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For lithologic oil reservoirs, lithology identification plays a significant guiding
role in exploration targeting, reservoir evaluation, well network adjustment and
optimization, and the establishment of reservoir models. Lithology is usually
predicted fromwell log data based on limited core observations. In recent years,
machine learning algorithms have been applied to lithology identification to
enhance prediction accuracy. In this paper, five algorithms, including Bayes
discriminant analysis, Random Forest (RF), Support Vector Machine (SVM), Back
Propagation Neural Network (BPNN), and Convolutional Neural Network (CNN)
are evaluated for lithology identification using data from the Niuxintuo reservoir.
This reservoir is characterized by complex structural and sedimentary features,
strong heterogeneity, and intricate lithological properties, all of which present
considerable challenges for well logging identification. First, we conducted
a detailed observation of the core lithology. Based on the requirements for
reservoir evaluation and the principles of logging identification, we reclassify the
lithology of the study area into two categories: clastic rocks and dolomite. The
clastic rocks are further subdivided into five rock types: fine sandstone, medium-
coarse sandstone, conglomerate, mudstone, and transitional rock. The well
log series were selected through sensitivity analysis. Then, Bayes discriminant
analysis and fourmachine learningmethodswere trained to identify the lithology
of the study area. The results indicate that except for Bayes discriminant analysis,
all the constructed machine learning classifiers demonstrate high prediction
accuracy, with the accuracy rate exceeding 85%. Among them, SVM classifier
shows the best performance achieving a prediction accuracy as high as 93%.
Additionally, the well-trained SVM model was successfully used to predict the
lithology profile of blind wells. Our findings provide valuable guidance for
predicting the remaining oil distribution and further exploration potential in the
Niuxintuo oilfield. Furthermore, this study gains insight into the process and
methodology of rapidly predicting lithology of hydrocarbon reservoirs using
easily accessible well logging data.
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1 Introduction

Lithology identification is a crucial issue in reservoir
characterization, as it helps correlate critical reservoir properties
such as porosity, permeability and oil saturation, and plays
a vital role in constructing field-scale reservoir models. Well
log data have advantages such as high vertical resolution, good
continuity, and convenient data acquisition. Therefore, they are
an important resource for obtaining underground lithological
information. Lithology classification based on well log data forms
the foundation for reservoir characterization and provides a basis
for geological studies such as sedimentary facies and environmental
analysis. In addition to its significance in formation evaluation and
geological analysis, lithology interpretation plays an important role
in predicting sweet spot reservoirs and forecasting remaining oil
distribution. The traditional methods for interpreting lithology
mainly include cross-plot technique (e.g., Sanyal et al., 1980),
curve feature method (Anifowose et al., 2019), imaging logging
chart method (Cohn et al., 1996), multiple linear regression
method (Delfiner et al., 1987), and discriminant analysis method
(Dong et al., 2016; Dong et al., 2022). However, each of the method
have some limitations (Sun et al., 2019). For example, a lack of
clarity in the relationships between the data points may result in
the cross-plot technique failed. Moreover, and it cannot display
higher dimensional spatial information, and usually only two
parameters can be considered at the same time (McDowell et al.,
1998). Multiple linear regression method is very sensitive to highly
correlated independent variables, and the relationship between
variables is often nonlinear, which may lead to a decrease in the
explanatory power of themodel (Delfiner et al., 1987). Discriminant
analysis methods require a large number of high-quality datasets,
and are limited by some assumed premises (Dong et al., 2016).
Overall, these methods generally require a large number of samples,
which are very time-consuming. Recognizing lithology boundaries
from well log data is inherently a nonlinear problem, primarily
because log curves are influenced by rock properties like pore fluids.
Therefore, it is essential to develop a suitable nonlinear approach
that can effectively address these challenges.

The rapid advancement of computer technology has enabled
machine learning methods to offer more time and cost-effective
solutions with higher lithology identification accuracy, compared
to traditional lithology identification methods (e.g., Ashraf et al.,
2021; Bressan et al., 2020). Nowadays, numerous machine learning
methods have emerged and been successfully applied to lithology
identification (e.g., Wang et al., 2014; Bhattacharya et al., 2016;
Biau and Scornet, 2016; Saporetti et al., 2018; Wang et al.,
2020; Zhang et al., 2023). Machine learning can be categorized
into three types: unsupervised learning, semi-supervised learning,
and supervised learning. Unsupervised learning techniques, such
as expectation maximisation (Miyahara et al., 2020), K-mean
clustering (Huang et al., 2016), hierarchical clustering (Vichi et al.,
2022), anddeep autocoders (Kampffmeyer et al., 2018), are used only
by arranging the lithology according to its intrinsic characteristics
to provide an overall perspective. They are helpful when the
dataset is limited (there are no available labels). In contrast,
semi-supervised learning techniques (SSL), such as forward and
unlabeled machine learning (Helm et al., 2023), active semi-
supervised algorithms (Xu et al., 2021a; Shan et al., 2021), and

Laplace SupportVectorMachines (Yang andXu, 2018), are beneficial
when there is a limited amount of labelled data accessible. On
the contrary, supervised learning techniques, which are suitable
for learning a pattern in a known labelled species and inferring
new instances in accordance with this pattern, can provide precise
training data and therefore give very accurate results (Jordan and
Mitchell, 2015). Several well-known supervised shallow learning
algorithms are used for petrographic classification of core-tagging-
based logs. This category includes backpropagation neural networks
(Amari, 1993; Dong et al., 2023), support vector machine (SVM)
(Wang et al., 2014), K-nearest neighbours (Wang et al., 2023;
Li et al., 2024), and decision trees (DT) (Zhou et al., 2020). In
addition, uniform integration techniques such as Random Forest
(RF) (Yan et al., 2024), Extreme Gradient Boosting (Chen and
Guestrin, 2016; Zheng et al., 2022), and Logistic BoostingRegression
(Huang et al., 2019) belong to the same category, and such
supervised algorithms use geological rules to make petrographic
estimationmore credible. In addition, several popular deep learning
(DL) algorithms (Goodfellow et al., 2016; Miclea et al., 2020), such
as convolutional neural networks (Xu et al., 2021b), recurrent neural
networks (Tian et al., 2021) and long- and short-term memory
networks (Lin et al., 2020), and TabNet (Madani et al., 2018; Li et al.,
2022), possess very excellent properties such as weight sharing,
local connectivity, and translational isotropy to effectively handle
high-dimensional data.

The Niuxintuo reservoir is a typical lithological reservoir.
Previous studies have shown that sedimentary environments
significantly influence the lithology distribution. Moreover, the
lithology controls petrophysical properties, and petrophysical
properties control oil saturation (Zhou, 2022; Li, 2022). In this
article, we applied multiple methods for lithology identification in
the study area and select the most appropriate method for lithology
prediction. Firstly, based on the detailed observation and description
of rock cores, the lithology of theNiuxintuo area in is divided into six
categories: fine sandstone, medium coarse sandstone, conglomerate,
mudstone, transitional rock, and dolomite. Subsequently, the
logging sequence is standardized and normalized to eliminate
systematic errors, thereby improving the accuracy in describing,
interpreting, and predicting reservoirs. Building on this, extensive
cross plots are employed to evaluate the sensitivity of logging
sequences. By integrating lithology sensitivity, data reliability, and
curve complementarity, six key parameters—acoustic transmit time
(AC), compensated neutron (CNL), density (DEN), gamma ray
(GR), resistivity (RT), and conductivity (CON_CAL)—are selected
as predictive curves for lithology identification. The initial step in
multi-method lithology identification involves classifying lithology
using Bayes discriminant analysis. However, with a prediction
accuracy of only 58.20%, this approach falls short of meeting
the requirements for reliable lithology prediction. Then, the focus
shifted to exploring lithology identification using advancedmachine
learning algorithms, including RF, SVM, BPNN, and CNN. The
developed machine learning classifiers demonstrate high prediction
accuracy, with SVM achieving the best performance, boasting a
prediction accuracy of up to 93%.Thefindings offer crucial guidance
for forecasting remaining oil distribution and evaluating further
exploration potential in the Niuxintuo oilfield. Moreover, this study
provides valuable insights into the methodology and process of
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FIGURE 1
Lithology identification flowchart of this study. (A) Data preparation. (B) Construction of multiple lithology recognition classifiers. (C) Discussion on
Classification Resultsand Blind Well test.

rapidly predicting hydrocarbon reservoir lithology using a large
amount of logging data.

2 Methodology

This section provides a detailed overview of lithology
identification methods, including core lithology observation and
statistics, well logging data preprocessing, Bayes discriminant
analysis, and four machine learning methods for lithology
identification. The overall workflow is show in Figure 1.

2.1 Core lithology observation and
statistics

The lithology types of Niuxintuo Oilfield are complex. Based on
the detailed observation of core samples alongwith thin section data,
the lithology types in the study area are summarized. Overall, the
lithology of Niuxintuo reservoir can be divided into two categories:
one is the alluvial fan type clastic rock composed of fine sandstone,
siltstone, medium sandstone, coarse sandstone, and gravel rock;
The other type is laminated dolomite and muddy dolomite with
transitional fan edge lake facies (Figures 2, 3).

Furthermore, through the observation of cast thin sections and
analysis of mineral composition, genetic processes, compositional
content, and sedimentary structures, the lithology has been further
subdivided into 19 fundamental rock types (Table 1).

Cross plot is the most commonly used method for
displaying the relationships between variables and is widely
used in reservoir research (Ehsan and Gu, 2020). It can
display different logging data on the same plane and evaluate
the relationships between these data through the position
and shape of the intersection points. Accurate lithology
identification and characterization require first understanding
the physical property differences among various rock types,

followed by selecting suitable logging parameters for quantitative
differentiation.

Using the preprocessed logging sequences and core lithology
labels, a cross-plot analysis was conducted to identify lithology-
sensitive logging curves (Figure 4). Considering lithology sensitivity,
data quality reliability, and curve complementarity, AC, CNL,
DEN, GR, RT, and CON_CAL were selected as lithology-
sensitive curves for subsequent research on logging-based lithology
identification.

Figures 4A, B illustrates that the AC-CNL and AC-DEN
cross-plots exhibit strong lithological differentiation, whereas the
RT-GR and DEN-CON_CAL cross-plots yield moderate results
(Figures 4C, D). In contrast, the CNL-DEN and GR-AC cross-
plots demonstrate the least effectiveness (Figures 4E, F). Figure 5
indicates that dolomite has a higher GR value and slightly
larger neutron response, making it easy to distinguish. The
characteristics of mudstone are high GR value, low RT value,
high AC value, and low density, with high discrimination. The
GR value of fine siltstone shows a medium to low value, with
a slightly higher neutron response. The GR value of sandy
conglomerate shows a medium to low value, while the CNL
value is small.

2.2 Standardization of logging data

Logging sequence data preprocessing provides near-wellbore
stratigraphic information, which can be used to identify changes in
stratigraphic interfaces, lithology, and sedimentary environments.
However, in practical work, due to measurement errors, noise
and outliers, depth migration or missing data, directly using
raw logging data for lithology inversion may lead to data
mismatch, lack of spatial constraints, low signal-to-noise ratio,
and parameter mismatch, which will inevitably affect the accuracy
of inversion results (Zheng et al., 2022). Therefore, preprocessing
logging curves can improve data quality and availability, eliminate
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FIGURE 2
Typical core photographs for different lithologies of Niuxintuo reservoir. (A) Tuo22,1693.72 m, fine sandstone; (B) Tuo 32–34, 1713.56 m, medium
sandstone; (C) Tuoguan 2, 1790.08 m, coarse sandstone; (D) Tuo 22, 1707.66 m, gravel rock; (E) Tuo 31–39, 1860.71 m, argillaceous limestone; (F) Tuo
25–33, 2,328.86 m, silty mudstone; (G) Tuo 32–34, 1745.69 m, argillaceous dolomite; (H) Tuo 12, 2,103.66 dolomite; (I) Tuo 32–34, 1748.77 m,
dolomitic mudstone.

the influence of non-geological factors, and truly reflect stratigraphic
characteristics.

The Niuxintuo Oilfield in Liaohe has a long history of
development. Over the course of extensive exploration and
production activities, systematic errors have emerged in the logging
data due to ongoing updates and changes in logging instruments.
If the original logging sequence data is directly used for reservoir
description, it will affect the accuracy and reliability of the results.
Therefore, standardizing logging data can help eliminate systematic
errors and enhance the ability to describe, interpret, and predict
reservoirs (Zheng et al., 2022).

The key to standardizing logging data is the selection of
standard layers, usually selecting mudstones or coal seams with a
certain thickness that are stably developed throughout the area.
There is a total of seven sets of oil bearing formations in the
Niuxintuo oil reservoir. Using GES (Geological Evaluation System)
software, the AC, CNL, DEN, GR, RT, and CON_CAL logging
curves were standardized in batches.

2.3 Bayes discriminant analysis

Discriminant analysis is a statistical learning method used to
establish one or more discriminant functions and assign sample
points to different categories (Cui et al., 2023). The goal is to identify
features or variables that can distinguish different categories to the
greatest extent by analyzing training samples of known categories,
and use these features or variables to construct discriminant
functions to classify unknown samples.

2.4 Random forest

RF uses Bagging to construct multiple training datasets through
self-sampling, and then constructs a base classifier for each sample
set, which can improve the overall performance and robustness
of the model (Breiman, 2001). Evaluate the contribution of each
feature to the model’s predictive performance during classification
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FIGURE 3
Casting thin section of different lithologies. (A) Tuo 31–39, 1,690.28 m, fine sandstone; (B) Tuo 25–33, 2,396.43 m, gravelly fine sandstone; (C) Tuo
31–39, 1785.74 m, medium sandstone; (D) Tuo 14, 1,557.87 m, coarse sandstone; (E) Tuo 25–33, 2,324.63 m, conglomerate; (F) Tuo 25–33, 2,321.46 m,
silty mudstone; (G) Tuo 31–39, 1719.58 m, fine sand mixed with mudstone; (H) Tuo 12, 1,663.19 m, dolomite; (I) Tuo 32–34, 1745.6 m, muddy dolomite.

TABLE 1 Lithology types of the niuxintuo oil reservoir.

Basic rock types from cores Classification of logging lithology

Clastic rock

Unequal-grained sandstone, conglomerate Conglomerate

Coarse sandstone, pebbly coarse sandstone
Medium-coarse sandstone

Medium sandstone, pebbly medium sandstone

Fine sandstone, pebbly fine sandstone, and dolomitic fine sandstone Fine sandstone

Mudstone Mudstone

Transitional rocks
Mudstone with gravel, silty mudstone, and dolomitic mudstone

Transitional rocks
Siltstone, pebbly siltstone, argillaceous siltstone

Carbonate
Dolomite

Dolomite
Argillaceous dolomite
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FIGURE 4
Well logging cross plots of different lithologies. (A) AC-CNL cross plot; (B) AC-DEN cross plot; (C) DEN-CON_CAL cross plot; (D) DEN-CNL cross plot;
(E) GR-RT cross plot; (F) AC-GR cross plot.

by calculating the information gain rate of variables. This approach
quantifies the importance of each feature parameter, allowing for
the selection of variables with higher information gain rates. By
focusing on these key variables, the modeling process becomes
more streamlined, the influence of redundant features is minimized,
and both the model’s performance and its generalization capability
are enhanced.

2.5 Support vector machine

SVM is a binary classification model. The basic principle is
to construct a hyperplane with maximum spacing in a specific
space to achieve correct partitioning of samples of different
categories (Wang et al., 2014). For a given training dataset,
multiple hyperplanes may satisfy the separation conditions.
However, the objective of SVM is to identify the unique hyperplane
that maximizes the margin, ensuring the greatest possible
separation between classes. Lithology recognition belongs to multi
classification problems. For multi classification problems, SVM
can adopt one to many (One vs. Rest) or one to one (One vs.

One) classification strategies (Wang et al., 2014). In the one-to-
many method, each category is combined with other categories to
construct multiple binary classification models for classification.
In the one-on-one method, a binary classification model is
constructed for each pair of categories, and the final result is
determined as the categorywith the highest number of votes through
voting or other strategies. Whether it is a binary classification
problem or a multi classification problem, SVM can solve it and
exhibits good performance in handling high-dimensional data and
nonlinear problems.

2.6 Back propagation neural network

BPNN is a multi-layer feedforward neural network trained
according to the error backpropagation algorithm (Rumelhart et al.,
1986). The learning rule involves using the steepest descent method
to iteratively adjust the network’s weights and thresholds through
backpropagation, aiming to minimize the network’s total squared
error (Dong et al., 2023; Wang and Wang, 2021). The neural
network consists of three parts: input layer, hidden layer, and
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FIGURE 5
Logging response characteristics of different lithologies.

FIGURE 6
Basic architecture of a BP neural network.

output layer. The main process of BP neural networks is divided
into two stages, namely, signal forward propagation and error back
propagation. Signal forward propagation refers to the process of
transmitting information from the input layer through the hidden
layer to the output layer. In contrast, error backpropagation involves

transmitting the error from the output layer to the input layer,
sequentially adjusting the weights and biases of the hidden-to-
output and input-to-hidden layers (Dong et al., 2023; Peng et al.,
2024). The main factors affecting the performance of BP
neural networks include the number of hidden layer nodes, the
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TABLE 2 Bayesian discriminant analysis equation coefficients for different lithologies.

Logging curve Fine sandstone Medium coarse
sandstone

Conglomerate Mudstone Transitional rocks Dolomite

AC 1.048 1.050 1.065 1.126 1.078 1.065

CNL 2.038 2.129 2.055 2.224 2.051 2.027

DEN 304.246 308.284 311.549 304.854 310.230 307.489

GR 0.154 0.179 0.141 0.198 0.174 0.206

RT 0.126 0.138 0.127 0.128 0.121 0.123

CON_CAL 0.053 0.056 0.053 0.057 0.052 0.051

(constant) −560.977 −576.291 −584.414 −596.900 −586.249 −576.476

TABLE 3 Lithology classification result matrix.

Lithology 1 2 3 4 5 6 Total

1 95.0 28.0 54.0 43.0 152.0 0.0 372.0

2 88 200 29 0 73 18 408

3 197 6 313 7 292 0 815

4 12 12 8 546 61 16 655

5 22 0 38 4 294 0 358

6 15 2 30 0 58 314 419

Note: 1-fine sandstone; 2-Medium coarse sandstone; 3-Sandstone; 4-mudstone;
5-Transitional rocks; 6-Dolomite.

TABLE 4 Lithology distribution of core samples in the study area.

Lithology Number of samples

Fine sandstone 372

Medium coarse sandstone 408

Conglomerate 815

Mudstone 655

Transitional rocks 358

Dolomite 419

Total 3,027

selection of activation functions, and the parameter setting of
learning rates.

Based on the preprocessing of logging data, we analyze the
factors influencing lithology and select the preferred logging
response parameters—AC, CNL, DEN, GR, RT, and CON_CAL—as

input features for the model. This means the input layer consists of
six neurons. The initial number of neurons in the hidden layer is
set to 1–2 times the number of input neurons. The optimal number
of hidden layer neurons is then determined automatically during
the learning process through network structure optimization. The
output layer consists of six types of lithology, that is, the number
of output layer nodes is six. Basic architecture of a BPNN model
is shown in Figure 6.

2.7 Convolutional neural networks

CNN are an important type of artificial neural network, but they
are independent of traditional neural networks such as multi-layer
perceptual neural networks, RBF neural networks, and fuzzy logic
neural networks (Zhong et al., 2019). CNN consists of five layers:
data input layer, convolutional computing layer, ReLU excitation
layer, pooling layer, and fully connected layer. CNN combines three
steps to achieve pattern recognition, including local acceptance
domain, weight sharing, and under sampling. The local receptive
field refers to the set of units within each layer of the neural
network that are connected to the previous layer. Each neuron
in this small neighborhood extracts fundamental visual features,
such as line segments, endpoints, and angles, from the input
data. Weight sharing refers to CNN sharing the weights of some
neurons; Therefore, fewer parameters are optimized during the
training process. Under sampling can reduce the feature resolution
of displacement, amplification, and other forms of distortion
invariance (Le and Borji, 2017; Zhong et al., 2019).

3 Results and discussion

3.1 Lithological classification based on
bayes discriminant analysis

Binary classification problems are typically addressed using the
Fisher criterion, while the Bayes criterion is commonly employed
for multi-class classification problems. To tackle the lithology
identification of clastic rocks using well logging data, this study
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FIGURE 7
Correlation matrix of different lithology and logging parameters.

TABLE 5 Optimum parameter values for each model.

Classifier Optimal hyperparameter

RF cv folds = 5; criterion = “gini”; max depth = 29; min leaf size = 1; min parent = 13; num trees = 70

SVM cv folds = 5; kernel = ‘RBF’; C = 32; gamma = 32

BPNN hidden layer size range = 16; epochs range = 1,000; goal range = 1e-2
learning rate range = 0.01

CNN training options = “adam”'; max epochs = 200; initial learn rate = 1e-3
L2regularization = 1e-04; learn rate drop factor = 0.5; learn rate drop period = 150

develops a discriminant function based on the Bayes criterion.
Substitute the logging curve data values for each lithology sample
into the following six Bayes discriminant functions to calculate the
corresponding function values. Comparing the values of these six
functions, which functionhas the highest value can determinewhich
category the sample is classified into.The coefficients of the Bayesian
discriminant function are shown below (Table 2).

According to the Bayes discriminant coefficient table, the Bayes
discriminant function can be listed as follows (Equations 1–6):

Finesandstone = −560.977+ 1.048×AC+ 2.038×CNL+ 304.246

×DEN+ 0.154×GR+ 0.126×RT+ 0.053

×CON_CAL
(1)
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FIGURE 8
Machine learning algorithms partially hyperparameter optimization. (A) RF decision tree optimization; (B) SVM hyperparameter optimization; (C) BPNN
mean square error; (D) CNN Training Progress.

FIGURE 9
Prediction results of each machine learning classifier. (A) RF training set test results; (B) RF testing set test results; (C) SVM training set test results; (D)
SVM testing set test results; (E) BPNN training set test results; (F) BPNN testing set test results; (G) CNN training set test results; (H) CNN testing set
test results.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2025.1491334
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Fan et al. 10.3389/feart.2025.1491334

FIGURE 10
Comparison of prediction accuracy of four machine learning models.

FIGURE 11
Confusion matrix of each machine learning classifier. (A) RF training set confusion matrix; (B) RF testing set confusion matrix; (C) SVM training set
confusion matrix; (D) SVM testing set confusion matrix; (E) BPNN training set confusion matrix; (F) BPNN testing set confusion matrix; (G) CNN training
set confusion matrix; (H) CNN testing set confusion matrix.

Mediumcoarsesandstone = −576.291+ 1.050×AC+ 2.129×CNL

+308.284×DEN+ 0.179×GR

+0.138×RT+ 0.056×CON_CAL
(2)

Conglomerate = −584.414+ 1.065×AC+ 2.055×CNL+ 311.549

×DEN+ 0.141×GR+ 0.127×RT

+0.053×CON_CAL
(3)

Mudstone = −596.900+ 1.126×AC+ 2.224×CNL+ 304.854

×DEN+ 0.198×GR+ 0.128×RT+ 0.057

×CON_CAL

(4)

Transitional rocks = −586.249+ 1.078×AC+ 2.051×CNL

+310.230×DEN+ 0.174×GR+ 0.121×RT

+0.052×CON_CAL
(5)
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FIGURE 12
Analysis of the importance of logging parameters in RF classifier.

Dolomite = −576.476+ 1.065×AC+ 2.027×CNL+ 307.489

×DEN+ 0.206×GR+ 0.123×RT+ 0.05

×CON_CAL

(6)

As shown in Table 3, the discriminant coincidence rate was
determined by comparing the classification results obtained by
substituting the observed lithology values into the discriminant
function with the original classifications. The lithology codes
are indicated in Table 3 footnote. In this case, the accuracy
is 58.2%, indicating that the discriminant analysis method
demonstrates limited accuracy in identifying lithology within this
study area. The limitations of Bayesian discriminant analysis in
lithology identification primarily arise from the following factors.
First, the algorithm’s underlying assumptions pose significant
challenges: it presumes that the data conforms to a specific
probability distribution, typically a normal distribution for
different categories. However, real-world lithological data often
deviates from this assumption, leading to inaccurate classification
outcomes. Additionally, the method assumes that all features are
independent, a condition rarely met in practice. In lithological
datasets, features frequently exhibit interdependencies, and ignoring
these correlations can diminish the model’s accuracy. Furthermore,
Bayesian discriminant analysis struggles with handling the
inherent complexity of lithological data, limiting its effectiveness
in more intricate classification tasks. When addressing complex
lithological types, Bayesian discriminant analysis often fails to
capture underlying nonlinear relationships, resulting in suboptimal
performance under intricate geological conditions.

3.2 Machine learning methods for lithology
recognition

3.2.1 Data preparation
This study used 3,027 sets of logging and core data from 8

core wells in the study area, with 70% of the data for training and

30% for testing. These two datasets each have different functions.
The training set is used to create machine learning models and
model hyperparameter optimization, while the testing set is used to
evaluate the performance of trained machine learning model. The
lithological labels of 1–6 correspond to six main lithologies: fine
sandstone, medium to coarse sandstone, conglomerate, mudstone,
transitional rocks, and dolomite (Table 4).

The following six conventional logging parameters—AC,
CNL, DEN, GR, RT, and CON_CAL—are selected as sample
attribute values. These parameters form a 7-dimensional vector,
comprising six dimensions of parameter values and one dimension
for the corresponding lithology label. In machine learning,
feature normalization is often essential to eliminate dimensional
differences, minimize feature biases, and mitigate the impact of
outliers. Normalizing data not only accelerates the training model’s
convergence but also facilitates reaching the optimal solution more
efficiently. The normalization of logging curves maps the values of
the curves to (0,1) through linear transformation. The definition is
defined as Equation 7:

x∗ =
x− xmin

xmax − xmin
(7)

Among them, xmax and xmin represents the maximum and
minimum values in the set of curve values, respectively. Through
this processing method, the normalized logging data values will fall
within the [0,1] interval, making it easier to compare and analyze.

Exploratory data analysis is performed by creating correlation
matrix diagrams to visualize the relationships between different
lithologies and logging parameters. Figure 7 presents the correlation
matrix diagram illustrating the relationships between various
lithologies and logging parameters. The horizontal and vertical axes
correspond to six logging parameters, while the diagonal showcases
the distribution histograms of different lithologies associated with
the parameters on the horizontal axis. Different colors represent
various lithologies, and the significant overlap among most logging
parameters indicates a lack of clear boundaries, making model
classification challenging.

3.2.2 Model parameter optimization
To obtain the optimal machine learning model, grid search

and 5-fold cross validation methods were used to optimize the
hyperparameters of RF, SVM, BPNN, and CNN models (Table 5).
The optimization process for the key parameters is illustrated
in Figure 8, while unmentioned parameters are set to default
values to enhance the model’s accuracy. 5-fold cross-validation
provides a reliable estimate of model performance, helps identify
optimal parameter settings, and mitigates the risks of overfitting or
underfitting. It is widely used for evaluating models and selecting
the best parameters, making it suitable for a variety of datasets. The
main step of 5-fold cross-validation involves randomly splitting the
dataset into five equal parts. Each time, one part is used as the test set,
while the remaining four parts serve as the training set. This process
is repeated for each part. The optimal parameter combination is
then selected based on the highest cross-validation score from the
candidate set. After parameter tuning, we optimized the classifier
parameters to achieve the best combination (Table 5).

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2025.1491334
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Fan et al. 10.3389/feart.2025.1491334

FIGURE 13
Comparison of lithology identification results of different models. (A) Average prediction accuracy of different models; (B) Average F1-score for
different models.

TABLE 6 F1-Score for different lithologies using different models.

Lithology RF SVM BPNN CNN

Fine sandstone 0.77 0.94 0.87 0.82

Medium coarse sandstone 0.86 0.96 0.82 0.92

Conglomerate 0.88 0.92 0.84 0.89

Mudstone 0.97 0.96 0.95 0.96

Transitional rocks 0.87 0.78 0.64 0.86

Dolomite 0.96 0.96 0.91 0.98

3.3 Comparison of four machine learning
lithology methods

3.3.1 Evaluation criterion
The performance of the classification models is evaluated

using indicators such as accuracy, precision, recall, and F1-score
(Zheng et al., 2022) (Equations 8–11). Accuracy represents the
proportion of correct predictions (both positive and negative)
out of all predictions. Precision measures the proportion of true
positives among the samples predicted as positive. Recall refers
to the proportion of correct positive samples among the total
actual positives. F1 score is the harmonic average of recall rate
and precision rate, which considers the accuracy of the model in
predicting positive samples (recall rate) and its recognition ability for
positive samples (recall rate). These standard calculation formulas
are as follows:

Accuracy = TP+TN
TP+TN+ FP+ FN

(8)

Precision = TP
TP+ FP

(9)

Recall = TP
TP+ FN

(10)

F1− score = 2 ⋅ Precision×Recall
Precision+Recall

(11)

TP refers to the cases where both the prediction and the actual
value are positive. FP refers to the cases where the prediction is
positive but the actual value is negative. FN refers to the cases
where the prediction is negative but the actual value is positive. TN
refers to the cases where both the prediction and the actual value
are negative.

3.3.2 Analysis of single point prediction results
After building each machine learning model, the performance

of the models is validated and tested. The results are then compared
across the four classifiers to evaluate their relative effectiveness
(Figure 9). Figure 10 shows the comparison of prediction accuracy
results among different models. Among them, SVM has the best
classification performance, with a prediction accuracy of 93.87%
in the training set and 92.72% in the test set. CNN took second
place, with a prediction accuracy of 91.50% for the training set
and 90.98% for the test set. The prediction accuracy of the RF
training set is 90.33%, and the prediction accuracy of the test
set is 89.65%. BPNN has the lowest accuracy, with a prediction
accuracy of 86.08% for the training set and 85.01% for the test
set. From the above, each machine learning classifier constructed
has a high prediction accuracy, with an accuracy rate above 85%.
SVM has the best classification performance, with a prediction
accuracy rate of up to 93%. The confusion matrices (Figure 11)
reveal the misclassification patterns of lithology classes for each
model, emphasizing which classes are mistakenly predicted as
others. In addition, RF can be used to explain the importance of
different parameters in various classification and regression models
for model prediction results. The importance ranking of logging
parameters for lithology identification based on RF is: GR, AC, RT,
CON_ CAL, CNL, DEN (Figure 12).

The comparison of average precision (Figure 13A) and average
F1-score results (Figure 13B) for differentmodels. It can be observed
that the BPNN model has the lowest average precision (84.7%)
and F1-score (0.84). The RF model ranks second, with an average
precision of 91.2% and an F1-score of 0.89. The CNN model
achieves a relatively high average accuracy of 92.1%, with an F1-
score of 0.91. The SVM model delivers the highest performance,
with an average precision of 92.7% and an F1-score of 0.92. In
summary, SVM has the best lithology recognition performance,

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1491334
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Fan et al. 10.3389/feart.2025.1491334

FIGURE 14
Comparison of core lithology and predicted lithology using well trained SVM classifier. (A) Tuo 31–39 well; (B) Tuo 35–33 well.

followed by CNN, with both F1-score higher than 0.9, superior to
RF and BPNN.

As shown in Table 6, each model demonstrates varying
recognition capabilities for different lithology types. SVM showed
the highest average F1-score, reaching 0.92. Among them, except for
transitional rocks, the F1-score of all other lithologies exceeds 0.92,
and the transitional rocks are mainly divided into fine sandstone
and medium to coarse sandstone. This could be attributed to the
fact that the siltstone class is a non-reservoir in the study area,
and the logging response characteristics of fine sandstone and
siltstone are quite similar. When classifying lithology, they are
classified as transitional rocks, resulting in the lowest prediction
accuracy of other models in transitional rocks. The F1-score
of CNN and RF is second to SVM, with a high F1-score of
0.96 for both mudstone and dolomite, and the classification of
lithology types is relatively similar. The main classification is
that fine sandstone and medium to coarse sandstone are divided
into conglomerate and transitional rocks are divided into sandy
conglomerate and fine sandstone. BPNN also has a high F1-
score of 0.91 for both mudstone and dolomite, and the lowest
F1-score of 0.64 for transitional rocks. In summary, the SVM
classifier demonstrates the best overall performance in lithology
identification and is therefore used for lithology prediction in the
study area.

3.3.3 Lithology prediction in the uncored well
We further validated the effectiveness of the SVM classifier

in lithology identification using two blind wells (Figure 14). The
results show a high consistency between the lithology predicted
by the well-trained SVM model and the lithology observed in the
cores, indicating that the well-trained SVM model provides reliable
lithology predictions for uncored wells.

4 Conclusion

The main conclusions drawn in this article are as follows:

1. The cross-plot method is not effective in distinguishing
lithology, but can help identify sensitive logging curves. The
selected sensitive logging curves are: gamma ray (GR), acoustic
transmit time (AC), resistivity (RT), conductivity (CON_
CAL), compensated neutron (CNL), and density (DEN).

2. Except for Bayes discriminant analysis, all the constructed
machine learning classifiers [i.e., Random Forest (RF),
Support vector machine (SVM), Back propagation neural
network (BPNN), and Convolutional neural networks (CNN)]
demonstrate high prediction accuracy, with the accuracy rate
exceeding 85%. Among them, SVM classification shows the
best performance achieving a prediction accuracy as high as
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93%. Blind well tests have confirmed the reliability of the well
trained SVM model.

3. RF can be used to explain the importance of different
parameters in various classification and regression models for
model prediction results. The importance ranking of logging
parameters for lithology identification in this study is: GR, AC,
RT, CON_ CAL, CNL, DEN.
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