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The traditional coal type identification method needs to measure a variety
of parameters of coal samples to obtain more accurate results, and the
detection process is time-consuming and laborious, and can not realize the
rapid identification of coal types. In this paper, a bituminous coal species
identification method based on terahertz time-domain spectroscopy combined
with machine learning-principal component analysis Principal component
analysis (PCA) and cluster analysis (CA) was proposed. The two types of
bituminous coal samples were detected by the transmission terahertz time-
domain spectroscopy system, and the spectral data of various bituminous coal
samples were obtained, and then the absorption coefficient and refractive
index of each sample were obtained after mathematical calculations such as
fast Fourier transform (FFT). The results show that the PCA-CA classification
model based on terahertz absorption coefficient spectrum can accurately
identify different bituminous coals with an accuracy of 100%, while the PCA-CA
classification model based on refractive index spectra cannot accurately identify
different bituminous coals. The results show that the terahertz time-domain
spectroscopy combinedwithmachine learning algorithmcan accurately identify
different kinds of bituminous coal, and the model classification effect based on
terahertz absorption coefficient spectrum is better than that of the model based
on refractive index spectroscopy, which provides a new idea for coal mining and
utilization.

KEYWORDS

bituminous coal identification, terahertz spectroscopy, machine Learning, principal
component analysis, cluster analysis

1 Introduction

Coal is one of the most important energy sources in China, and for a long time,
it has accounted for about 75% and 70% of China’s primary energy production and
consumption structure. In recent years, although the proportion of coal consumption
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has gradually decreased, China’s energy structure of “rich in coal,
poor in oil, and low in gas” determines that the status of coal as the
main energy source will not change fundamentally in the short term,
and coal will still be the stabilizer and ballast stone of China’s energy
security (Liang et al., 2021).There aremany types of coal resources in
China, and according to the degree of coalification of coal, coal can
be roughly divided into three categories, namely, lignite, bituminous
coal and anthracite. In the process of coal mining and use, the
classification of bituminous coal has important guiding significance
for production planning (Wang et al., 2022). Although the chemical
analysis method has high classification accuracy, the detection time
is long and the cost is high, and the above two methods cannot
achieve fast and accurate identification of coal types, so how to
accurately and quickly identify the types of bituminous coal is an
urgent problem to be solved in coal mining and utilization.

In recent years, with the rapid development of terahertz
technology, terahertz technology has shown great application
prospects in the fields of substance identification (Zhao et al., 2023;
Jie et al., 2023) and nondestructive testing (Li and He, 2023; Cao
and Yuan, 2021). Terahertz wave refers to the electromagnetic
wave with a frequency of 0.1 THz∼10 THz and a wavelength
of 0.03 mm∼3 mm, which is located between microwave and
infrared light in the electromagnetic spectrum. In recent years,
some new methods have been proposed by scholars at home
and abroad in the field of coal identification, mainly focusing
on the field of spectroscopy, such as near-infrared spectroscopy
analysis and laser-induced breakdown spectroscopy. Xiao et al.
(2020) used visible-near-infrared spectroscopy combined with
improved local receptive field extreme learning machine algorithm
to identify anthracite, bituminous coal, lignite and coal gangue.
Hong et al. (2022) used near-infrared spectroscopy combined
with Fisher-stepwise discriminant analysis to identify different coal
species. Song et al. (2017) used visible-near-infrared spectroscopy
technology combined with different algorithms to classify
bituminous coal and lignite, and the results showed that the random
forest method and theMAOmodel method had better classification
effects, and thus proposed different application scenarios of the two
algorithms. Le et al. (2018) used visible-near-infrared spectroscopy
technology and deep learning CNN-ELM algorithm to classify and
identify anthracite, bituminous coal, and lignite. Yang et al. (2019)
studied the reflectance spectral characteristics of typical lump coal in
the visible-near-infrared band, and determined the element content,
fixed carbon content and ash content in the samples through X-ray
fluorescence (XRF) analysis and industrial analysis. Petrovic et al.
(2022) studied the quantitative detection of inorganic elements
in lignite using LIBS technology based on TEA carbon dioxide
laser, and verified that the detection of coal by LIBS can control
the coal burning process of power plants. Zhang et al. (2017a) used
the combination of LIBS technology and independent component
analysis-wavelet neural network (ICA-WNN) for coal classification
research, and compared the effect of artificial neural network (ANN)
model on coal sample identification and classification, the ICA-
WNN model showed better classification effect. The above studies
mainly focus on the classification and identification of three major
types of coal (anthracite, bituminous coal and lignite) in China,
and there are few studies on the classification and identification of
different types of bituminous coal.

In this study, terahertz time-domain spectroscopy and two
machine learning algorithms were used to qualitatively identify
different types of bituminous coal, in order to explore an accurate
and rapid method for identifying bituminous coal.

2 Materials and methods

2.1 Sample preparation

The five bituminous coal samples selected in the experiment
were low volatile bituminous coal (ZBM104, ZBM100D,
ZBM100E, ZBM124) and medium and high volatile bituminous
coal (ZBM111C). The five bituminous coal samples are all
coal reference materials, all of which were purchased from
the National Material Standards Network, and their physical
properties and chemical compositions are provided by the
National Material Center. The physical properties and chemical
compositions of the five bituminous coal samples are shown
in Table 1.

A certain quality of sample powder was weighed before the test,
and then high-density polyethylene powder is added in the same
ratio and the two are thoroughly mixed, the ratio is polyethylene
powder: sample powder = 2:1. When the powder is weighed with
a certain quality of mixture, the pressure of the tablet press is set to
10 MPa, and the tablet pressing time is set to 6 min, and finally the
disc test tablet with a thickness of about 1.1 mm and the upper and
lower surfaces are parallel without cracks.

2.2 Terahertz spectroscopy

In this study, the bituminous coal samples were detected
using the TAS7400SU THz-TDS system of Advantest in Japan,
which can choose the transmission and reflection modes, and the
transmission mode was selected in this study (Chen et al., 2021),
the spectral measurement range of the system is 0.5–7 THz, the
spectral resolution is 7.6 GHz, and the dynamic peak frequency
range is greater than 57 dB. The system is mainly composed
of femtosecond lasers, terahertz emitters, terahertz detectors and
time-lapse systems. In order to reduce the experimental error,
the experimental samples were detected in the environment with
an ambient temperature of 24°C, and the sample signal was
averaged after repeated measurements for each sample for 3
times, and the air humidity in the optical path part was kept
below 1% RH. The operating principle of the system is roughly
shown in Figure 1.

2.3 Optical parameter extraction

After obtaining the terahertz spectral data of various samples
by detecting coal samples, the refractive index n(ω), extinction
coefficient k(ω) and absorption coefficient α(ω) of coal samples
were calculated according to the optical parameter extractionmodel
proposed by Dorney et al. (2001)

n(ω) =
φ(ω)c
ωd
+ 1 (1)
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TABLE 1 Labeling and parameters of bituminous coal samples.

Sample lable Ad (%) Vdaf (%) S (%) C (%) N (%) H (%)

ZBM104 33.56 13.50 4.35 53.63 0.83 2.82

ZBM100D 29.79 12.98 1.62 60.62 1.00 3.00

ZBM100E 52.28 11.08 1.39 39.00 0.64 2.26

ZBM111C 8.00 31.29 0.92 77.14 1.26 4.59

ZBM124 13.90 11.40 2.47 75.85 1.07 3.31

FIGURE 1
Structure diagram of terahertz time-domain spectroscopy system.

k(ω) = c
ωd

ln{
4n(ω)

ρ(ω)[n2(ω) + 1]2
} (2)

α(ω) =
2ωk(ω)

c
(3)

where, ρ(ω) is the ratio of the amplitude of the sample signal to the
reference signal; φ(ω) is the phase difference between the sample
signal and the reference signal; d is the thickness of the sample,
and the unit is m; c is the speed of light in m/s; ω is the angular
frequency in rad/s.

2.4 Introduction to algorithms

Principal component analysis (PCA) (Esteki et al., 2023) is a
commonly used feature extraction method and is often used in
spectroscopic analysis. Taking the original dataset as input, multiple

potentially related variables in the original data are transformed
into fewer completely unrelated new variables through orthogonal
linear transformation, which is called principal components. Each
principal component is orthogonal to each other, and the first
principal component contains most of the information in the
original data, which can interpret the original data to the greatest
extent and display a large amount of data in the original data in a
more intuitive form (Zhang et al., 2017b).

Cluster analysis (CA) (Cheng et al., 2021) is an unsupervised
classification method that classifies samples in an unlabeled dataset
bymeasuring the similarity between them. In the clustering process,
the dataset does not need to be labeled in advance, each sample is
taken as a separate class before the calculation begins, by calculating
the Euclidean distance between each sample, the two samples
that are closest to each other are taken as a new class, then the
Euclidean distance between the new class and other samples is
calculated, the samples closest to the new class are combined
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FIGURE 2
Terahertz time domain spectrum (a) and power spectrum (b).

with the new class to form a class, and the above calculation is
repeated, and finally all samples are clustered into a class to obtain a
cluster tree diagram that can reflect the similarity and heterogeneity
between the samples.

3 Results and discussion

3.1 Terahertz time-domain spectroscopy

The terahertz time-domain spectra of the five bituminous coal
samples are shown in Figure 2a. As can be seen from the figure, the
time delay and peak intensity of various bituminous coal samples
are different, and the time delay of each sample is concentrated in
the range of 17–19 ps. The time-domain spectral waveforms of the
four low-volatile bituminous coal ZBM100D, ZBM100E, ZBM104
and ZBMZ124 are very similar, and the main time-delay peak of
the ZBM100E appears earliest and has the smallest amplitude. The
main peak appeared at 18.05 swith an amplitude of 0.053 V, themain
peak of ZBM124 appeared the latest, and the main peak appeared
at 18.29 s with an amplitude of 0.058 V. Compared with the four
low-volatile bituminous coals, themain peak of ZBM111C appeared
earliest and had the largest amplitude at 17.82 s with an amplitude of
0.118 V. Since the refraction and absorption of terahertz waves are
not the same in the samples, the time delay and peak intensity of
the various coal samples varies. Figure 2a shows the power spectra
of the five samples in the frequency range of 0.5–3 THz, and it
can be seen that the power spectra of the five samples maintain
the same trend, and all of them show that the energy consumption
increases first and then decreases with the increase of frequency,
among which the energy consumption of ZBM111C is the largest,
and the energy consumption of ZBM100D, ZBM100E, ZBM104 and
ZBMZ124 is lower than that of ZBM111C. Figures 2a, b show that
there are obvious differences in the terahertz time-domain spectrum
and power spectrum of various samples, which indicates that it is
feasible to qualitatively identify bituminous coal by using terahertz
time-domain spectroscopy.

Figure 3 shows the refractive index spectra and absorption
coefficient spectraof thefivebituminouscoal samples in the0.5–3 THz
band. Where the refractive index is given by Equation 1 and the
absorption coefficient is given by Equations 2, 3. It was observed
that the five coal samples had a certain separability in the terahertz
refractive index and dielectric constant spectra. In the refractive
index spectrum of Figure 3a, the refractive index of the ZBM111C
is the largest, with an average refractive index of 1.537, and the
refractive indices of ZBM124, ZBM104, ZBM100E, and ZBM100D
decrease sequentially, with the average refractive indices of 1.524,
1.522, 1.491, and 1.469, respectively, all lower than ZBM111C. There
are obvious differences in the refractive index spectra of the five
bituminous coals, and it can be seen that the refractive index spectra
of terahertz can be used to preliminarily calibrate different types of
bituminous coals. In Figure 3b absorption coefficient spectrum, it can
be seen that the absorption coefficient spectrumof thefivebituminous
coals has no obvious characteristic absorption peaks, which may be
due to the complex chemical composition of the coal, which causes
the absorption peaks to cancel each other out due to the overlap
of the positions, and the absorption coefficients all increase with
the increase of frequency, which is consistent with the propagation
law of electromagnetic waves in the lossy medium in the classical
electromagnetic wave theory, among which the absorption coefficient
of the ZBM111C is the smallest, and the four low-volatile bituminous
coalsZBM124,ZBM104,Theabsorptioncoefficients ofZBM100Eand
ZBM100D are higher than those of ZBM111C, and the feasibility of
using terahertz time-domain spectroscopy to identify bituminous coal
types is further illustrated by the analysis of refractive index spectra
and absorption coefficient spectra.

3.2 Classification of coal types

According to the original spectra of the collected bituminous
coal samples, cluster analysis and principal component
analysis were used to identify and classify the five bituminous
coal samples. Figure 4a uses the absorption coefficient spectra
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FIGURE 3
Terahertz refractive index spectra (a) and absorption coefficient spectra (b).

FIGURE 4
Cluster tree diagram (a) and PC1 score histogram (b) based on absorption coefficient spectrum.

in the frequency range of 0.5-3 THz as the input set, and uses
cluster analysis to classify the five samples, and the cluster tree
map reflecting the similarity and dissimilarity of the five samples
is obtained after four steps of gradual clustering. As can be seen
from the figure, when the Euclidean distance is 120, the five samples
are divided into two categories: the ZBM111C is divided into one
category alone, and the remaining four samples (ZBM104, ZBM124,
ZBM100D, ZBM100E) are divided into the second category, where
the Euclidean distance between ZBM104 and ZBM124 is the
smallest, is 30.04, the Euclidean distance between ZBM100D and
the new class composed of ZBM104 and ZBM124 increases slightly,
to 63.43, and the ZBM100E gradually increases, and finally the four
samples are clustered into a class.

The absorption coefficient spectrum in the frequency range
of 0.5–3 THz was used as the input set for principal component
analysis, and the first two principal components (PC1, PC2) were
extracted, and the cumulative contribution rate of the first two
principal components was 96.8%, of which the contribution rate

of the first principal component was 85.8%, and the contribution
rate of the second principal component was 11%, and the PC1 of
each sample basically contained most of the original information
of the sample. The smaller the PC1 difference between samples, the
more similar the samples are. The greater the difference, the greater
the variability between samples. Figure 4b shows the PC1 scores of
the five samples, from which it can be seen that the PC1 score of
ZBM111C is negative, which is themost different from the other four
bituminous coals. The difference between PC1 between ZBM104
and ZBM124 is the smallest, and the conclusion of PCA is consistent
with that of CA compared with the cluster tree diagram in Figure 4a,
which shows that the PCA-CA classification model based on the
absorption coefficient spectrum can accurately identify different
types of bituminous coal with a recognition accuracy of 100%.

Similarly, the refractive index spectrum in the frequency range
of 0.5–3 THz is used as the input set, and the cluster tree diagram
obtained by cluster analysis is shown in Figure 5a. As can be seen
from the figure, when the Euclidean distance is 0.5, the five samples
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FIGURE 5
Clustering tree diagram (a) and PC1 score histogram (b) based on refractive index spectrum.

are divided into two categories: ZBM104, ZBM124 and ZBM111C
are divided into the first category, and ZBM100D and ZBM100E
are divided into the second category, where the Euclidean distance
between ZBM104 and ZBM124 is the smallest, The Euclidean
distance is 0.049, followed by 0.27 between the new class and the
ZBM111C, and finally the three coals form the first class, and the
Euclidean distance between the ZBM100D and the ZBM100E is the
largest, which is 0.41, and these two form the second class.

The first two principal components were extracted with the
input set of the refractive index spectrum in the frequency range
of 0.5–3 THz. The cumulative contribution rate of the first two
principal components was 99.89%, and the contribution rate of
the first principal component was 81.1%. Figure 5b shows the PC1
score histogram of five coal samples. It can be seen from the figure
that the PC1 score histogram of ZBM104, ZBM111C and ZBM124
are all positive, while the PC1 score histogram of ZBM100D and
ZBM100E are all negative. Compared with the clustering tree
diagram of Figure 5a, it can be seen that this conclusion is consistent
with the CA conclusion. It can be concluded that the PCA-CA
classification model based on refractive index spectrum can not
achieve accurate identification of different types of bituminous coal.

4 Conclusion

In this experiment, five samples of two types of bituminous
coal (low volatile bituminous coal and medium and high volatile
bituminous coal) were used as research objects, and the terahertz
time-domain spectroscopy technology combined with machine
learning algorithm was used to qualitatively identify the types of
bituminous coal. The results show that there are certain differences
in the time-domain spectra of the five bituminous coal samples,
which illustrates the feasibility of qualitative identification of
different bituminous coal species by using terahertz time-domain
spectroscopy. In the frequency range of 0.5–3 THz, the PCA-CA
classification model was established by using the refractive index
spectra and absorption coefficient spectra of five samples, and by
comparing the classification effects of the two, it can be concluded

that the PCA-CA classification model based on the terahertz
absorption coefficient spectrum is better than the classification
model based on the refractive index spectrum, and the PCA-CA
classification model based on the terahertz absorption coefficient
spectrum can accurately identify the two types of bituminous
coal, and the recognition accuracy is 100%. Compared with the
traditional coal identification methods, the terahertz time-domain
spectroscopy technology combined with the PCA-CA classification
model proposed in this study can quickly and accurately identify
different types of bituminous coal, which is of great significance for
the construction of intelligent mines.
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