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In recent years, various acidizing tests have been conducted to obtain
information about the industrial gas flows from acidizing tests in vertical wells
JS1 and YH1 in eastern Sichuan Province, China. The results indicated that the
Mao-1 Member of the Maokou Formation in southeastern Sichuan consists of
good source rocks and a reservoir with high gas content. In this study, through
investigations of outcrop sections, core drilling observations, thin-section
identification, SEM, XRD, and TOC measurements, combined with nitrogen
adsorption and logging analysis, we systematically studied the characteristics
of tight argillaceous limestone reservoirs in the Mao-1 Member of southeastern
Sichuan and summarized the main controlling factors for their formation. In
the study area, the reservoir lithologies of the Mao-1 Member were composed
of micrite limestone, bioclastic micrite limestone, and argillaceous limestone.
Argillaceous limestone exhibited the highest content of clay minerals and
TOC, while bioclastic micrite limestone showed relatively lower values. Six
types of reservoir spaces were identified: intergranular pores, solution pores,
organic pores, bioclastic-related fractures, clay mineral interlayer fractures, and
macroscopic fractures. Argillaceous limestone also exhibited relatively high
porosity in the Mao-1a subsegment. The reservoir pores are mainly divided into
micro-pores andmedium-pores, with diameters of less than 4 nm. The reservoir
is primarily distributed vertically in the Mao-1a sub-member and the upper part
of the Mao-1c sub-member. The formation of the tight carbonate reservoir
is primarily influenced by diagenetic processes, including rock type, mineral
composition, pore type, organic matter content, clay mineral transformation,
dissolution, and cementation. Our analysis demonstrated that argillaceous
limestone with high TOC content and good porosity is the best reservoir rock
type in the study area.

KEYWORDS

reservoir space types, pore characteristics, unconventional reservoirs, south region of
eastern Sichuan, Mao-1 member of Maokou formation
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1 Introduction

Nodular limestone is also known as limestone-marl alternation
(Miiller and Fabrieius, 1977; Moller and Vingan, 1988). Nodular
limestones have been widely recorded in shallow marine basin
sediments of the Phanerozoic era (e.g., Davaud and Lombard, 1975;
Courtinat, 1993; Holmden et al., 1998; Samtleben et al., 2000;
Westphal and Munnecke, 2003; Chacrone et al., 2004; Rey et al.,
2004). Previous studies have primarily focused on investigating
their origin (Wendler et al., 2016; Westphal and Munnecke, 1997;
Reinhardt et al., 2000; Westphal et al., 2000; Westphal et al., 2008).
In recent years, with the further exploration of unconventional
reservoirs (Fan et al., 2020a; Li et al., 2024), it has been proposed
that the argillaceous limestone in nodular limestone can serve
not only as a source rock for hydrocarbons but also has storage
capacity. Considering the numerous fractures discovered in the
argillaceous limestone, these fractures can serve both as channels
for hydrocarbon migration and as storage spaces for oil and
natural gas (Li et al., 2025a).

Natural gas exploration of the Permian Maokou Formation
in the Sichuan Basin, China, using conventional methods began
in the 1950s and continues to this day. The beach facies and
weathered crust paleo-karst reservoirs in members 2–3 of the
Maokou Formation form a target stratum containing a group of
medium-sized gas fields (Chen, 2007; Jiang et al., 2012; Cao et al.,
2022; Hao et al., 2020). Among these, the “eyeball-eyelid” structure
(“nodular limestone”) in the Mao-1 Member is composed of
marine carbonate source rocks that have been systematically studied
(Huang et al., 2016; Liang et al., 2008; Hu et al., 2021; Huang and
Lü, 2011). Recent studies have confirmed that the natural gas in
the Mao-1 Member is primarily sourced from its own source rock
(Li et al., 2021; Bao et al., 2024; Zhai et al., 2024). These findings
suggest the existence of a new type of unconventional exploration
field. The carbonate source rock gas reservoir (source-reservoir
integration) in the Mao-1 Member holds great potential for natural
gas exploration (Hu et al., 2018; Ma et al., 2010). In the past 2 years,
significant gas volumes have been detected during tests in wells JS1,
YH1, TT1, JH1, and DS1HF in the Mao-1 Member in Eastern and
Southern Sichuan. Specifically, industrial gas flows of 20 × 104 m3,
12.5 × 104 m3, and 22.6 × 104 m3 have been obtained from wells
TT1, JH1, and DS1HF, respectively (Li et al., 2021; Lei et al., 2020;
Li et al., 2012). This outcome proves that the Mao-1 Member of
the Maokou Formation in eastern Sichuan contains a substantial
amount of high-quality source rock and is also a productive
gas-bearing reservoir. According to the literature, the Mao-1
Member is composed of nodular limestone strata with an “eyeball-
eyelid” structure and is associated with a gentle slope sedimentary
environment (Hao et al., 2020; Liu et al., 2019). Its primary reservoir
spaces consist of shrinkage pores and talc fractures formed by
the transformation of sepiolite into talc (Li et al., 2021). Some
studies suggest that the formation of nodular limestone results
from the sequential enhancement of sedimentation and diagenesis
(Yuan et al., 2020). It has also been reported that the Milankovitch

Abbreviations: Mao-1 member, The Mao-1 member of the Maokou
Formation; TOC, Total organic carbon content; SEM, Scanning electron
microscopy; XRD, X-ray diffraction of total rock.

cycle caused the original sedimentary variations in the eyeball-eyelid
limestone layers. In contrast, variations in terrigenous input, organic
matter content, and paleoproductivity are considered crucial to its
formation (Lei, 2021). It has also been confirmed that the Mao-
1 Member exhibits self-generation and self-storage characteristics.
Moreover, a unique carbonate reservoir exists between a shale
reservoir and a fractured reservoir (Hao et al., 2020). Although
considered a carbonate source rock, its pore characteristics differ
from those of a shale reservoir (Hu et al., 2019). Previous studies
have focused on the origin of talc in reservoir spaces (Li et al., 2021).
However, the reservoir characteristics and principal controlling
factors have been inadequately studied, limiting the exploration
and development of the Mao-1 Member. To address this issue,
this study focuses on the marly limestone of the Mao-1 Member
in the Maokou Formation of the eastern Sichuan Basin. This
study combines outcrop investigation, core drilling, thin-section
identification, SEM, XRD, TOC analysis, liquid nitrogen adsorption,
and logging analysis to thoroughly investigate and characterize
the features of tight carbonate reservoirs. Additionally, the key
controlling factors of reservoir development are analyzed in detail.

2 Geological background

The Yunnan movement at the end of the Carboniferous period
caused the uplift of the Sichuan Basin’s basement as a whole,
which was subjected to levelling and filling (Taylor and Hayes,
2013). During the deposition of the Liangshan Formation, a large-
scale transgression occurred, and the sedimentary environment was
changed from terrestrial to marine. As a result, a set of clastic coastal
deposits was formed in the Liangshan Formation (Yang et al., 2021;
Su et al., 2020; Yang et al., 2023). During the deposition of the
Qixia Formation, the sedimentary environment was transformed
into a carbonate platform (Xie et al., 2022). During the sedimentary
period of the Maokou Formation, based on the platform facies
of the Qixia Formation sedimentary environment, a sedimentary
process of rapid transgression and slow regression took place.
The overall sedimentary environment exhibits a gentle carbonate
slope, carbonate slope, and carbonate basin (Hao et al., 2020;
Zeng et al., 2023). From southwest to northeast, the sedimentary
environment of the Sichuan Basin possesses shallow, gentle slope
facies, medium gentle slope facies, deep gentle slope facies, and
shallow shelf facies (Figure 1a), which are characterised as being
high in the southwest and low in the northeast.

The study area of this work is located in the southeastern
part of Sichuan Province. The whole Mao-1 member has a
deep, gentle slope sedimentary environment. The lithology is
mainly composed of dark-grey, a grey-black, thin-thick layer of
organic-containing argillaceous limestone (due to obvious external
structural characteristics, referred to as an “eyelid”) and a grey-to-
dark-grey medium-thick–thick layer of bioclastic micrite limestone
(“eyeball”). The existence of this type of limestone constitutes a
typical eyeball-like structure in the vertical direction (Figure 2a;
Fan et al., 2023). According to the rock structure and the logging
curve characteristics, the Mao-1 member can be divided into three
sub-members, namely, a, b and c from the top to the bottom,
as shown in Figure 1b. The rock type of the Mao-1a member is
mainly composed of dark-grey micrite limestone, whereas grey
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FIGURE 1
(a) Plane graph of the Mao-1 member, Maokou Formation, Sichuan Basin (Zhao, 2021). (b) Comprehensive well log of Well XT1.

nodular limestone can be detected at the bottom.The characteristics
of the interface curve of Mao-1a and Mao-1b are obvious, while the
gamma and resistivity curves exhibit significant increasing trends.
The lithology type of Mao-1b sub-member is mainly composed of
dark-grey micrite limestone. Mao-1b, Mao-1a, and Mao-1c exhibit
obvious differences in their electrical measurement curves, with the
resistivity ofMao-1b being significantly higher than those ofMao-1a
and Mao-1c. The rock type of Mao-1c is mainly composed of dark-
grey nodular limestone. When the Mao-1c sub-member transits to
theQixia Formation, the logging curve is characterised by a decrease
in the gamma value and an increase in the resistivity.

The Mao-2 and Mao-3 members of the Maokou Formation
can be described as regressive system tracts. The lithology of the
Mao-2 member is mainly composed of interbedded, bright, crystal
bioclastic limestone, micritic bioclastic limestone, and bioclastic
micritic limestone with a low shale content. The whole of the Mao-3
member is grey, thickmassive limestone. A thick granular limestone
is interbedded in the middle and upper parts with thin micrite
limestone. In the lower part, grey bioclastic micrite limestone,
and argillaceous limestone have been developed (Hu et al., 2019;
Su et al., 2020; Tian et al., 2021).

3 Samples and experimental methods

The samples for this work were primarily collected from Well
XT1 in the eastern Sichuan Basin. Samples of different rock types
were obtained and sequentially subjected to observations with thin
sections. Various measurements were conducted including SEM
imaging, whole-rock XRD and TOC analyses, as well as nitrogen
adsorption tests.

A total of 82 sampleswereprepared into thin sections for adetailed
observation of their lithological characteristics. SEM observations
were conducted using a FEI Quanta 250 FEG field emission scanning
electronmicroscope. Twenty-five regular samples of 2 cm×2 cmwere
prepared, and their surfaces were initially polished with sandpaper.
Subsequently, some samples were further polished using an argon ion
polishing machine and coated with a gold layer. After the treatment,
SEM observations were carried out under a scanning voltage of 10 kV
and a working distance of approximately 9 mm.

A total of 82 samples were analysed carrying out whole-rockXRD
and TOC content experiments. The XRD whole-rock analysis can
semi-quantitatively analyse the mineral composition of rocks. In this
work, the X’pert PRO X-ray diffractometer produced by the Dutch
PANalytical company was used to test the sample powder that was
ground to 200 mesh. The sample powder was initially dried to a
constant weight at 110°C. Then, it was evenly spread on a microscope
slide after cooling, and subsequently subjected to XRD analysis. The
determination of THE TOC content was performed using a Leco CS-
400 carbon and sulfur analyser.The test sampleswere first treatedwith
acid (a concentration of 50% hydrochloric acid) to remove inorganic
carbon contaminants from the samples; then, the measurement was
carried out at temperatures exceeding 800°C. During this process, the
organic carbon in the samples was oxidized under high-temperature
and oxygen-rich conditions, and the generated carbon dioxide was
quantitativelydetectedby theanalyser. Finally, the total organic carbon
content in the samples was calculated using the external standard
method (He et al., 2025; Li et al., 2025b).

Four samples were subjected to liquid nitrogen adsorption
experiments to study the pore structure. A Micromeritics ASAP2460
surface area analyser was used to conduct the liquid nitrogen
adsorption experiments. Oil-containing samples were required prior
to thede-oiling treatment; the representative samplesweregroundand
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FIGURE 2
Rock images of the first member of the Maokou Formation in southeastern Sichuan. (a) Well XT1, 4373.57m, micritic limestone. (b) Well XT1, 4360 m,
micrite limestone, calcite grain near embedded contact, see the self-shaped crystal calcite grain. (c) Well XT1, 469.54m, micritic limestone, flaky
magnesium silicate mineral distribution. (d) Well XT1, 4449–4450m, nodular limestone, dark gray part is eyelid, light colour part is eyeball. (e) Well XT1,
4365.22m, micritic limestone, bioclastic. (f) Well XT1, 4420.08 m, bioclastic argillaceous limestone, argillaceous mineral lamellar distribution,
directionality, in which calcareous and siliceous particles are dispersed. (g) Well XT1, 4450.06m, siliceous thin shell-like bioclasts. (h) Well XT1,
4450.06 m. Pyrite grains. (i) Well XT1, 4435.75 m, micrite limestone, see biological debris. (j) Well XT1, 4431.55 m, eyelid limestone, bioclastic
development, mostly filled with calcite.

sieved, and 2 g of particles with sizes ranging from 20 to 40 meshwere
selected anddegassedunder vacuumat 100°C for 10 h.Oil-containing
samples were automatically de-oiled for an extended period using a
Soxhlet extractor with dichloromethane until the extractant was clear.
The samples were crushed using a jaw crusher and ball mill, and a
vibrating sievemachinewas used to select particles with sizes between
20 and 40 mesh, taking more than 10 g. The sieved particle samples
were then loaded into sample tubes, placed in thedegassingpositionof
the analyser, and degassed at 105°C for 10 h. After degassing, themass
of the samples was measured using a balance with a precision of one
ten-thousandth.Thethermostatbathwasfilledwithacoolingmedium
(liquid nitrogen for N2) to the required level; the test control software
was activated to perform the test and analyse the results (using multi-
point BET, BJH, and DFT methods to calculate the specific surface
area and pore size distribution).

4 Results

4.1 Petrological characteristics of reservoir

The existence of micrite limestone is not common in the Mao-
1 member and is mainly distributed in the middle and upper

sections of the Mao-1b member. Its colour is grey and dark-
grey on the whole, with calcite contents of 80%–90% (Figure 2a)
and very low dolomite contents. In addition, a small amount of
authigenic pyrite can be detected on the surface of these rocks.
Under SEM imaging, near-embedded contacts of calcite grains, self-
shaped calcite grains, and a distribution of flaky magnesium silicate
minerals can be seen (Figures 2b, c).

The presence of bioclastic micrite limestone (Figure 2d) is
common in the Mao-1 member of the Maokou Formation. It is
mainly distributed at the bottom of Mao-1a and in Mao-1c, and is
often interbedded with bioclastic argillaceous limestone. The rock
colour is grey and brown-grey. The content of bioclasts is 20%–30%,
the biological particles are poorly sorted and rounded, gastropods
are well preserved, while ostracods and bivalves are half-shaped
to broken (Figures 2e, i).

The existence of argillaceous limestone (Figure 2d) is common
and is mainly developed in Mao-1a. Most of it is interbedded with
dark-grey bioclastic micritic limestone. Biological debris is also
common. In addition to bivalves, there are often small amounts
of gastropods and ostracods mixed with deep and shallow-water
organisms. The bivalves are filled with argillaceous and micritic
calcite (Figures 2g, j).The SEM analysis showed that the argillaceous
minerals are layered and directional, whereas calcareous and
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siliceous particles are dispersed and distributed. The presence of
bioclasts can be also seen. The outer layer of bioclasts is a siliceous
shell and pyrite grains (Figures 2f–h).

4.2 Types of reservoir spaces

According to the observations of thin sections and SEM
images of different rock types in the Mao-1 member combined
with existing data, it can be inferred that the reservoir spaces
of the Mao-1 member are mainly formed by intergranular pores,
dissolution pores, organic matter pores, fractures associated with
bioclasts, and clay mineral interlayer fractures. Among them,
clay mineral interlayer fractures and organic matter pores play a
leading role (Liu et al., 2024).

The intergranular pores are mostly developed between the
mineral grains and are primary pores. In the study area, the
intercrystalline pores of Mao-1 members are mainly distributed
between the calcite grains (Figures 3a–d). The intercrystalline pores
between the clay minerals are mostly flaky, their pore widths
range from tens to hundreds of nanometres, and the extension
lengths are 1–15 μm. However, the connectivity of both is poor.
This kind of pore is considered an important type of reservoir
space in the carbonate reservoir of the Maokou Formation in
southeastern Sichuan.

The dissolution pores in the study area are mostly developed
in calcite crystals due to calcite dissolution in the deposit. Calcite
is strongly corroded, often residual and harbour-like, forming
irregular dissolution pores. The dissolution pores are developed in
groups. The pore size distribution of the dissolution pores is wide,
ranging from tens of nanometres to tens of microns (Figures 3e–h).

After the pyrolysis of organic matter, the residual organic matter
is mostly filled and broken in the intergranular pores of minerals,
inducing the formation of organic hydrocarbon generation pores.
Organic matter pores are mostly developed in bioclastic micrite and
bioclastic argillaceous limestones with high organic matter content.
Organic matter pores are relatively isolated and honeycomb-
like with pore sizes ranging generally from tens to hundreds of
nanometres and the connectivity is poor (Figures 3i, j).

Bioclasts arewell developed in theMao-1member.The existence
of Intercrustal and pericrustal fractures at the edges of bioclast
fossil shells are considered common types of pores and fractures
in carbonate rocks. The original fabric of individual large shells
is mostly preserved, and the fractures are caused by an extrusion
process when the shell is closely arrangedwith the shell or shell edge.
In these regions, fractures are formed between the shell and the clay
minerals (Figure 3k). It is interesting to notice that a number of the
unstable shells retain someof the original fabric, while the remaining
shells develop calcite grains, showing fractures in the shell.This shell
part has a certain stress inheritance (Figure 3l).

When the buried depth of the formation is increasing, the
ground temperature and the gradual alkalinisation of formation
water are also increased. As a result, the clay minerals become
dehydrated and a precipitation of a large amount of interlayer
water is induced. Then, micro-fractures are formed between the
layers. Considering the SEM observations of the samples from
the southeastern Sichuan area, the existence of many interlayer
pores and fractures developed between the layered and flaky

talc aggregates in the samples can be seen, which are linear or
triangular. The widths of the fractures are generally 0.5–8 μm, and
the connectivity is good (Figures 3m, n).

Fractures are also developed in the core samples from
the Mao-1 member. Nonetheless, most of them are half-filled
with calcite (Figures 3o, p).

4.3 Reservoir distribution characteristics

The Mao-1 members in southeastern Sichuan exhibit stable and
continuous formation characteristics. The reservoir is characterized
by high Gamma Ray (GR) values and low resistivity values.
Vertically, the Mao-1 member reservoir is mainly developed at
the bottom of the Mao-1a sub-member and the top of the Mao-
1c sub-member, the Mao-1b sub-member reservoir is hardly
developed at all (Figure 4). The reservoir lithology is mostly
argillaceous limestone, followed by bioclastic micrite limestone.
Horizontally, the reservoir is mainly produced in the deep, gentle
slope, argillaceous limestone microfacies and the deep, gentle slope,
bioclastic micrite microfacies.

4.4 Mineral composition characteristics of
reservoir

The XRD results (Table 1) show that the mineral composition
of the Mao-1 member of Maokou Formation in the study area is
mainly calcite. In contrast, dolomite, quartz, clay minerals, siderite,
pyrite, orthoclase, and plagioclase can be also seen.The clayminerals
mainly include talc and a talc-mixed layer. The calcite mineral
content is 12%–100%, with amean of 82.69%.The dolomite content,
the content of quartz, the content of talc, and the content of clay
minerals lie between 0% and 79.5%, 0% and 86.5%, 0% and 22.4%,
and 0%–19%, an average content of 6.81%,6.76%, 1.55%, and 1.34%,
respectively.The clayminerals aremainly composed of amixed layer
and talc. The content of plagioclase can be found between 0% and
4.1%, with an average content of 0.12%. The content of orthoclase,
siderite, and pyrite minerals is 0%–8.2%, 0%–6.5%, and 0%–4.6%
with an average content of 0.2%, 0.26%, and 0.28%, respectively. In
general, calcite and dolomite are the main minerals in the rock of
the Mao-1 member, whereas the content of brittle minerals is high.
The content of calcite in the micritic limestone is 60%–99%, the
content of quartz is 0%–20%, and the content of clay minerals is
very small at <3%.The calcite content in bioclastic micrite limestone
is 60%–95%, the content of quartz is 1%–23%, and clay minerals is
1%–10%. The calcite content in argillaceous limestone is 55%–85%,
the content of quartz is 0%–11%, and clay minerals is 10%–27%
(Figure 5). Vertically, the content of calcite of Mao-1a is 60%–90%,
the content of quartz is 0%–30%, and the content of clay minerals is
0%–20%. Additionally, the content of calcite ofMao-1b is 60%–90%,
the content of quartz is 0%–10%, and the content of clay minerals
is 3%–20%. The calcite content of Mao-1c is 60%–99%, quartz is
0%–30%, and clay minerals is 0%–20% (Figure 6).
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FIGURE 3
Rock images of the first member of the Maokou Formation in southeastern Sichuan (a) XT1 well, 4360 m, calcite intercrystalline pore. (b) XT1 well,
4375.31 m, calcite intercrystalline pore. (c) XT1 well, 4461.64m, calcite intercrystalline pore. (d) XT1 well, 4409.6 m. Intergranular pores and grain edge
fractures. (e) XT1 well, 4385.17 m, calcite intragranular dissolved pore. (f) XT1 well, 4454.74 m, calcite intracrystalline dissolution pores. (g) XT1 well,
4395.74 m, calcite intragranular dissolved pore. (h) XT1 well, 4431.5m, flaky talc aggregates developed interlayer fractures. (i) YH1 well, a small amount
of pores are developed in organic matter. (j) TY1 well, 2834.06m, organic pore. (k) XT1 well, 4429.90 m, bioclastic grain edge fracture, intragranular
fracture. (l) XT1 well, 4450.06m, intragranular fractures. (m) XT1 well, 4420 m, lamellar talc aggregate development interlayer fracture. (n) XT1 well,
4395.74m, clay interlamellar fracture. (o) XT1 well, 4410.34–4410.50 m, eyeball limestone (calcite half filling seam). (p) XT1 well, 4420.85m, eyelid
limestone, well-developed foliation.

FIGURE 4
Sedimentary reservoir correlation diagram of the JH1 well, TY1 well, XT1 well, YH1 well, JS1 well, 1-YH1 well, and JS1 well.
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4.5 Organic matter abundance and
evolutionary stages

The range of vitrinite reflectance (Ro) values for the organic
matter in theMao-1member, is between 1.57% and 1.60% (Table 2),
indicating that the organic matter is primarily in the high maturity
stage of thermal evolution. There is little difference in the degree of
thermal evolution among different rock types.

According to the TOC test results of 82 samples from the
Maokou Formation (Table 1), the extracted TOC values ranged
from 0.11% to 1.63%, with an average of 0.51% (Figure 7a).
The TOC content of argillaceous limestone was the highest,
ranging from 0.26% to 1.36%, with an average value of 0.64%
(Figure 7b). The samples from the Mao-1a section were the most
enriched in TOC, ranging from 0.09% to 1.66%, with an average
value of 0.61% (Figure 7c).

4.6 Reservoir physical property
characteristics

Theporosity distribution ranges forMicrite limestone, Bioclastic
micrite limestone, and Argillaceous limestone are from 0.17% to
3.62%, 0.31%–3.01%, and 0.35%–3.78%, respectively (Figure 8a).
The primary physical properties of argillaceous limestone are
significantly better than those of micrite and bioclastic micrite
limestones. Vertically, the porosity ranges for Mao-1a, Mao-1b, and
Mao-1c sub-member are from 0.19% to 3.78%, 0.38%–1.45%, and
0.17%–3.62%, respectively, with the Mao-1a sub-member reservoir
having the best physical properties (Figure 8b).

4.7 Pore structure of reservoir

The pore types and characteristics can be directly observed
with SEM imaging. However, local and individual carbonate rock
samples can be only observed, while the overall pore characteristics
of a sample cannot be quantitatively assessed (Loucks et al., 2009).
Therefore, in this work, four argillaceous limestone samples were
selected in the reservoir section for nitrogen adsorption experiments
to quantitatively observe the overall pore characteristics of the
samples (Table 3). The results showed that the N2 adsorption-
desorption curve of the sample is similar to the type-IV isothermal
curve proposed by IUPAC (International Union of Applied
Chemistry), and the whole system is transformed into a capillary
condensation systemof porous adsorbent (Figure 9).The adsorption
capacity rapidly increased under lower relative pressure, and the
curve became convex, indicating a strong interaction between the
adsorbate and the surface, with the overall deviation occurring
on the y-axis. No evident plateau was observed at the highest
point of relative pressure, and the adsorption curve’s upward trend
was obvious (Figures 9a–d). These results indicate that either there
are still larger macropores in the sample, which are not filled
with nitrogen, or the interaction between the adsorbate molecules
is strong. The adsorption process may be continued to form a
multi-molecular layer, with a continuous rise in the adsorption
isotherm. In themiddle section of relative pressure (P/P0), hysteresis
occurs between the adsorption-desorption curves, leading to the
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FIGURE 5
XRD mineral percentage bar chart of different lithofacies. (a) Micrite limestone; (b) Bioclastic micrite limestone; (c) Argillaceous limestone.

FIGURE 6
X-ray diffraction mineral percentage bar chart of different sub-members. (a) Mao-1a member; (b) Mao-1b member; (c) Mao-1c member.

TABLE 2 Vitrinite reflectance statistics table for Mao-1 member.

Depth (m) Lithology Ro (%) Number of measurement points Standard deviation

4369.54 Bioclastic micrite limestone 1.60 7 0.0140

4380.38 Bioclastic micrite limestone 1.57 5 0.0120

4409.60 Argillaceous limestone 1.58 6 0.0160

FIGURE 7
(a) Histogram of organic carbon distribution frequency. (b) Histogram of organic carbon content in different reservoir lithologies. (c) Histogram of
organic carbon content in each sub-member of the Mao-1 member.

manifestation of a hysteresis loop. According to the industry
standard GBT21650.2-2008, the hysteresis loop is between H3 and
H4. This result indicates that the pores in the sample have mainly

a slit-like morphology, with the pores composed of flaky clay and
rigid particles. An obvious inflexion point can be also seen on the
desorption curve, which is caused by the difference between the
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FIGURE 8
Physical property analysis histogram. (a) Histogram of porosity distribution in different reservoir lithologies. (b) Histogram of porosity distribution at
different layers.

capillary condensation and the evaporation of thin-necked bottle-
like pores (Wei et al., 2013). According to IUPAC (1994), the shale
pores can be divided into three categories: micropores (<2 nm),
mesopores (2–50 nm), and macropores (>50 nm). Considering the
peaks in the pore size distribution maps (Figures 9a1–d1, a2–d2)
induced by adsorption and desorption branches, it can be seen
that the pores in the sample are mainly micropores and mesopores
<4 nm. In summary, the poremorphology of carbonate reservoirs in
the Mao-1 member is mainly lamellar clay (mainly talc) interlayer
fractures, slit-like pores composed of rigid particles, and fine-
necked bottle-like pores. The pores are primarily micropores and
mesopores <4 nm.

5 Discussion

The development of carbonate reservoirs in the Mao-1 member
is affected by many factors, with lithofacies, TOC, and diagenesis
playing major roles.

5.1 Effect of rock type on reservoir
development

From the above-mentioned analysis, it can be inferred that the
Mao-1 member reservoir is mainly developed in the deep, gentle
slope, bioclastic micritic limestone, and argillaceous limestone at
the bottom of the Mao-1a sub-member and top of the Mao-1c
sub-member. This effect can be explained by considering that the
bioclastic and argillaceous contents in the micritic limestone are
low, resulting in the development of fewer inter-layer pores and
organic pores in clay minerals. Meanwhile, the bioclastic contents
in the bioclastic micritic limestone and argillaceous limestone and
the content of clay minerals are relatively high, which facilitates the
development of pores.

5.2 Organic matter content has a positive
effect on reservoir performance

Organic matter pores are formed by the existence of residual
organic matter in the intergranular pores of minerals, which take
the form of fillings and fragments after the pyrolysis of organic
matter. As can be seen from Figure 7, the TOC content has a
good positive correlation with porosity (Figure 10a), specific surface
area (Figure 10c) and total pore volume (Figure 10b). This outcome
shows that the organic matter content has a good effect on the
pore structure of the reservoir. However, the organic matter content
is regarded as one of the key factors determining the reservoir
performance of shale gas reservoirs. High-quality reservoirs are
often found in shale development sections with high organic
matter contents (Chen, 2007). For the tight marl reservoir in the
Mao-1 member, due to its low overall organic matter content
(average TOC = 0.51%), the impact of organic matter pores on pore
characteristics is positive but weak. This result reflects the fact that
TOC content is one of the main factors affecting the reservoir in the
Mao-1 member.

5.3 Diagenesis

The constructive diagenesis process that took place during
the sedimentary period of the Mao-1 member mainly comprised
the transformation of clay minerals and dolomitization.
The cementation of calcite primarily caused destructive
diagenesis.

As can be seen from the SEM results, a large number
of talc shrinkage pores (fractures) are developed in Mao-1
(Figures 6h, m). It can be also observed that clay minerals are
positively correlated with porosity (Figure 11b). According to the
literature, sepiolite [Mg8Si12O30(OH)4·4H2O] will be transformed
into talc [Mg3Si4O10(OH)2] under the combined influence of
temperature and maturity Ro (Chen et al., 1985; Cai et al., 2019).
In the laboratory, the structural transformation temperature of
sepiolite is 310°C–330 °C (Yang and Xu, 1986). When the maturity
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FIGURE 9
(a-d) Nitrogen adsorption-desorption isotherms of four argillaceous limestone samples; (a1-d1) Pore size distribution diagrams obtained from nitrogen
adsorption of the samples; (a2-d2) Pore size distribution diagrams obtained from nitrogen desorption of the samples.

Ro value reaches 1.2% (Yang and Xu, 1986), sepiolite will be almost
completely converted into talc. Nonetheless, this procedure may not
necessarily occur in nature. Yang andXu, (1986) argued that sepiolite
can be converted to talc when the burial temperature reaches 120 °C.
The measurement of three samples (Table 2) showed that the Ro
value of rock maturity in the study area was 1.57%–1.6%, and the
geothermal temperature at the end of the early Cretaceous was
up to 140°C (Li et al., 2021), which offer suitable conditions for
the conversion of sepiolite to talc. With the progress of talcisation,

mineral crystals will be transformed from the trioctahedral chain
of sepiolite to the fibrous flakes of talc. Thus, a large number of
diagenetic shrinkage fractures will be formed. At the same time,
the size of the talc crystals will become smaller than that of
sepiolite. Several primary pores, such as intergranular pores, will
be also formed during the transformation process. These diagenetic
shrinkage pores and fractures are considered important reservoir
spaces for the tight reservoirs in the Mao-1 member of the Maokou
Formation.
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FIGURE 10
(a) Scatter plot of TOC versus Porosity. (b) Scatter plot of TOC versus Surface Area. (c) Scatter plot of TOC versus Pore Volume.

FIGURE 11
(a) Scatter plot of calcite versus porosity. (b) Scatter plot of clay minerals versus porosity. (c) Scatter plot of calcite versus pore volume. (d) Scatter plot
of calcite versus surface area. (e) Scatter plot of dolomite versus porosity. (f) Scatter plot of quartz versus surface area.

Dolomitization is commonly developed along with the
transformation of clay minerals. It is currently believed that the
genetic mechanism of dolomite in the Permian strata of the
Maokou Formation is associated with a thermal convection process
driven by abnormal ground temperatures related to Emei ground
fissure movement in a buried environment (Dong et al., 2020).
Dolomite has a higher density than calcite. During the process
of dolomitization, the precipitation volume of dolomite is less
than the dissolution volume of calcite (Liu et al., 2021), and the
porosity of the rock increases. The diagram in Figure 11e shows
that there is a positive correlation between the dolomite content
and porosity, indicating that dolomitization improves the Mao-
1 reservoir in the study area. Another mineral, calcite, has a
high content and is negatively correlated with porosity, specific
surface area, and pore volume. This result also demonstrates

that limestone dolomitization has a positive impact on reservoir
improvement.

Dissolution is also prevalent in the Mao section of carbonate
rocks in the study area, and is mainly evident as intracrystalline
dissolution pores of brittle minerals such as calcite (Figures 6c, g).
These dissolution pores can be used as reservoir spaces but also
as fluid channels, which are conducive to the transformation of
reservoirs.

In addition to clay mineral transformation, dolomitization,
and dissolution, which play a constructive role in the reservoir,
on the contrary, cementation (especially calcite mud crystal
cementation) plays a destructive role in the reservoir. The
microscopic photographs and SEM observations of the reservoir
section of the Maokou Formation in the study area demonstrate
that the cementation type of the reservoir section of the Maokou
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Formation in the study area primarily consists of calcite mud
crystal and mud cementations in the eyelid tuff section with
high mud content. The impact of different mineral components
on the reservoir in Figure 11 reveals a negative correlation
among pore volume, specific surface area, pore structure
parameters, and calcite content and a positive correlation with
clay mineral content (Figures 11a–d). This finding indicates that
the mud crystal cementation of calcite exerts a destructive effect on
the reservoir.

5.4 Petroleum geology significance

Overall, the analysis of thin sections, physical properties,
XRD, nitrogen adsorption, SEM, TOC, and logging indicates that
the reservoirs are mostly developed in the lower part of Mao-
1a and the upper part of Mao-1c. In contrast, the reservoirs
in Mao-1b are largely undeveloped. The reservoir lithofacies are
mostly composed of argillaceous limestone and bioclastic micritic
limestone microfacies with a high shale content. The reservoir pores
mainly possess micropores and mesopores, such as organic matter
pores and clay mineral shrinkage pores. The nitrogen adsorption
experiments showed that the pore sizes are mostly <4 nm, mainly
being micropores. Hu et al. (2007) argued that as the pore size
increases, the gas stored in the pore changes from an adsorbed
state to a free state. The existence of a larger pore volume leads
to a higher free gas content. In addition, a larger total volume of
micropores induces a bigger specific surface area (Zhong et al.,
2002; Xu et al., 2009). Taking into account that the spacing
between the pore walls and adsorbate is very small, the ability
to adsorb gas is stronger than that of wider pores. Therefore, the
force between the pore surfaces and the adsorbate is stronger
than that of larger pores (Lozano Castello et al., 2002). Hence,
in this kind of ultra-low-porosity and low-permeability reservoir,
the presence of nano-scale pores significantly improves natural
gas enrichment; however, at the same time, it complicates the
overall model.

In recent years, the exploration of dense carbonate reservoirs
is constantly increasing (Farouk et al., 2024a; Farouk et al., 2024b;
Farouk et al., 2024c; Farouk et al., 2024d). For example, the Dalan
Formation in the Permian System of the Persian Gulf, the Apollonia
Formation in the western desert of Egypt, and the S1 formation
in the Indus Basin on the Pakistani landmass have all achieved
gas discoveries in dense limestone reservoirs (Kidambi and Kumar,
2016; Gomaa et al., 2019; Durrani et al., 2020). Afşar et al. (2014)
studied the dense carbonate reservoirs in the Bristol Channel
and found that argillaceous limestone exhibits a higher non-
interlayer fracture percentage than micrite limestone. This result
suggests that argillaceous limestone reservoirs have better reservoir
properties compared to micrite limestone. These cases prove that
argillaceous limestone reservoirs have good exploration prospects
in the field of unconventional reservoirs. This work provides a
detailed analysis of the characteristics of argillaceous limestone
reservoirs and proposes the main controlling factors affecting their
development, which can be compared with similar dense carbonate
reservoirs globally.
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6 Conclusion

In this work, a systematic analysis was performed using SEM
imaging, XRD and TOC analysis, as well as studying nitrogen
adsorption and other experimental data to comprehensively analyse
the reservoir characteristics of Mao-1 members in southeastern
Sichuan, elucidating the primary controlling factors and filling in the
gaps in this area. From our analysis, the following can be drawn.

1. The reservoir rock types of Mao-1 members in southeastern
Sichuan are mainly composed of micritic limestone,
bioclastic micritic limestone, and argillaceous limestone. The
mineral composition is primarily calcite. Clay minerals are
primarily talc.

2. The TOC content in argillaceous limestone is relatively high,
and it is relatively enriched in the Mao-1a sub-member. The
range of vitrinite reflectance (Ro) values for the organic matter
in the Mao-1 member, is between 1.57% and 1.60%, indicating
that the organic matter is primarily in the high maturity stage
of thermal evolution.

3. There are six main types of reservoir spaces in the Mao-
1 member: intergranular pores, dissolution pores, organic
matter pores, fractures related to bioclastic, interlayer fractures
of clay minerals, and macroscopic fractures. The porosity
of argillaceous limestone is relatively high. The overall
characteristics are of a low-porosity and low-permeability tight
limestone reservoir.

4. The pores of the carbonate reservoir of the Mao-1 member
are mainly composed of micropores and mesopores with a
diameter of about 4 nm. Their morphology is mainly slit-like
pores comprising flaky clay and rigid particles.

5. The reservoir formation in the Mao-1 member is mainly
affected by the lithofacies, organic matter content, clay
mineral transformation, dolomitization, dissolution, and other
diagenesis. The transformation of clay minerals can create
a large number of shrinkage pores, which is key to the
quality of the reservoir; clay minerals also adsorb a significant
amount of organic matter, promoting the formation of
organic matter pores and enhancing the storage performance.
Dissolution processes provide additional storage space, further
modifying the reservoir, while micritic cementation of calcite
has a destructive effect on the reservoir. Clay minerals and
argillaceous limestone with higher TOC content are the main
high-quality reservoirs.
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