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Sedimentary microfacies
prediction based on multi-point
geostatistics under the
constraint of INPEFA curve

Xudong Wang1, Zicheng Yang1*, Xibao Liu2 and
Chengyuan Yuan1

1National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing,
Heilongjiang, China, 2PetroChina Jilin Oilfield Company, Songyuan, Jilin, China

The D Oilfield in the Songliao Basin has entered a critical phase of hydrocarbon
exploration targeting the Quantou Formation. However, challenges persist in
achieving precise stratigraphic division, sedimentary cycle characterization, and
microfacies prediction. This study aims to enhance stratigraphic resolution
and prediction accuracy of sedimentary microfacies to address uncertainties
in sand body distribution within dense well pattern areas. Integrated
Pattern Recognition and Fuzzy Analysis (INPEFA) was applied to natural
gamma logging data from 4,215 wells, combined with maximum entropy
spectrum attribute analysis (MESA) for high-precision sequence interface
identification. Multi-point geostatistical simulations were implemented using
well data and INPEFA-derived sequence stratigraphic frameworks. High-order
compatibility algorithms constrained the simulations, with iterative human-
computer interaction refining sedimentary microfacies models for three sand
groups. Three distinct sedimentary phases were resolved: (1) Sand Group
III exhibits rapid water encroachment with narrow, strip-like sand bodies;
(2) Sand Group II records gradual lacustrine regression, forming extensive
sheet-like sands; (3) Sand Group I reaches maximum flooding conditions,
displaying laterally continuous sand bodies with intensified fluvial dynamics.
The method predicts sedimentary microfacies under INPEFA curve constraints,
which makes sequence interface identification more intuitive and improves
cycle division and correlation precision. This multi-point geostatistics-based
prediction image accurately reproduces river channel distribution patterns,
offering high predictability and presenting a novel approach to characterizing
fine sand bodies. This integrated approach not only predicts sedimentary
microfacies distribution in dense well pattern areas of the Songliao Basin,
but also presents a novel solution to the challenging geological problem
of accurately forecasting effective sand body distribution. Furthermore, it
provides critical stratigraphic evidence for developing remaining oil potential
strategies in the basin, while offering an innovative methodology for reservoir
characterization in other mature exploration regions worldwide.
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1 Introduction

The Songliao Basin, a pivotal region for oil and gas exploration
endeavors in China, is characterized by geological complexities
that necessitated enhanced precision in exploration techniques
(Feng and Graham, 2023). Recent research indicates that
the D oilfield within this basin has entered a new phase of
development (Shen et al., 2023), highlighting the need for refined
stratigraphic delineation and detailed sedimentary microfacies
description. The extensive study area, coupled with complex
geological conditions and a dense well pattern, significantly limits
the effectiveness of traditional manual sedimentary microfacies
mapping. Although the manual method leverages the expertise
and experience of geological personnel, it faces challenges such as
a substantial workload, high subjectivity, and inconsistent quality
assurance.

The introduction of the INPEFA curve through Maximum
Entropy Spectral Attribute Analysis (MESA) technology signifies
a substantial advancement in stratigraphic analysis. Unlike
traditional methods, which are heavily reliant on seismic data
and core samples, this novel approach utilizes natural gamma
logging data, which is more accessible and circumvents the
limitations imposed by core sampling lengths. The INPEFA curve,
derived through MESA technology, provides a high-resolution
stratigraphic analysis by identifying inflection points indicative
of amplitude trend changes across the strata (Zhang et al., 2022).
This method offers a novel perspective for identifying base-level
cycle information across various orders, thereby aiding in the
division and correlation of sand groups (Wang et al., 2023c).
The novelty of this approach lies in its ability to provide detailed
stratigraphic information in areas where conventional methods
are constrained by data resolution and sampling limitations, thus
opening new avenues for exploration in similarly complex geological
settings.

Guardiano and Srivastava proposed multi-point geostatistics,
in which data events were obtained by scanning training images
of data samples to reflect corresponding geological patterns,
and the occurrence frequency of different data events was
approximated as the joint distribution probability of multiple
points in space (Guardiano and Graham, 1993). This foundational
work has been pivotal in developing methods to interpret complex
geological patterns, which this study builds upon by integrating
advanced statistical analyses to enhance sedimentary microfacies
characterization. By integrating multi-point geostatistics, this study
elucidates the heterogeneity of reservoir spaces by examining
spatial correlations among multiple points (Wu and Li, 2005),
allowing for a more objective and efficient characterization
of sedimentary microfacies, reducing the subjectivity and
workload associated with manual mapping. The integration
of multi-point geostatistics with the INPEFA curve represents
a significant methodological innovation, offering a robust
framework for sedimentary microfacies analysis that can be
adapted and applied to other regions with analogous geological
challenges.

This paper aims to innovate sedimentary microfacies
characterization by integrating the INPEFA curve with multi-
point geostatistics, thereby offering a novel, objective approach
that enhances prediction accuracy and reduces the subjectivity

inherent in manual mapping techniques. On the basis of using
the INPEFA curve to divide the sequence, the adoption of the
high-order compatibility method and the statistical method of data
occurrence repetition probability, as proposed by Pérez and Wang
(Pérez et al., 2014; Wang et al., 2019), further enhances the accuracy
and reliability of sedimentarymicrofacies prediction. By refining the
training image and integrating multi-point geostatistical random
simulation techniques, the study predicts sedimentary microfacies
with greater precision.The broader implications of this work extend
beyond the Songliao Basin, as the methodologies presented herein
can serve as a template for researchers facing similar challenges
in sedimentary basin analysis, providing a more systematic and
data-driven approach to sedimentary microfacies characterization.

2 Geological setting

The Songliao Basin, situated in northeastern China (Figure 1A),
exemplifies a large sedimentary basin that originated during the
Mesozoic and Cenozoic eras (Zhang et al., 2023). Known for
its abundant oil and gas reserves, the basin is a key region for
hydrocarbon exploration and exploitation within China (Liu et al.,
2023). The D oilfield, encompassing an area of approximately
800 km2, is positioned on the northwestern slope of the Fuxin
uplift belt, at the boundary between the northern and southern
sectors of the Songliao Basin (Figure 1B). It is characterized
by a monoclinal structure that dips towards the northwest
(Wang et al., 2023b; Li et al., 2024).

The study area, which spans approximately 38.664 km2 and is
located to the south of the D oilfield (Figure 1B), includes 142
exploration wells and 4,073 production wells. For the purposes
of this study, a selection of these wells is analyzed (Figure 1D).
The test region, delineating an area of about 9.067 km2 in the
northwest of the study area, contains 120 exploration wells and
1,356 production wells, with a similar selection process for inclusion
in this study (Figure 1C). An analysis of drilling and testing data
has identified the Quantou Formation as a significant stratigraphic
target within the study area. Notably, the Well D-10, with an
oil zone thickness of 9.8 m and a daily production rate of 9.26t
(Wang, 2019b; Wang et al., 2024a), underscores the substantial
exploration and development potential of the Quantou Formation
(Li et al., 2019; Wang et al., 2024b).

3 Materials and methods

3.1 Integrated prediction error filter
analysis

The Integrated Prediction Error Filter Analysis (INPEFA) is a
cutting-edge technique in logging geology that utilizes Maximum
Entropy Spectrum Analysis (MESA) to examine logging curves
in relation to depth. The essence of INPEFA lies in evaluating
the discrepancies between the predicted values from MESA at
specific depth intervals and the actual logging data, leading to
the calculation of error filter analysis values. The combination
of these discrepancies yields the INPEFA curve, which reveals
the nuances of sedimentary cyclicity. This theoretical framework
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FIGURE 1
Tectonic units division and location maps of the study area in the central Songliao Basin (A) The position of the study area within Songliao Basin. (B) The
position of the study area of D oilfield within Songliao Basin. (C) The location of the test area in the study area. (D) The whole Mapping of the Study area.

is based on the understanding that sedimentary sequences are
influenced by paleoclimate fluctuations and a range of external and
internal factors, such as eustatic sea level changes and sedimentary
provenance (Liang et al., 2022; Wang et al., 2022a).

The INPEFA curve is notable for its ability to identify sequence
boundaries that conventional logging curves might overlook, due
to its clear depiction of sedimentary cyclicity (Wang et al., 2022b;
Abbasi et al., 2024). The curve is characterized by two principal
trends: ascending and dropping. An ascending trend typically
correlates with an increase in shale and a rise in the A/S ratio,
suggesting a rising base level that may correspond to a phase
of enhanced precipitation or marine transgression. Conversely, a
dropping trend is associated with an increase in sandstone and
a reduction in mudstone, accompanied by a decrease in the A/S
ratio, indicating a falling base level that signifies a phase of marine
regression (Ye et al., 2018). The turning points of the INPEFA curve
often suggest potential flooding surfaces or sequence boundaries.
Generally, an upward positive trend in INPEFA values indicates that
the GR curve value exceeds the predicted value during deposition,
with gradually increasing mud content, suggesting a possible base
level rise stage. A downward negative trend in INPEFA values
indicates that the GR curve value is less than the predicted
value during deposition, with gradually decreasing shale content,
suggesting a possible base level decline stage (Figure 2).

3.2 Multiple-point geostatistics

3.2.1 Data occurrence repetition probability
statistical method

In 2019, Wang and colleagues expanded on the advanced
high-order compatibility optimization approach outlined by Pérez
by introducing an innovative statistical technique for assessing
the probability of data occurrence recurrence (Pérez et al.,
2014; Wang et al., 2019). This novel methodology is designed
to measure the incidence of particular data occurrences
within a training dataset, thereby elucidating the underlying
distribution patterns (Morosov and Bratvold, 2021). The procedure
begins with the application of a predefined template to scan the
conditional dataset, thereby identifying a collection of n data
occurrences, denoted as the set DE. Subsequently, for each training
image, the frequency of occurrence for the ith data occurrence,DEi,
is meticulously enumerated and recorded as Ri,j.

Utilizing this empirical data, the researchers computed
additional distributional attributes of data occurrence across
various training images. These included the variance in repetition
probability, denoted as σ j, and the rate of non-correspondence,
labeled as UNFj. The metrics-repetition probability variance
and non-matching rate-offer a more nuanced and precise set
of evaluative benchmarks for refining training images. This

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1506709
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1506709

FIGURE 2
GR curve prediction error filtering analysis of Well D-10 in comprehensive analysis.

approach enhances the optimization process by providing a deeper
understanding of data occurrence dynamics (Curran and Atkinson,
1998; Bai and Tahmasebi, 2021; Yin et al., 2022).

In geostatistics, the repetition probability of a data occurrence
FT i,j is defined as the ratio between the number of repetitions
of a single data occurrence Ri,j and the sum of the number of
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repetitions of all data occurrences in the training image. This index
is a crucial parameter for measuring the frequency of specific data
occurrences within the training image, which aids in evaluating the
reliability of the training image in simulating geological phenomena.
Specifically, the calculation formula for the repetition probability of
data occurrence FT i,j is as follows:

FTi,j =
Ri,j

∑n
i=1

Ri,j
(1)

In this formula Equation 1,Ri,j denotes the number of repetitions
of the ith data occurrence in the jth training image, and the
denominator represents the sum of the number of repetitions of all
data occurrences within the training image. Through this formula,
we can quantify the frequency of each data occurrence in the training
image, thereby providingmore accurate input for sedimentary facies
prediction.

The repetition probability variance, denoted as σ j, is an
important statistic that measures the dispersion of the repetition
probability of data occurrences in the training image. This indicator
reflects the distribution uniformity of different data occurrences
within the training image. Specifically, the calculation of the
repetition probability variance j involves the difference between the
repetition probability FT i,j of each data occurrence and its average
repetition probability FTj in the training image. The calculation
formula is as follows:

σj =
∑n

i=1
(FTi,j − FTj)

n
(2)

In this formula Equation 2, FT i,j is the repetition probability of
the ith data occurrence in the jth training image, FTj is the average
of the repetition probability of all data occurrences in the training
image, and n is the total number of data occurrences. The smaller
the value of the variance σ j of the repetition probability, the more
uniform the distribution of data occurrences in the training image
is, and vice versa.

In geostatistics, the optimization of training images not only
depends on the repetition probability of data occurrence, but also
involves the matching degree of data occurrence. To this end, the
indicator valueDi,j is introduced tomark whether thematching data
occurrence is found in the training image. If the ith data occurrence
is successfully matched in the jth training image, Di,j is recorded
as 1; otherwise, marked as 0. Based on these indicator values, the
proportion of unmatched data occurrence can be calculated, that
is, the unmatched rate of data occurrence UNFj. The calculation
formula is as follows:

UNFj = 1−
∑n

i=1
Di,j

n
(3)

In this formula Equation 3, n is the total number of data
occurrences. The lower the value of the unmatched rate UNFj, the
more data occurrences arematchedwith the actual geological model
in the training image, which indicates that the geological model of
the training image is more representative. Concurrently, the smaller
the value of the repetition probability variance σ j, themore stable the
distribution of data occurrences in the training image, which further
indicates that the training image is more consistent with the actual
geological model.

3.2.2 Method to realize
The field of geostatistics encompasses a sophisticated method

known as multi-point geostatistics, which is meticulously designed
to identify patterns that correspond with actual geological data
within a training image. The following sequence delineates the
specific procedural steps for implementing this method.

1. Determination of the Search Template: Select an appropriate
search template that corresponds to the sedimentary facies
of the study area, and then proceed to identify the data
occurrences.

2. Data occurrence Scanning: The training image is
scanned for conditional data occurrence to detect fully
congruent patterns (Chen et al., 2023). For each identified
match, the count of the corresponding data occurrence,
denoted as Ri,j, increments by one, continuing until the
scanning of all data occurrences is complete.

3. Repetition Statistics Compilation: The total count of matches,
denoted as Ri,j, which align perfectly with the conditional data
occurrence, is recorded. This count serves as the foundation
for calculating the repetition probability FT i,j of the data
occurrence.

4. Repetition Probability Calculation: The repetition probability
FT i,j for each data occurrence is derived from Ri,j, reflecting
the prevalence of data occurrence within the training image.

5. Probability of Repetition Variance Calculation: Subsequently,
the variance of the repetition probability, denoted as σ j, is
computed based on FT i,j. This metric assesses the variability
in the frequency of data occurrences.

6. Unmatched Rate Computation: Concurrently, the proportion
of data occurrences that do not match, known as the
unmatched data occurrence rate UNFj, is calculated. This rate
indicates the fraction of data occurrences in the training image
that lack a match.

7. Training Image Optimization: Ultimately, the training image
is refined and prioritized using the variance of the repetition
probability σ j and the unmatched rate UNFj. The selection is
guided by the criterion of the closest alignment with the actual
geological data.

4 Results

4.1 Sequence identification and division
based on INPEFA curve

Upon meticulous analysis of the INPEFA curve from the
Quantou Formation within Well D-10, distinct cyclic patterns
were discerned. The rising and dropping trends of the curve
facilitated the stratigraphic delineation of the formation into three
sand groups. The INPEFA curve of sand group Ⅲ displays a
rising trend, indicative of a normal sedimentary cycle characterized
by a progressive increase in base level, a bell-shaped log facies,
and a gradual rise in shale content. The INPEFA curve of
sand group Ⅱ displays a dropping trend, characteristic of an
inverse cycle with a receding base level, a digitate log facies,
and significant sandstone deposition. The INPEFA curve of sand
group Ⅰ displays a rising trend, signifying a normal cycle with an
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FIGURE 3
A comparative analysis of wells utilizing the GR curve prediction error filtering technique. (A) Section 1, depicted in Figure 1D, represents a profile
aligned with the direction of the geological provenance; (B) Section 2, depicted in Figure 1D, represents a profile oriented perpendicular to the
geological provenance.

elevated base level, a serrated box-shaped log facies, and escalating
shale content (Figure 3).

In the field of high-resolution sequence stratigraphic correlation,
the base-level cycle conversion surface is widely acknowledged as
a critical boundary for stratigraphic segmentation (Yuan et al.,
2018). Utilizing the results of high-frequency sequence delineation
from individual wells, we utilized the cyclical data revealed by
the INPEFA curve to compare high-frequency sequences among
wells, thereby constructing a detailed isochronous stratigraphic
framework. By conducting an INPEFA analysis on the GR curves
from all wells within the study area and plotting the INPEFA
framework sections both along and across to the provenance
direction, we noted that the Quantou Formation is consistently
distributed in the horizontal plane. Moreover, the base-level cycle
characteristics, as revealed by the INPEFA analysis of GR curves,
demon a high degree of comparability throughout the entire
study area (Figure 3).

Initially, a comprehensive analysis of the sedimentary attributes
within the deltaic facies of the study region was undertaken. This
thorough examination facilitated the identification of the planar
morphological characteristics of various microfacies, which form
the basis for the development of training images. Subsequently, we
utilized the extensive well pattern data, characteristic of the study
area, to refine the breadth of subaqueous distributary channels.
This data, replete with geological insights, significantly enhances the
precision of our geological simulations.

4.1.1 Morphological characteristics of
subaqueous distributary channels

Distributary channel in sedimentary contexts typically exhibit
streamlined geometry and are orthogonal to the shoreline. These
channels contain substantial sedimentary strata, with typical
thicknesses exceeding 2 m. In contrast, the sediment thickness in
narrow channels or their terminal portions is reduced, averaging

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1506709
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1506709

approximately 1.5 m. The channel’s extension length is significantly
influenced by the river’s strength, leading to substantial variations
in the shape and scale of the subaqueous distributary channels.
Subaqueous channels in north-south aligned areas tend to be
more elongated, in contrast to sharply with those in east-
west aligned channels, which are relatively truncated, leading to
a more compact river system. Analysis of logging facies and
lithological sections reveals that subaqueous distributary channels
are primarily formed by the superposition of multi-layered,
positively rhythmic sandstones. Logging curve responses delineate
the sedimentary characteristics of these channels, often manifesting
in archetypal patterns, such as bell-shaped or serrated patterns
(Chen et al., 2022; Wang et al., 2023a).

4.1.2 Morphological characteristics of the front
sheet sand in distributary channel

The configuration and distribution of the front sheet sand in
distributary channels are predominantly dictated by the inherent
characteristics of these channels. The genesis of these sand bodies
is directly associated with sedimentation processes occurring at
the delta mouth bar and the distal bar. The delta mouth bar
is a sedimentary formation precipitated by the river’s reduced
flow velocity upon entering the lacustrine environment, while
the distal bar is a sedimentary body formed by wave action at
the river mouth where it enters the lake. Positioned at the delta
front, these structures are subject to the interplay of lacustrine
waters and wave processes, leading to their reconfiguration
and re-sedimentation, ultimately yielding a thin, stratified sand
body. The distinctive finger-shaped pattern observed in logging
curve responses is indicative of the unique characteristics of the
sedimentary environment and the specific depositional dynamics
(Wu et al., 2019a).

4.1.3 Morphological characteristics of the front
sheet sand outside distributary channel

The front sheet sand outside distributary channels, extensively
dispersed within sedimentary contexts, is not confined to areas
immediately adjacent to these channels. These sedimentary
formations typically result from the overflowofwater during periods
of high discharge, transporting sediments across broader deltaic
expanses. This sedimentation process is often triggered by natural
phenomena, such as floods, which cause water to overflow the
river’s banks, thereby extending the sedimentary reach to more
distant locales (Wu et al., 2019b).

The formation of outer front sheet sand bodies is intricately
linked to the sedimentary dynamics at the delta front. During
flood events, the river’s discharge increases, enhancing the flow
velocity and the capacity to entrain sediment. Upon reaching
the delta’s edge, the water’s velocity decreases, causing the
sediments to settle and coalesce into sheet-like sand bodies. The
sedimentological attributes and the spatial distribution of these
formations provide valuable insights into the characteristics of the
delta’s sedimentary facies (Zhang et al., 2017).

4.1.4 Morphological characteristics of
interdistributary bay

The interdistributary bay, a key component of the deltaic
sedimentary system, is typically situated between subaqueous

distributary channels. The sedimentary attributes of this region
are characterized by the thinning and eventual disappearance
of sandstone, a phenomenon referred to as “pinch-out.” The
interdistributary bay, predominantly composed of mudstone, silty
mudstone, and argillaceous siltstone, exhibits a low, flat dentation-
shaped logging response, which is indicative of the fine-grained
nature of these sediments (Wu et al., 2019b; Wang et al., 2023a).

The genesis of this sedimentary pattern is intricately linked to the
hydrodynamics within the distributary channels. In the interstitial
spaces between these channels, the reduced flow velocity diminishes
the sediment transport capacity, resulting in the accumulation of
fine-grained sediments such as mudstone and silty mudstone. The
stratified arrangement of these sediments imparts a distinctive
signature on the logging curve, providing a critical basis for the
identification and analysis of the sedimentary traits within the
interdistributary bay (Wu et al., 2019b).

For a detailed elucidation of sedimentary microfacies
characterization, we use Sand group II within the study area as a
case study to illustrate the meticulous process based on multipoint
geostatistical analysis. To accurately delineate the geological
attributes of the Sand group II in the test area, we employed
sophisticated digital tools to manually delineate the sedimentary
microfacies. Initially, we collated geological data, including
lithology, sedimentary structures, and paleocurrent directions.
Subsequently, using digital tools, we meticulously delineated the
distribution and morphology of diverse sedimentary microfacies,
such as distributary channels, sheet sands, and interdistributary
bays, each with distinct environmental implications.

This methodology necessitates profound scrutiny and
comprehension of geological data to ensure that the resulting maps
authentically reflect the geological conditions. Digital tools facilitate
the precise demarcation of sedimentary microfacies boundaries,
thereby improving the scientific rigor and applicability of the
maps. Moreover, these tools enable multidimensional analysis
and representation, such as differentiating microfacies through
color coding and pattern variation, thereby augmenting the maps’
interpretability and informational value.

4.1.1.1 Based on the sedimentary microfacies map of the
hand drawn test area to establish the training image

This study utilizes the Sand group II within the designated study
area as a case study, employing a simulation methodology based
on a hand-drawn sedimentary microfacies map. The essence of this
approach lies in the fusion of geological reasoning with quantitative
analysis to produce a sedimentary microfacies map that accurately
reflects geological conditions.

1. Hand-drawing the sedimentary microfacies map for sand
group II in the test area: Initially, comprehensive geological
research is conducted to delineate the geometric parameters
of Sand group II, including its orientation and configuration.
This step is crucial for establishing the sedimentarymicrofacies
plan, as it involves clarifying the spatial relationships
and boundary conditions among various microfacies
(Figure 4A).

2. Digital scanning: the hand-drawn sedimentary microfacies
map of the test area is subjected to digital scanning. This
involves the digital assignment of various sedimentary
microfacies types and their boundaries, and then
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FIGURE 4
Predictive process of sedimentary microfacies for the sand group II (A) Hand-drawn sedimentary microfacies map of the sand group II test area; (B)
Digitalized sedimentary microfacies map of the sand group II test area; (C) Iterative training images within the digital microfacies map of the sand group
II test area; (D) Regional sedimentary microfacies prediction for the sand group II.

the digital scanning image of the sand group II can
be obtained (Figure 4B).

3. Simulation and Iteration: Following the established order
and using the data event repetition probability statistics
method, based on the digital scanning image of sand group
II, we gradually simulate the various types of sedimentary
microfacies. This process is designed to generate the training
image of the reservoir (Figure 4C). After several iterations, the
training image is refined to be not only geometrically ideal, but
also conforms to the classical law of facies sequence.

4.1.1.2 Stochastic simulation sedimentary microfacies
prediction based on multi-point geostatistics

The spatial distribution of sedimentary microfacies across the
study area is predicted using multi-point geostatistics for stochastic
simulation. This methodology relies on the statistical analysis of the
recurrence probabilities of data occurrences, as well as on phase
data from individual wells and logging data. It utilizes a training
image customized for the target simulation, thereby enabling a
comprehensive simulation of the sedimentary microfacies in the
study area.
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FIGURE 5
(A) Spatial forecasting map for sand group I sedimentary microfacies (B) Spatial forecasting map for sand group III sedimentary microfacies.

Initially, data from the well logs of Sand group II and single-
well measurements are integrated. During the simulation, this
dataset serves as the foundation, ensuring that the outcomes
accurately reflect geological phenomena. The geological pattern,
derived from the test area training image of Sand group II, directs
the stochastic simulation process, thereby ensuring the geological
plausibility of the results. Furthermore, the dense well pattern is
utilized as a constraint, and a statistical method predicated on the
recurrence probabilities of data occurrences is employed to enhance
the simulation’s precision. After several iterative refinements,
a planar prediction map of the Sand group II sedimentary
microfacies is produced (Figure 4D), which is consistent with
the classical phase sequence law and exhibits an optimal
geometric form.

Subsequently, the method used to generate the planar
prediction map for the Sand group Ⅱ sedimentary microfacies
can be applied to the Sand group I and Sand group Ⅲ within
the study area. By incorporating well point data and logging
data, this approach ensures a high degree of consistency
between simulation results and actual geological conditions,
yielding accurate prediction maps for Sand group I and Sand
groupⅢ (Figure 5).

5 Discussions

5.1 Comparison of prediction and
human-computer interaction results for
three sand groups

The simulation results closely correlate with actual geological
information, ensuring the accuracy of the sedimentary microfacies

reproduction (Figure 6). This simulation process not only captures
the structural characteristics of the training image, but also
accurately represents the spatial distribution of the training
image across various microfacies scales. This indicates that the
simulation method is adept at capturing the intricacies of geological
phenomena.

Although the statistical method for data event repetition
probability is crucial in the simulation, its inherent limitations often
lead to non-smooth and discontinuous sedimentary microfacies
simulation results. Such limitations can affect the geological
interpretation and application of the simulation results. To overcome
these issues, a human-computer interactive method is employed
to refine the simulation outputs, aligning them more closely
with geological principles. This enhancement results in a visually
smoother and geologically more coherent map (Figure 6), ensuring
the precision and geological plausibility of the finalmicrofacies plan.

Multi-point geostatistics is an advanced spatial analysis
technique that encounters significant challenges and constraints
during implementation. Although our training dataset consists of
high-precision, hand-drawn sedimentary microfacies maps, the
creation and quality of these images is crucial. Obtaining high-
quality images that accurately capture the spatial characteristics
of geological entities is particularly challenging in areas where
geological data is sparse or geological complexity is high.

Moreover, the manual drafting process can introduce subjective
discrepancies, which may affect the accuracy of the training images.
Consequently, if the training image does not accurately reflect
the actual geological conditions, the reliability of the simulation
outcomes could be compromised. Furthermore, the effectiveness of
multi-point geostatistics in replicating the continuity of geological
bodies is limited by both algorithmic constraints and the quality of
the training images.
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FIGURE 6
Comparison of multi-point geostatistical prediction results and human-computer interaction results of sedimentary microfacies of three sand groups
in the study area.
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FIGURE 7
Substratification analysis of sand group Ⅱ in section.

To enhance the precision of predicting the planar distribution
traits of sedimentary microfacies, a substantial amount of high-
quality foundational data is essential. Algorithmic constraints and
iterative computations may impede the computational process.

Even with ample data, there remains an inherent uncertainty
in the quantitative predictive accuracy of multi-point geostatistics,
necessitating manual intervention to align the predictive outcomes
with geological principles. Therefore, improving the application
of multi-point geostatistics in predicting the planar distribution
characteristics of sedimentary microfacies, with the goal of
enhancing precision and efficiency, is representing a significant
research avenue within this domain.

5.2 Causes of fluctuation in INPEFA curve
features

Current research has proposed three possible explanations for
the fluctuations in INPEFA curves at different well locations within
the same area: Yang suggested that local tectonic activities might be
the cause for the fluctuations of INPEFA curves (Yang et al., 2018);
Ahmed discovered that lithological differences, such as changes
from carbonate rock to sandstone or mudstone, could contribute to
the variances in INPEFA curves (Mayhoub et al., 2019; Kassem et al.,
2022); Li argued that the insignificant record of lake level changes
caused bywater depth variationsmight not be obvious and could not
be recognized by INPEFA curves (Li, 2019). However, considering
the lithology of the Quantou Formation in the study area, which is
predominantly sandstone and shale with no significant lithological
differences, along with the inactive tectonic activities and the small,
concentrated number of abnormal well locations in INPEFA curves,
it is not possible to conclude that the abnormal INPEFA curve
characteristics are due to the insignificant record of lake level
changes. Therefore, none of the above factors can fully account for
the abnormal fluctuations observed in the INPEFA curves.

A detailed layer-by-layer study was conducted on the
Sand Group II. Utilizing the characteristics of GR, SP, RLLD,
and RLLS curves, the Sand Group II was divided into four

single layers (Figure 7). Analysis revealed that, with the exception of
Well D-22, the 3rd and 2nd single layer of the Sand Group II at other
well locations were mainly composed of sandstone, while Well D-22
was predominantly shale. The 1st single layer of the Sand Group II
was generally dominated by shale across all wells.

Comparing the INPEFA curve characteristics of each single
layer within the Sand Group II, it was observed that the abnormal
INPEFA curve for Well D-22 began in the 3rd single layer,
potentially due to the relatively low sandstone content and high
shale content in that layer. Consequently, it is inferred that the
abnormal fluctuations in INPEFA curves across the study area
may be associated with a weakening in the supply of sedimentary
material sources. Specifically, the sedimentary material sources
supply near Well D-22 may have experienced a sudden weakening
or disruption, leading to a decrease in sand supply and an increase
in muddy supply, which in turn caused the observed fluctuations in
INPEFA curves.

Our prediction results of sedimentary microfacies (Figure 4D)
support this inference and indicate a weakening of the sedimentary
material source near Well D-22. These findings further validate
the accuracy of multi-point geostatistics in predicting the planar
distribution of sedimentary microfacies.

5.3 Evolution of sedimentary system of
Quantou formation in the study area

The INPEFA curves reveal continuous changes in lake level
between wells, and the lake-flooding surface, as a near-isochronous
surface representing lake-level rise and fall, provides important
indications of sedimentary environment change within the study
area. By analyzing the INPEFA curves and well sections, we can
gain insights into the sedimentary environment evolution during a
specific time period. As shown in Figure 3, two INPEFA continuous
well-section profiles reveal the sedimentary environment evolution
during the deposition period of theQuantouFormation. Specifically,
the INPEFA curve of the Quantou Formation Sand Group III
exhibits a significant positive trend, indicating positive cyclic

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1506709
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1506709

FIGURE 8
Vertical evolution diagram of sedimentary system of Quantou Formation in study area of oilfield D.

sedimentation; the INPEFA curve of the Quantou Formation Sand
Group II exhibits a negative trend, indicating negative cyclic
sedimentation; and the abrupt positive change in the INPEFA curve

of the Quantou Formation Sand Group I points to positive cyclic
sedimentation. The sedimentary characteristics of each sand group
evolved as fllows (Figure 8):
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Sand group III is characterized by rapid water transgression,
with sand bodies distributed in strips, and pinch-out well points
showing a continuous distribution. The pronounced interbedded
gray mudstone and sandstone is a notable feature. Additionally, the
presence of common plant carbon debris in the sandstone provides
important clues for identifying the rapid water transgression in
sand group III.

Following the rapid water transgression of sand group III,
Sand group II experiencs a gradual lacustrine regression, leading
to decreased water depth. The energy of the river flow rate is
not quickly dissipated by the lacustrine environment, leading
to diffusion and the sedimentation of mud and sand, which
form large areas of sheet sand. The scarcity of pinch-out well
points and the presence of banded channel, particularly in the
northern region of the study area, suggest significant river sand
development. The bottom of the stratum consists of mudstone
with horizontal bedding, which forms an abrupt contact with the
overlying sandstone. The inclined bedding lamina in the sand-
mud interbed can dip at angles up to 20°. Mudstone contains
carbonaceous and sandy bands. These characteristics indicate that
the water level of the lake gradually decreased during deposition, the
water depth became shallower, the original underwater sedimentary
environment gradually transformed into a terrestrial or swamp
environment, and the energy of the sedimentary environment
gradually increased.

Sand group I formation corresponds to the peak of lacustrine
regression, characterized by the most extensive distribution of
sand bodies and intensified river activity. The primary sands are
distributed as large areas of sheet sands in narrow strips or localized
braids, with few pinch-out wells, indicating river sedimentation
during lacustrine regression. The thickness of the stratum ranges
from 3 to 5 m, interbedded with gray massive mudstone and
sandstone. Mud-coated sand masses at the base of sandstone
suggest a relatively unconsolidated sedimentary environment for the
sandstone.

6 Conclusion

The integration of INPEFA with multi-point geostatistics
represents a significant methodological innovation in sedimentary
microfacies prediction. This approach leverages the high-resolution
stratigraphic analysis provided by the INPEFA curve, which is
derived from natural gamma logging data, and combines it with the
spatial correlation analysis of multi-point geostatistics. This novel
combination overcomes the limitations of traditional methods,
which often face challenges with data resolution and sampling
constraints, thereby offering a more detailed and accurate depiction
of sedimentary cycles and microfacies distribution.

Sand group Ⅲ is characterized by rapid water transgression
and a distribution pattern of strip-like sand bodies. Sand group
II exhibits a gradual lacustrine regression, resulting in extensive,
sheet-like sand deposits. Sand group I, at the peak of lacustrine
regression, shows the broadest distribution of sand bodies and
intensified river activity.

The application of INPEFA curves for high-resolution
stratigraphic analysis, along with multi-point geostatistics for
sedimentary microfacies prediction, provides a systematic and

data-driven approach to characterizing complex geological settings.
This integrated approach reduces the subjectivity and workload
associated with traditional manual mapping techniques. The results
of this study show the potential of these methods to improve the
accuracy and reliability of sedimentary microfacies prediction.
Consequently, such enhancements are likely to increase the
efficiency of exploration efforts in basins with similar geological
characteristics.
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