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Understanding the activation and slip characteristics of faults is essential for the
safety and stability of underground engineering. The mechanical behavior of
laboratory faults with gouge of specific strength remains unclear. Therefore,
triaxial compression tests were performed on saw-cut sandstone specimens
containing artificial gypsum gouge. Strength criteria analysis, crack pattern
analysis, and fault surface roughness evaluation were conducted to investigate
the effects of dip angle, confining pressure, and loading rate on the failuremodes
and stick-slip characteristics of the faults. The results indicate that as the fault dip
increases, the fracture mode transitions from rock damage to shear failure along
the saw-cut surface. Fractures within the gypsum fault gouge result in deviations
between the measured and theoretical strength values. The magnitude of the
normal stress controls the fault surface roughness and the variations in the stress
drop during fault activation. An increase in the loading rate results in a transition
from stick-slip behavior to stable slip. This study enhances the understanding
of fault stability and provides valuable insights into monitoring strategies for
underground engineering and earthquake prediction.
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1 Introduction

Faults, as common geological structures in the Earth’s crust, can be observed in rocks
ranging frommicroscopic to outcrop scale (Zhu et al., 2024), aligned in different orientations
and at varying depths (Wu et al., 2023). The stability of faults is highly correlated with
geologic hazards such as landslides (Li et al., 2024a), rockbursts (Bai et al., 2022), and
mudslides (Zhang et al., 2024). Therefore, the study of fault-containing rocks is crucial for
the safe development of underground projects (Zhu et al., 2022).

The Amonton-based friction law states that when the shear stress on the fault surface
exceeds the critical shear strength, the fault reactivates and slips (Sibson, 1985). However,
the differential stress required for fault activation is related to the friction on the fault surface
(Ban et al., 2023). This stress is also influenced by the direction of the maximum principal
stress (Giorgetti et al., 2019) and the magnitude of the effective stress (Delle Piane et al.,
2016). As the fault approaches the critical stress, both normal and shear stresses decrease
significantly (Wu et al., 2017). Microscopically, this is associated with a reduction in
intergranular forces and particle contact fracture. (Zhang et al., 2023). Oscillation of normal
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stress (Yu et al., 2024) and the ratio of normal stress to shear
stress (Li et al., 2024b) are associated with the destabilizing
fault slip. Unloading of normal stress (Liu et al., 2024) triggered
by engineering perturbations such as underground mining and
tunneling (Ji et al., 2019) can lead to the sudden activation of faults,
causing an extremely strong subsurface dynamic hazards (Niu et al.,
2024). Additionally, water injection processes, such as geothermal
mining (Ji et al., 2022) and hydraulic fracturing to increase seams
(Yaghoubi et al., 2022) can activate faults and induce earthquakes
(Wang et al., 2024), by increasing the effective stress on the fault
surface (Wynants-Morel et al., 2021). Also, rupture instability is also
associated with changes in the direction of principal stresses relative
to the direction of rupture (Zhang and Sanderson, 2001).

The stick-slip mechanism observed in laboratory rocks is
thought to be similar to the sliding behavior of in-situ faults (Brace
and Byerlee, 1966). Many laboratory-based fault studies have been
conducted to reveal the mechanisms of fault slip and its mechanics
(Bolton et al., 2022). Since in-situ faults are not zero-thickness planes
and contain a range of fault gouge (Choi et al., 2016), the method
of filling fault gouge is commonly used to model their friction
behavior (Nilsen, 2021). Specifically, commonly used in-situ fault
gouges in the laboratory, such as those composed of low-strength
clay minerals (e.g., clays and layered silicates), tend to exhibit
velocity enhancement and stable sliding (Ruggieri et al., 2021).
In contrast, the friction coefficients of faults composed of slightly
stronger granular minerals (e.g., quartz) decrease with velocity,
experiencing unstable stick-slip (Leeman et al., 2016). Additionally,
a smaller grain size distribution of fault gouge contributes to fault
destabilization as well as strength recovery (Cao et al., 2024).
Different mineral compositions affect the frictional strength and
rate-dependence of faults (Zhang et al., 2019). The presence of
fluids within the gouge layer contributes to stabilizing slip behavior
and fault compaction (Kang et al., 2024). Moreover, an increase
in temperature promotes the transition of fault gouge from brittle
to ductile (Mei et al., 2024). The frictional strength and sliding
stability of faults are also controlled by the interaction of several
of these factors (An et al., 2021). However, in the vicinity of the
fault core, there exist a damage zone with some cohesion (Ben-Zion
and Sammis, 2003). As a geological material commonly stronger
than clay minerals (Wu et al., 2022), comparative experiments
between gypsum and clay mineral gouge (Wu et al., 2022) have
demonstrated that gypsum exhibit a stronger tendency to weaken at
higher velocities (Ren, 2024). Furthermore, the fault slip behavior
observed on gypsum fault gouge is consistent with numerical
models and theories applied to natural and induced earthquakes
(Buijze et al., 2021). Moreover, the triaxial shear experiment more
closely to the simulates the in-situ stress of the original rock
in the subsurface (Zhong et al., 2023) compared to the direct
shear experiment, which applies an inconsistent normal loads to
the fault (Ji et al., 2022). Therefore, based on the observations from
the aforementioned studies, the following questions warrant further
investigation: How does a fault gouge of specific strength affect the
fracture pattern of rock specimens? How do factors such as fault dip
angle, confining pressure in triaxial tests, and loading rate influence
fault activation and slip?

This study primarily investigates the stress-strain characteristics
of faults with varying dip angles, as well as the activation and slip
behavior of faults under different confining pressures and loading

rates. Incorporating the analysis of fault surface roughness, the
study further explores the mechanisms by which gypsum faults
influence the strength of sandstones, the transformation of stress
drop characteristics during fault activation, and the changes in fault
slip patterns. Finally, the study analyzes the correlation between the
research results and underground engineering near the faults.

2 Materials and methods

2.1 Sample selection and treatment

The sandstone used in these experiments is a typical rock from
the earthquake-prone Longmenshan Fault Zone of the Sichuan
Basin, China (Wang et al., 2014; Long et al., 2022). To ensure the
samples had comparable structural properties, cylindrical sandstone
samples were cored from individual sandstone blocks along a
direction perpendicular to the laminae. The ends of each cylindrical
rock sample were carefully ground to a height of 100 mm and a
diameter of 50 mm.

The complete sandstone samples were sawed from the center
at angles of 0°, 15°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, and 65°
relative to the direction of σ3 (Figure 1B). The saw-cut surface
was polished using 320-grit sandpaper to ensure uniform surface
roughness. The gypsum fault was created by mixing 10 μm bassanite
powder with water in a 3:1 ratio, then filling the mixture into
the saw-cut surface. The saw-cut surface was then compacted to
ensure the gypsum layer thickness was 2 mm. After the bassanite
powder rehydrates, it re-bonds the saw-cut surfaces. The specimen
was left undisturbed under room temperature and atmospheric
pressure for 2 days. The end surfaces of the samples were then
checked for flatness. If the maximum height difference were
less than 0.05 mm (Cvitanovic et al., 2015), the specimen was
prepared for testing. In addition to the saw-cut samples, standard
cylindrical gypsum specimens, consistent with the way as the
gypsum faults, and standard sandstone specimens were fabricated
for mechanical testing. Two samples were prepared under different
test conditions tominimize the effect of sample heterogeneity on the
experimental results.

2.2 Test equipment and procedures

Triaxial testswere performed at room temperature using a servo-
controlled MTS815 tester without any pore pressure (Figure 1A).
The confining pressure was applied through silicone oil in the
triaxial cell. The sample was wrapped with a polyolefin sleeve to
separate it from the silicone oil. Axial forces were measured using
force transducers with a maximum load capacity of 2200 kN and
an accuracy of ±0.5%. Circumferential strain εr was consecutively
measured using circumferential extensometers with a measuring
range of +12.5 mm, −2.5 mm, and an accuracy of ±0.5%.

Uniaxial and triaxial compression tests were first performed on
gypsum and sandstone standards, followed by triaxial compression
tests on sawed samples. The experimental procedure is as follows:
First, the confining pressure was applied at a rate of 2 MPa/min until
it reached the set value of 10 MPa. The confining pressure was then
kept constant, and the axial load was applied at a fixed displacement

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1504605
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2025.1504605

FIGURE 1
(A)The experimental testing system: MTS815 (B) Schematic diagram of the sawed sample.

rate of 0.01 mm/min, corresponding to a strain rate of approximately
1.67× 10−6 s−1. The procedure was terminated when the specimen
deformation gradually stabilized. After the tests on saw-cut samples
with different dip angles, additional testswere conducted on 60° saw-
cut samples under various confining pressures (5, 10, 20, 40 MPa)
and at different loading rates (5E-3, 1E-2, 2E-2, 4E-2, 8E-2mm/min)
under a constant confining pressure of 10 MPa. At the end of the
experiment, the surface morphology of the fault was reconstructed
using a non-contact tomography scanner, and the roughness of the
surface fracture was analyzed.

3 Results

In the following analysis and discussion, themaximumprincipal
stress is denoted as σ1, and the minimum principal stress as σ3. The
differential stress σd is calculated as the axial stress (σ1) minus the
confining pressure (σ3): σd = σ1 - σ3. β is the angle between the fault
and σ3 direction, and Pc is the confining pressure applied during the
test. σmax

d is themaximum stress drop during the stick-slip stage.The
calculation of the shear stress τN and normal stress σN on the fault
plane is given by the following Formula 1. Compressive stresses and
strains are positive in the sign convention.

σN =
1
2
(σ1 + σ3) +

1
2
(σ1 − σ3)cos 2β

τN =
1
2
(σ1 − σ3) sin 2β

}}
}}
}

(1)

3.1 Fundamental mechanical
characteristics of sandstone specimens
and gypsum faults

The stress‒strain curves provide valuable insights into the
evolution of the mechanical properties of the specimens under
loading. Table 1 shows the basic physical properties of the sandstone
and gypsum used in this laboratory test. Figure 2A presents the
uniaxial compressive stress‒strain curves of intact sandstone and

gypsum specimens. The fractures of both sandstone and gypsum
exhibit typical brittle characteristics. The uniaxial compressive
strength of sandstone is 67.22 MPa, approximately 3.3 times that
of gypsum. The elastic modulus of gypsum is 1.7 GPa, which is
much smaller than that of sandstone (10.52 GPa). The deformation
of gypsum specimen during the initial stage of pore compaction
is significantly larger than that of sandstone specimen due to
its higher porosity. Figure 2B shows the differential stress-strain
curves of 60° saw-cut samples with and without gypsum faults.
Due to the consolidating effect of gypsum, specimens with gypsum
faults exhibit significantly higher shear strength compared to those
without gypsum. Moreover, the specimen with a gypsum fault
undergoes stick-slip behavior upon activation, while the specimen
without a gypsum fault undergoes stable sliding after activation.

3.2 Mechanical characteristics of gypsum
faults

3.2.1 Gypsum faults with varying dip angles
For better classification and understanding, the results are

divided into two groups: the 0°–40° group (Figure 3A), where brittle
fracture occurs, and the 45°–65° group (Figure 3B), where stick-
slip dominates. Table 2 presents the strength and Young’s modulus
values of intact rock specimen and saw-cut specimens at different β
angles under a Pc of 10 MPa.

From Figure 3A, it can be observed that saw-cut specimens
undergo several stages in the differential stress-strain curve: closure
of initial porosity, elastic loading, progressive yielding, and one or
more stress drops until specimen failure. Gypsum faults significantly
affect themechanical strength of sandstone, with increasing β angles
causing a continuous decline in specimen strength (Table 2). In
β range of 15°–40°, specimens may exhibit multiple stress drops
during the failure stage. At β angles of 35°, 40°, several stress drops
occur during the elastic loading stage. However, the overall stress
continues to rise, eventually causing specimen failure. In the β range
of 45°–65° (Figure 3B), after fault activation, the differential stress
exhibits periodic variations. At β angle of 45°, a significant stress
drop, similar to brittle failure, occurs at fault activation, followed
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TABLE 1 Physical properties of sandstone and gypsum.

Rock
material

Items

Density Uniaxial
compressive
strength

Elastic
modulus

Poisson ratio Porosity Cohesion Internal
friction angle

Sandstone 2.55 (g ∙ cm−3) 67.22 MPa 10.5 GPa 0.23 8.02% 18.3 MPa 32°

Gypsum 1.82 (g ∙ cm−3) 20.43 MPa 1.7 GPa 0.13 30.8% 5.7 MPa 30°

FIGURE 2
(A) Uniaxial compressive strength of sandstone and gypsum standard specimens (B) Differential stress-strain curves of saw-cut specimens with and
without gypsum.

FIGURE 3
Differential stress-strain curves of sandstone specimens containing gypsum gouge at different dip angles, grouped by (A) 0°–40° (B) 45°–65°.

TABLE 2 Physical properties of specimens with faults at different dip angle.

Items Intact rock Dip angle of faults

0° 15° 30° 35° 40° 45° 50° 55° 60° 65°

Strength (MPa) 100.2 94.2 84.7 80.7 77 70 61.0 55.5 48.8 45.0 45.2

Young’s modulus (GPa) 10.0 9.7 8.8 8.4 8.1 7.8 9.3 9.4 9.1 10.3 7.7
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TABLE 3 Stress characteristics during stick-slip of samples under different confining pressure.

Confining pressure Shear strength (MPa) Stress in stick-slip (MPa) Overall stress drop (MPa)

5 MPa 21.76 9.4 12.36

10 MPa 43.42 23.7 19.72

20 MPa 65.3 31.7 33.6

40 MPa 113 38.4 74.6

FIGURE 4
(A) Differential stress of 60° saw-cut specimens under different confinement pressures (B) shear strength, overall stress drop and stress in stick-slip.

by periodic stick-slip. As the β increases from 45° to 60°, the stress
drop behavior at fault activation gradually shifts from “sudden” to
“periodic”. At β angle of 65°, there is no decrease in the average stress
value at fault activation.

3.2.2 Gypsum faults under varying confining
pressure

Based on the previous analysis, we know that the differential
stress is smallest when fault undergoes stable stick-slip at β angle
of 60°. This can be considered the optimal dip angle for gypsum
fault slip. Based on this, to study the effect of confining pressure on
gypsum faults, we conducted further tests at β angle of 60° under Pc
of 5, 10, 20, and 40 MPa.

The measured and calculated values of specimen shear strength,
overall stress drop at activation, and average stress during stick-slip
are listed in Table 3, all of which increase with the rise in confining
pressure (Figure 4B). It is noteworthy that, similar to the variation in
the β range of 45°–65°, with the increase in Pc, the stress drop after
activation gradually transitions from “periodic oscillation drop” to
“sudden drop” (Figure 4A). The two similar trends under different β
angles and Pc may be related to the stress state on the fault surface,
which warrants further detailed investigation in subsequent studies.

3.2.3 Gypsum faults under various loading rates
Based on the previous analysis, gypsum faults undergo a fixed

cycle of stick-slip after reaching the peak. To investigate whether
different loading rates affect the fault slip behavior. The fault was
loaded to the stick-slip stage at a loading rate of 2E−2mm/min at β of

60° and Pc of 10 MPa, and then the loading rate was increased from
5E−3 mm/min to 8E−2 mm/min, with each increment loading 0.3%
strain value, as shown in Figure 5A.

With the increase in loading rate, the stress drop during fault
stick-slip gradually decreases from 0.9 MPa to 0.1MPa, and cycle
time for single stick-slip decreases from 28s to 8s (Figure 5B). When
the loading rate reaches 0.08 mm/min, no apparent stress drop
occurs, indicating that the fault no longer exhibits stick-slip behavior
and has entered a “stable-slip” state. Therefore, an increase in the
loading rate transitions the fault slip from “stick-slip” to “stable-slip.”
When the stiffness of the sandstone and gypsum fault system is lower
than the fault slip weakening rate (Ji et al., 2019), the fracture will
undergo dynamic slip. Thus, for faults with loading rates between
5E−3 and 4E−2mm/min, the lower slip weakening rate causes the
fault to undergo periodic stick-slip. In contrast, at 8E−2mm/min, the
slip rate of the fault is primarily influenced by the load point rate of
the testing machine, resulting in stable slip.

3.3 Fracture patterns of saw-cut specimens

Figure 6 illustrates the fracture morphology and types of cracks
after the failure of intact rock and saw-cut specimens. All specimens
containing gypsum faults suffered severe damage; however, the
fractures in sandstone varied significantly with different β angles
(Figure 6A). For intact sandstone, it primarily exhibits brittle cracks
at an angle of approximately 72° to σ3 direction. In contrast,
the fractures of specimens at β of 0°, 15° are similar to those
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FIGURE 5
(A) Differential stress of specimens at various loading rates (B) Amplified plot of differential stress.

of intact sandstone, with macroscopic cracks traversing the fault,
however, the fracture angles decrease to approximately 60° and
50°, respectively (Figure 6B). Fractures originate from tensile wing-
shaped cracks starting from the saw-cut surface, extending to both
sides, and eventually intersecting with symmetric cracks on the
back of the specimen. In specimens at β of 30°, 35°, the angle
between the main crack and the saw-cut surface further decreases
to approximately 30° and 20°, respectively. No main cracks were
observed on the surfaces in specimens of β between 45° and 65°
(Figure 6A). At the β of 45°, microcracks were observed in the
rocks on both sides of the fault. Meanwhile, fractures within the
gypsum fault were observed at β of 45°, 50°, and 65°, which may
be related to the deviation from the optimal dip angle for fault
slip, leading to shear cracks within the gypsum fault (Figure 6C). In
contrast, at the β of 55°, 60°, no microcracks were observed in the
rocks on both sides of the fault, and no fracturing occurred within
the gypsum fault. The gypsum fault completely separated from the
sandstone matrix on one side and slid along the contact surface
between the two (Figure 6C).

3.4 Morphology of the fault surface

The statistical parameters are commonly used to evaluate the
morphology of rock fractures or sawed surfaces can be directly
derived from the data coordinates of the asperities on the fracture
surface. The statistical parameters typically include the root mean
square of the height of the profile Rq (Equation 2), the peak asperity
height Rz (Equation 3) in the amplitude characteristics; and the root
mean square of the first derivative of the profile Z2 (Equation 4).

Rq = [
1
N

N

∑
i=1
(zi − za)

2]

1
2

(2)

Rz = zmax − zmin (3)

Z2 = [
1

N− 1

N−1

∑
i=1

(zi+1 − zi)
2

(xi+1 − xi)
2]

1
2

(4)

where zi represents the surface height at point i, N is the number
of sampling points, za is the distance between the profile and the

mean elevation line, zmax is the maximum surface height, zmin is
the minimum surface height, and (xi, zi) and (xi+1, zi+1) are the
coordinates of the two adjacent points on the fracture profile. In
addition, the Joint Roughness Coefficient (JRC) is calculated using
an empirical formula (Tse and Cruden, 1979):

JRC = 32.2+ 32.47 log Z2 (5)

In order to calculate the statistical roughness parameter and
JRC (Equation 5), 26 equally spaced fracture profiles were extracted
from each fault surface along the direction parallel to the fault.
The average roughness parameters and JRC for the 26 profiles
are listed in Table 4.

After experiments, both sandstone layer and gypsum layer were
subjected to non-contact tomography scanner and reconstruction
(Figure 7). In addition to the surface cracks mentioned earlier, it
was also observed that the surface of the gypsum was significantly
smoother than that of the sandstone, attributed to the differing grain
sizes of the sandstone and gypsum particles. This was corroborated
by the roughness calculations (Table 4). A clear slicken line was
observed parallel to the slip direction on the surface of the sandstone
layer, which occurred due to the fracture and displacement of
asperities on the sandstone layers. Its visibility increased with
higher Pc or lower β angle, which is related to the stress state
on the fault surface, and will be discussed in more detail. The
roughness of the fracture surface was significantly greater than
that of the shear surface (Figure 8A), with the complete inter-rock
fracture particularly triggered by the 0° fault. As Pc increases, it was
observed that the roughness of the gypsum layer decreases, while the
roughness of the sandstone layer increases (Figure 8B). This occurs
because the deformationmodulus of the gypsum layer is greater, and
compaction under high normal pressure reduces the asperity height
of the gypsum layer. The fracture and displacement of asperity on
the sandstone surface increased the roughness.

The differences in fault surface morphology are closely related
to the fracture and stick-slip patterns of the fault. In the following
sections, we will discuss in detail the impact of fault dip on
shear strength of saw-cut specimens, as well as the mechanisms
of confining pressure and loading rate on the stick-slip state of
the fault. The correlation of experimental results with underground
engineering near in-situ faults is also discussed.
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FIGURE 6
(A) Crack morphology on the surface of saw-cut specimens (B) Crack types in saw-cut specimens (C) Cracks morphology on gypsum fault and
saw-cut surfaces.

4 Discussion

4.1 The impact of gypsum faults on the
strength of sandstone

Based on the relationship between shear stress and normal stress
components on the fault surface under different Pc for the 60°
fault (Figure 1B), we fitted the friction coefficient and cohesion of
the contact surface with gypsum faults (Figure 9A). According to
the single structural plane strength criterion (Jaeger, 1960), when
the fault dip angle is equal to = 45° + γ/2 [γ = 90° − tan−1(1/μ)],
i.e., β = 58°, this represents the optimal dip angle for fault slip.
When β1(36°) < β < β2(80°), the specimen will slip along the fault
plane. When the fault dip angle is outside this range, the maximum
differential stress of the rock containing the fault equals that of
the intact rock. This value can be obtained through the internal
friction angle φ and cohesion c0 of the rock matrix (Table 1),
as given by Equation 6:

σd =
2c0 cosφ+ 2σ3 sinφ

1− sinφ
(6)

For a fault containing cohesive fault gouge (Fagereng et al.,
2010), the maximum differential stress required for its activation is:

σd = [(tanβ+ cotβ)/(1− μcotβ)][cw + μσ3] (7)

Where σ3 is theminimumprincipal stress, μ is the friction coefficient
of pre-existing fractures, β is the fracture angle relative to σ3, cw is the
cohesive strength of the fault gouge.

Therefore, based on Equations 6, 7, we can calculate and predict
the differential stress at failure for rocks containing cohesive faults
(Figure 9B). Within β ranging from 0° to 40°, the maximum
differential stress in saw-cut specimens decreases gradually as
increasing β angle from experimental observations. The presence
of gypsum layers with finite thickness, unlike the theoretical
assumption of infinitesimally thin faults, alters the mechanical
properties of the sandstone. In β of 0°–30°, since the cohesive
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TABLE 4 The roughness parameters and JRC of different fault surfaces.

Fracture surface Sandstone layer Gypsum layer

Rq Rz Z2 JRC Rq Rz Z2 JRC

0° 9.564 58.018 0.527 23.180 10.269 54.243 0.574 24.380

15° 1.368 19.036 0.494 22.260 1.152 4.378 0.164 6.690

30° 0.479 41.273 0.216 10.590 0.829 4.068 0.216 10.610

35° 0.430 9.065 0.322 16.210 0.296 8.398 0.245 12.370

40° 1.217 8.114 0.210 10.170 0.495 5.896 0.160 6.390

45° 0.331 2.506 0.196 9.250 0.802 2.635 0.168 7.030

50° 0.055 0.613 0.212 10.340 0.216 1.721 0.153 5.680

55° 0.045 0.762 0.156 6.030 0.050 0.547 0.149 5.310

60° Pc = 5 MPa 0.053 0.502 0.143 4.740 0.059 0.519 0.184 8.330

60° Pc = 10 MPa 0.041 0.699 0.202 9.630 0.150 0.815 0.156 6.010

60° Pc = 20 MPa 0.065 0.651 0.204 9.810 0.071 0.840 0.128 3.240

60° Pc = 40 MPa 0.051 0.680 0.235 11.750 0.065 0.694 0.127 3.050

65° 0.043 0.836 0.153 5.760 0.055 1.241 0.134 3.810

strength of the gypsum is significantly lower than that of the
sandstone, the presence of gypsum fault changes the overall cohesion
of the saw-cut specimen and affects the friction angle during
failure, resulting in cracks through the gypsum layer having angles
lower than the internal friction angle of intact sandstone specimens
(Figure 6). In β at 35° and 40°, closer to the optimal slip angle for
fault activation, the fault locking effect of the faults is unstable.
For instance, during the linearly increased stage of the specimen
under stress, some slight stress drops were observed, indicating
sliding between the fault surfaces. In β ranging from 45° to 65°,
the deviation between theoretical predictions and experimental
results may be attributed to the rotation of stress within the
gypsum faults (Giorgetti et al., 2019). This is influenced by the
variation between the direction of maximum shear stress and
β angle, with internal cracks within the fault corroborating this
observation (Figure 7). Compared to unfilled saw-cut samples
(Guerin-Marthe et al., 2023; Meng et al., 2023) or saw-cut samples
with fault clay gouge (Giorgetti et al., 2019), the presence of internal
cracks within the gypsum faults at 45° and 50° indicates that the
sliding surface is not a two-dimensional plane. Faults slide along
newly formed surfaces, increasing the roughness between faults and
consequently increasing the friction coefficient. Thus, this alters
the distribution of shear and normal stresses on the fault surfaces,
requiring a higher differential stress for fault activation.

4.2 The transformation of stick-slip mode
during activation

Based on the previous analysis, β exceeding 40° consistently
exhibit a fixed amplitude of stick-slip behavior. However, the

trends in differential stress before and after fault activation vary.
Importantly, the differential stress trends under different Pc closely
resemble those β of 45°–60°. The differential stress during this
stage was extracted (Figure 10). The figures identify four main
modes of stick-slip from fault activation. These modes are: Type
1, depicted in Figures 10A, E, featuring a sharp drop at fault
activation; Type 2, shown in Figures 10B, F, featuring a slowdecrease
with irregular multi-peak behavior at fault activation; Type 3,
illustrated in Figures 10C,G, H displaying a cyclic decrease around
fault activation; and Type 4, shown in Figure 10D, demonstrating a
cyclic and steady decrease around fault activation.

The characteristics of stress drop during fault activation are
correlated with the stress field distribution on the fault plane. Under
lower β or higher Pc, the fault plane commonly exhibits higher
normal stress. The interlocking effect between the gypsum fault
crack and the sandstone layer results in static friction significantly
exceeding sliding friction. Higher normal stress leads to tighter
contact between the surfaces, resulting in stronger adhesion and
interlocking of rough particles, thereby increasing the static friction
coefficient.The combined increase in friction coefficient and normal
stress necessitates a higher shear force for fault activation. At the
same time, greater shear force accumulates stronger sliding potential
energy, increasing the speed of frictional rupture (Brantut et al.,
2016). Therefore, a Type 1 or Type 2 stress drop occurs upon fault
activation. Influenced by decreasing Pc or increasing β, the decrease
in roughness of the sandstone layer and reduction of normal stresses
also cause the fault to transition from dynamic destabilization
to progressive fault activation (Type 3). At 65°, lower normal
stresses and lower roughness allow static friction to approach sliding
friction, thus producing a Type 4 change characteristic.
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FIGURE 7
Contour scan of contact surfaces on both sides of the fault.

FIGURE 8
(A) Rq roughness parameters at different β angle (B) JRC under different Pc.
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FIGURE 9
(A) Strength fitting curve of the gypsum fault (B) The theoretical and predicted values of the maximum differential stress for gypsum-containing
specimens.

FIGURE 10
Variation in stick-slip types during fault activation under the influence of fault angle grouped by: (A) 45°, (B) 50°, (C) 55°, (D) 65°, (G) 60° Changes in
stick-slip types under the influence of confining pressure grouped by:5 MPa (H), 10 MPa (G), 20 MPa (F), 40 MPa (E).

4.3 Correlation between fault stick-slip and
slip rate

The correlation between the rate of faults and stress forms the
basis for studying fault instability. During the specimen loading
process, the radial deformation of the specimen ismainly influenced
by three factors: first, lateral expansion during loading, primarily
controlled by the material’s inherent Poisson’s ratio; second, the
main fracture produced by sandstone failure under the influence
of low-angle faults, and the deformation caused by continuous
opening of fractures; third, the relative sliding between pre-existing
faults under the influence of high-angle fault sliding. For β above
45°, the lateral displacement before fault activation is minimal.
Therefore, during the fault sliding process, the radial displacement
caused by the deformation of sandstone due to the Poisson effect is
negligible. Consequently, the change in radial displacement can be

used to reflect the fault slip displacement. For faults in the slip stage,
according to the trigonometric relations, the relationship between
radial displacement and fault slip is as Equation 8:

∆s = ∆l− 2πr
4cosβ

(8)

where ∆s is the fault slip displacement, ∆l is the circumferential
displacement during the slip stage, r is the radius of the cylindrical
sample. The slip rate of the fault is defined as the first derivative
of displacement with respect to time. Figures 11A–C present the
variations in fault displacement and slip rate during fault sliding
processes at different β angles, Pc, and loading rates, respectively.

Each fault stick-slip event is accompanied by stress drop and
acceleration/deceleration of the fault, since there is a positive
correlation between fault slip rate and stress drop (Guerin-
Marthe et al., 2023). This results in a higher slip rate during fault
activation for lower β and higher Pc. Notably, faults under 40 MPa Pc
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FIGURE 11
Slip rate and displacement of laboratory fault grouped by: various dip angles (A), various confining pressure (B), various loading rate (C).

show several accelerations before complete activation (Figure 11B).
This occurs because high Pc and shear stress can cause localized
rupture of asperities, triggering occasional accelerations. For faults
under loading rates of 5E-3 - 4E-2, although the magnitude of
stress drop decreases with increasing loading rate, the average and
maximum slip rates remain nearly the same. This indicates that
the loading rate primarily influences fault displacement through
the stick-slip cycle. When the loading rate reaches 8E-2 mm/min,
the fault slip rate does not drop to zero (Figure 11C), proving that
the fault stops stick-slip and transitions into stable sliding at a
certain loading rate. It is likely that as the loading rate continues
to increase, the slip rate of the fault becomes primarily associated
with the loading rate, and the fault will continue to slide along
with the displacement of the platen. The preceding discussion
demonstrates that the maximum slip rate of the laboratory fault
is mainly controlled by β and Pc, while the loading rate primarily
regulates the stick-slip cycle of the fault.

4.4 Correlation with underground
engineering

Although our study was conducted in a laboratory, work on rock
damage processes from the laboratory-scale to the Earth-scale is
very common (Ke et al., 2018; Xu et al., 2023). Our observations
indicate that low-dip faults cause significant stress accumulation
within the surrounding rock mass, resulting in increased damage
to the rock mass and expanding the extent of the fracture zone
around the fault core. This not only reduces the stability of the
surrounding rockmass in projects (Su et al., 2017), but also increases
the porosity and permeability of the rock mass (Hou et al., 2024),
raising the risk of water and mud surges (Zhang et al., 2024) in
mines, tunnels and other projects. High-dip faults have a stronger
tendency to slip, and sudden fault activation may trigger localized
seismic shaking (Cao et al., 2024). In addition, as resource extraction
goes deeper (Wang et al., 2017), high confining pressure in deep
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can places faults under greater critical stress, which may lead to
localized rupture and episodic acceleration. There is also greater
rupture velocity when the fault is fully activated. Furthermore,
due to the stress field in deep rock masses (Pan et al., 2023),
stress redistribution caused by fault destabilization (Ju et al., 2022)
lead to dynamic hazards such as rockbursts and coal and gas
outbursts (Bai et al., 2022). The laboratory loading rate reflects the
construction speed and excavation cycle of underground projects
(Liu et al., 2024), and the choice of construction strategies influences
the stress and slip states of the fault (Rasouli et al., 2011). Therefore,
geological exploration and monitoring should be emphasized in
the design and construction of underground engineering. During
construction, excavation progress and roadway support design
should be adapted to the specific geological conditions. Additionally,
emergency measures should be designed and optimized. These
measures are essential to ensure the stability of the fault and the
safety of the corresponding underground engineering.

5 Conclusion

In this study, triaxial compression tests were conducted on
sandstone containing gypsum faults. Test conditions with different
fault dip angles, confining pressures and loading rates were
examined, leading to the following conclusions:

(1) The dip angle of the fault significantly influences the failure
strength and fracture mode of the saw-cut specimens.
Specimens with dip angles of 0°–40° mainly fracture along
the main crack through the gypsum fault, and the strength
decreases linearly with increasing dip angle. Specimens with
dip angles of 45°–65° fracture and slip along fractures in
both the sandstone plane and the gypsum fault. Fractures
within the gypsum fault, along with stress rotation, cause
discrepancies between theoretical analysis andmeasured shear
strength values.

(2) Normal stress magnitude and surface roughness on the fault
plane influence the occurrence of four primary stick-slip
modes during fault activation. The increase in normal stress
causes the roughness of the sandstone layer to increase while
that of the gypsum layer decreases, making slicken line on the
sandstone layer more prominent.

(3) The maximum slip rate of a fault is related to the maximum
stress drop at activation. The dip angle of faults and confining
pressure influence the maximum slip rate. An increase in the
loading rate affects the fault stick-slip cycle period, and the slip
mode of the fault transitions from stick-slip to stable-slip as the
loading rate increases.

(4) This study emphasizes the impact of fault dip, confining
pressure, and loading rate on rock mass stability in
underground engineering. Low-dip faults increase damage,
porosity, and permeability, while high-dip faults may trigger
seismic shaking and rupture more rapidly under higher

confining pressure. Additionally, the loading rate affects the
fault’s slip state, highlighting the importance of geological
monitoring and strategic planning to ensure safety.
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