLE 3 Estimated surface reflectance at 1,064 nm for various surfaces in Eagle, Idaho with respect to reference reflectance from the literature.
Pavement is not included in this table because it was used for calibration.

Surface Mean ± SD
8 December 2022

Mean ± SD
9 February 2023

Mean ± SD
16 March 2023

References from
EcoSpeclib

S1 - Well-watered grass in a
neighborhood

N/aa 0.64 ± 0.05 0.60 ± 0.04 0.59

S2 - Shingles on homes (roofs
only)

0.06 ± 0.01 0.09 ± 0.01 0.06 ± 0.02 0.07

S3 - Concrete lot (excluding
roofs)

N/aa 0.36 ± 0.04 N/aa 0.34

S4 – Fairway grass at golf
course

N/aa 0.69 ± 0.08 0.69 ± 0.06 N/aa

aTarget was not within lidar bounds for specific date or data was not available.

pixels from trees, grain sizes are variable, indicating sheltering of
shortwave radiation from the canopy.

We found a median absolute difference in reflectance of
0.028 when comparing overlapping pixels over all slopes. There
was some variability between bins with 0°-10° slopes having
a difference of 0.025, 10°–20° slopes having a difference of
0.027, 20°–30° slopes having a difference of 0.029, 30°–40° slopes
having a difference of 0.033, and slopes 40° or greater having a
difference of 0.028 (Figure 8). In general, uncertainty in reflectance
proportionally increased with slope.

When comparing field measurements to each of the flightlines
directly, we found a RMSD = 49 μm, r = 0.57, and mean bias =
+35 μm (n = 28, Figure 9). The percent mean absolute difference
was computed to be 31%. For the February data, the median grain

size from the ASD Fieldspec4 was 77 ± 36 μm, and median grain
size from lidar at those same points was 115 ± 38 μm. For the one
December data (ID-9), grain size from the ASD Fieldspec4 was
computed to be 73 μm, and median grain size from lidar at the same
point was 65 μm.

3.4 Spatial and temporal relationships of
lidar derived reflectance and optical grain
size

For the entire study domain reflectance values were generally
higher earlier in the season, and lower later in the season,
where median reflectance for 8 December 2022 was 0.84 ± 0.06,
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FIGURE 8
Boxplots of absolute difference in reflectance for overlapping pixels, where each boxplot is binned by slope bins.

FIGURE 9
Map shown (A) with respect to our different samples from February flight (ID-1 through ID-8) and December flight (ID-9) (B). Uncertainties for lidar
retrievals are shown by modeling ± 0.028 in reflectance (found in our study). Uncertainties for spectroscopy retrievals are shown by modeling ± 0.01 in
cosine of the local solar illumination angle.

9 February 2023 was 0.80 ± 0.07, and 16 March 2023 was
0.71 ± 0.06 (Figure 10). The largest change in reflectance occurred
between the February and March flights. The optical grain size
followed a similar temporal pattern (i.e., increasing grain growth
as reflectance decreased), with the December flight having median
optical grain size of 69 ± 65 μm, the February flight having amedian
optical grain size of 97 ± 81 μm, and the March flight having an
optical grain size of 179 ± 90 μm.

To understand the spatial relationship of different covariates
(SRI, elevation, and distance to canopy) on optical grain size, we
created simple linear regression models from all pixels. Most of
the data were explained by SRI, where sunnier slopes had larger
grains, and shadier slopes had smaller grains (Figure 11). However,

this was not the case for the December flight at the beginning
of the winter season where correlation was near zero (r = 0.02).
Optical grain size from this flight seemed to be governed by the
first winter storm where not enough time has passed for SRI to
be a controlling factor. The effects from elevation are relatively
smaller and similar across all flight dates, ranging from r = −0.22
to −0.31. This relationship shows a slight trend of larger grains at
lower elevations within our study domain. Interestingly the distance
to canopy metric had low explainability; however, for all three of the
dates there was substantially more variability in optical grain size for
pixels that were less than 30 m from canopy. Likewise, it appeared
that the variation in retrieved grain size decreased with distance
from tree cover.
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FIGURE 10
Histograms for all three flights showing the resulting snow reflectance (top) and optical grain size (bottom).

FIGURE 11
Linear regressions for testing the Pearson r coefficient for covariates SRI, elevation, and distance to canopy impacts on optical grain size for each of the
three dates. Regressions were built using all data over study domain. Color scale shows log normalized point density, with lighter points having higher
density and darker colors having lower density. All regressions were significant with p-values less than 0.01.
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FIGURE 12
Demonstrating retrieval of snow reflectance at 1,064 nm at 0.5 m pixel resolution for a small portion of our study domain using one flightline. The trees
are represented in green from our derived canopy height model. Red lines correspond to 30 m pixels typical for spaceborne passive sensors.

4 Discussion

4.1 Comparison of errors with other
remote sensing methods and implications
for future snow studies

In this studywe introduced aworkflow that used helicopter-borne
lidar over the Boise National Forest to extract optical grain size with a
RMSD of 49 μm.This accuracy is similar to Ackroyd et al. (2024) who
useda similar approachand foundameanabsolute errorof 32 μm.The
workflowpresentedhere is similar toresults fromsatellite spectroscopy
(RMSE = 64 μm; Painter et al., 2009) and UAS spectroscopy (RMSE
= 12 μm; Skiles et al., 2023) for clean, dry snow. However, as noted
by Bohn et al. (2021), snow grain size retrieval for passive sensors
dramaticallydecreases for solar zenithangles exceeding45°.Therefore,
it is plausible that accuracy of lidar in certain snow conditions may
be beneficial for data fusion and/or calibration with retrieval methods
from passive sensors. For example, it may be beneficial in a machine
learning framework to combine optical grain size information from
multiple sensors (Palomaki et al., 2024). Another example could be
computing the surface normal from the raw radiance data of passive
imaging spectroscopy datasets presents a novel development in snow
retrieval in rugged terrain (Carmon et al., 2023; Wilder et al., 2024).
Retrievals from lidar where the surface normal is accurately estimated
may present a crucial validation source for these types of model
developments,especially inthewaywehavecataloguedtheuncertainty
with respect to terrain in this paper. Our method could also be used
to improve modeling of grain size around canopies, which is one
of the largest sources of uncertainty for passive sensors and is a
major concern for global climate models. Using our method, and
assumptionsofdry, cleansnow,wecanretrieve snowopticalproperties
in canopy gaps (Figure 12).With increasing changes in seasonal snow
accumulation, it is important to understand the dynamics of optical
grain size in greater detail so that snow property inversion may have
higher certainty in challenging illumination conditions.

4.2 Limitations of this study and
recommendations for developing this
method further

While these results are encouraging, there are several
opportunities to address in future studies. First and foremost,
the presence of liquid water is a strict limitation on this method,
preventing reliable results during the melt period. Mixed snow and
liquid water manifests into the ice absorption feature widening
and shifting towards shorter wavelengths (Green et al., 2006).
Unfortunately, with a single wavelength (e.g., 1,064 nm), there is
not enough information to resolve both liquid water content and
optical grain size. However, this could be a potential opportunity for
multi wavelength lidar (Niu et al., 2023).

Additionally, a large stable target of known reflectance (such as
a large tarp) measured via field or airborne spectroscopy would be
ideal (Ackroyd et al., 2024). We found a data fusion approach with
coincident Sentinel-2A surface reflectance ( ±24 h) over a relatively
stable target worked well and could be useful if large asphalt targets
exist in the scene. However, the spatial variability and the relatively
lower reflectance of asphalt may have manifested itself into a small
bias in our results (Figure 9), suggesting that using a multi-surface
calibration may work better. We proved this further by comparing
the calibration factor by using our in situ data, yielding a calibration
factor of 0.75 for both theDecember and February fights.This differs
greatly from the Sentinel-2 calibration factor of 0.70 we found for
February. This explains much of the positive bias we observed in
Figure 9. Our work also assumed a linear response across a range
of reflectance values; however, as shown in previous work this
assumption may not hold when assessing low reflectance targets
(roads) and high reflectance targets (snow) due to non-linearity in
detector electronics (Calders et al., 2017).

Another alternative may be to use knowledge of the
sensor’s emitted laser energy flux and the received radiance at
sensor, which may be utilized to by-pass this radiometric bias
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correction (Yang et al., 2017). Unfortunately, emitted laser energy
flux and radiance-at-sensor are not currently saved by Riegl
instruments. If these data products were made available in the
future, it would significantly progress the efficacy and accuracy
in mapping snow properties from airborne lidar, specifically in
eliminating radiometric bias and error–a key concern for solving
optical properties from a single wavelength.

Small levels of uncertainty may also arise from our assumption
that a remained constant throughout each flight date. Water vapor
is a major contributor to absorption at 1,064 nm (Yan et al.,
2012) and any temporal variations would not be accounted for
in the flights which could last a few hours. However, given
the distance and elevation change between Eagle, Idaho, and
Boise National Forest, it is possible that spatial and temporal
differences in water column vapor and aerosol optical depth
could introduce relatively small uncertainty in our reflectance
estimation. Alternative approaches could be considered, such as
using AERONET parameters for the radiometric calibration in
Eagle, Idaho (due to the proximity), supplemented with coarser
remote sensing data such as from the Geostationary Operational
Environmental Satellite (GOES) (Fu et al., 2023).

The impact of incidence angle has been shown to be an essential
parameter for estimating snow properties from lidar in mountain
environments (Ackroyd et al., 2024), and while we took tremendous
care in estimating incidence angles, there is room for improvement
in our method. For example, we computed a DSM based on all
flightlines for a given date; however, if some areas had lower
point counts, this would dramatically reduce the reliability of the
resulting slope and aspect grids. If this were a static surface, one
could utilize the repeat flights to build a higher quality DSM,
however, the snow surface is constantly changing at this site and
is actively disturbed by snow machines and ski tracks. We also did
not include points with incidence angles greater than 60° in the final
processing step to reflectance. Past work has shown that correcting
for incidence angle by dividing by μ can lead to overcorrections
for large incidence angles (Yan and Shaker, 2014), and that another
approach could be using a polynomial approximation to correct for
incidence angle (Yan et al., 2017). Lidar collections with significant
overlap between footprints and varying scan angles can enable more
of these types of investigations.

4.3 Scalability of optical grain size
retrievals for spaceborne applications

As demonstrated in the Yang et al. (2017) proof of concept
study, optical grain size was retrieved over polar regions using
the ICESAT GLAS instrument (1,064 nm). It is important to point
out that while this worked for ICESAT, this methodology does
not apply for ICESAT-2 (550 nm) which will inherently have less
variability in reflectance due to changes in grain size. Presently, the
Global Ecosystem Dynamics Investigation (GEDI) laser altimetry
satellitemission collects at 1,064 nm although no grain size products
have been published using this data source to date. The planned,
Earth Dynamics Geodetic Explorer (EDGE), will also collect at this
wavelength, as well as covering much of the cryosphere from 83°
N to 83° S. This sensor may be well-suited for this application, as
the assumption of low dust cover and low liquid water content may

be met in high latitude regions. Future researchers may want to
examine the efficacy of producing grain size retrievals from GEDI
and other missions.

5 Conclusion

Wepresent amethod for estimating optical snow grain size from
airborne lidar at 1,064 nm and assessed its accuracy over a winter
in the Boise National Forest. We found reliable retrievals when
compared to in situ measurements after conducting radiometric
calibration with Sentinel-2A surface reflectance. When analyzing
each flightline, we found that reflectance becomes unreliable as
incidence angle increased. We ultimately used a 60° threshold
for incidence angle in this study; however, another recent paper
recommends a 40° threshold (Ackroyd et al., 2024). More work
is needed to fully understand the limitations due to anisotropy of
small grains and current BRDF models. Across the landscape we
found optical grain size was primarily controlled by slope and aspect
(which we documented here as SRI), with larger grains occurring on
sunnier slopes. We also catalogued the uncertainty in airborne lidar
derived snow reflectance with respect to slope. Our methodology
and findings may help others progress the methods and science
of accurately retrieving optical snow properties, especially in
challenging illumination conditions.
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Appendix 1

ASD FieldSpec4 Data

We have included our location, terrain, and grain size estimates
from field spectroscopy in Table A1.

TABLE A1 Location, terrain, and grain size estimates for each ground measurement.

ID Latitude [deg] Longitude
[deg]

μs Slope [deg] Aspect [deg] SZA [deg] SAA [deg] Grain size
estimate from

ASD
FieldSpec4

[μm]

id-1 43.934033 -115.66697 0.64 15 118 59.2 168.6 83

id-2 43.9343088 -115.66726 0.59 16 105 59.0 170.3 77

id-3 43.9346111 -115.66784 0.60 12 115 58.8 172.0 186

id-4 43.9352711 -115.66825 0.68 14 143 58.7 173.7 47

id-5 43.9354418 -115.66866 0.64 23 113 58.6 175.1 125

id-6 43.9333532 -115.6677 0.79 21 189 58.5 178.5 74

id-7 43.9329604 -115.66759 0.61 8 138 58.5 180.2 47

id-8 43.9324536 -115.66782 0.54 16 103 58.5 182.7 97

id-9 43.9329604 -115.66759 0.49 8 138 67.7 167.3 73
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