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The late Paleocene to early Eocene (LPEE, ∼59–50 Ma) greenhouse condition
is the most recent geologic analogue for future climate change induced
by increased atmospheric CO2 partial pressure (pCO2). Recognition of
the hyperthermals and reconstruction of the continental hydroclimate
and atmospheric pCO2 during this warm period are fundamental to the
understanding of Earth’s surface responses to high atmospheric pCO2. Here
we study paleosol morphology, bulk organic matter δ13Corg, leaf wax n-alkanes
δ13Cn-alk and δDn-alk, and reconstruct mean annual precipitation (MAP) and
atmospheric pCO2 from the fine-grained floodplain deposits in the greater
Green River Basin, western U.S.A., to examine the hydroclimate evolution in the
continental interior during the LPEE. The Paleocene-Eocene Thermal Maximum
(PETM) was identified as a ∼4‰–5‰ negative carbon isotope excursion (CIE)
in the bulk organic δ13Corg record and leaf wax n-alkanes δ13Cn-alk record, and
a 30‰–50‰ increase in leaf wax n-alkanes δDn-alk record. Well drained green
paleosols and water-logged histosols dominated the floodplain deposition
during the LPEE, and poorly drained red paleosols and carbonate-rich calcisols
characterized the hyperthermal. Our reconstructed MAP is generally high
(800–1,500 mm) during the LPEE and does not show significant change during
the PETM. Our estimated atmospheric pCO2, by integrating bulk organic δ13Corg

and paleosol carbonate δ13Cc values, is generally in the range of 600–900 ppm
during the early Eocene, 1–2 times higher than the preindustrial level. These
records suggest that the continental hydroclimate was generally humid and
warm during the LPEE, and transient drying likely happened during the PETM.
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Highlights

• PETM was recognized as a ∼4‰–5‰ negative carbon isotope
excursion in the greater Green River Basin

• Continental climate was generally humid and warm during the
late Paleocene-early Eocene based on proxy data

• Transient drying likely happened during the PETMbased on an
δDn-alk increase and soil morphology change.

1 Introduction

Continental hydroclimate and environment during the late
Paleocene-early Eocene (LPEE, 59–50 Ma) greenhouse state are
fundamental to the understanding of Earth’s surface responses to
future global warming (e.g., McInerney and Wing, 2011). The warm
climate during the LPEE culminated at the Early Eocene Climatic
Optimum (EECO) during 52–50 Ma (Zachos et al., 2001), and the
LPEE consists of several short-term hyperthermal events, including
the most prominent Paleocene-Eocene Thermal Maximum (PETM)
occurred at ∼55.5 Ma (Zachos et al., 2001), and smaller Eocene
Thermal Maximum 2 and 3 (ETM-2, ETM-3) at ∼53.5 Ma and
∼52.8 Ma, respectively (e.g., Zachos et al., 2001; Lourens et al., 2005;
Sluijs et al., 2009; Abels et al., 2012; Schneider-Mor and Bowen,
2013). During the LPEE greenhouse state, benthic foraminifera
δ18Oc values decreased by at least 1.0‰, representing ∼4°C increase
in ocean bottom temperature, and the δ13Cc values decreased∼2.0‰
(Zachos et al., 2001). It has been suggested that the warm global
climate during the LPEEwas associated with injection of a very large
mass of 13C-depleted carbon into the atmosphere or ocean (e.g.,
Zachos et al., 2008). Possible sources of the carbon include: 1) deeply
buried rocks that were liberated as methane and CO2 by intrusive
volcanisms (Svensen et al., 2004); 2) high methane fluxes from large
marine gas hydrate capacitors as a result of increasing deep-sea
temperature (e.g., Dickens, 2003); 3) metamorphic decarbonation
of carbonate-rich pelagic sediments and release of CO2 when
the Tethyan oceanic crust was subducted during the India and
Eurasia collision (e.g., Caldeira, 1992; Kent and Muttoni, 2008;
Guo et al., 2021); or 4) repeated, large-scale releases of dissolved
organic carbon from the ocean by ventilation of the ocean interior
(e.g., Sexton et al., 2011).

The responses of continental climate and environment to
future global warming can be predicted from detailed continental
hydroclimate records during the LPEE. Sedimentary basins
at different global sites provide a rich archive of continental
hydroclimate for this warm period, and many studies have been
conducted to examine the contemporaneous climatic and ecological
responses based on paleopedology, stable isotope analysis, and
climate modeling (e.g., Koch et al., 1995; Bowen et al., 2001; Sewall
and Sloan, 2006; Hren et al., 2010; Hyland et al., 2013; Snell et al.,
2013; Carmichael et al., 2017; 2018; Hollis et al., 2019; Rush et al.,
2021; Cramwinckel et al., 2023). However, most of these studies
focus only on a short period of the early Paleogene, such as the
PETM and EECO (e.g., Bowen et al., 2001; Bowen and Beerling,
2004; McInerney and Wing, 2011; Hyland et al., 2013). Up to now,
long and continuous terrestrial climate records covering the entire
early Paleogene are rare.

The hyperthermal events occurred during the LPEE have been
well documented in marine isotope record and continental isotope
record in the Bighorn Basin in the western U.S.A. The PETM is
characterized by a more than 1.0‰ negative excursion of deep-
sea carbonate δ18Oc values and ∼4°C–8°C increase of deep-sea
temperature over a duration of ∼100 kyr (e.g., Kennett and Stott,
1991; Röhl et al., 2000; Zachos et al., 2003; Tripati and Elderfield,
2005; Röhl et al., 2007). The PETM is also expressed as a ∼3‰–8‰
negative CIE in the marine and terrestrial carbon isotope records
(e.g., Kennett and Stott, 1991; Zachos et al., 2001; Koch et al.,
2003; Pagani et al., 2006; Baczynski et al., 2016). In the Bighorn
Basin, the PETM and ETM-2 have been characterized by negative
CIEs in isotope records of soil carbonate and organic matter (e.g.,
Koch et al., 1995; Stott et al., 1996; Wing et al., 2005; Hyland et al.,
2013; Baczynski et al., 2016; Abels et al., 2016).

The paleoenvironmental condition in continental mid-latitude
during the extreme hyperthermal events and the atmospheric
pCO2 during the LPEE have been debated. A global increase in
wetland deposits during the PETM was used to suggest intensified
precipitation (Sloan et al., 1992; 1999), which was supported
by clay mineral assemblages that suggest wetter conditions (e.g.,
Robert and Kennett, 1994), and climate modeling that suggests
wetter subtropical environment (e.g., Rind, 1998). However, other
sedimentological studies and precipitation reconstructions suggest
dry conditions in Europe (Schmitz and Andreasson, 2001; Schmitz
and Pujalte, 2003), and in the Bighorn Basin in the western U.S.A.
(Kraus et al., 2013). Based on paleosol carbon isotope records, Sinha
and Stott (1994) proposed that the atmospheric pCO2 during the
LPEE was generally between 300 and 700 ppm. Paleosol carbon
isotope studies in theWindRiver Basin in thewesternU.S.A. suggest
that the atmospheric pCO2 ranged from 350 to 1,265 ppm during
the EECO (Fan et al., 2011;Hyland et al., 2013).Themost recent,The
Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium
(2023) assessed a comprehensive collection of proxy reconstructions
and suggested that pCO2 during the LPEE ranged between ∼400 and
∼1700 ppm, and the highest was at ∼51 Ma.

To improve our understanding of mid-latitude terrestrial
responses to the global climate changes during the LPEE, we
conducted a multi-method study on the early Paleogene floodplain
deposits in the greater Green River Basin in southwest Wyoming.
Specifically, this study constructs a high-resolution, continuous bulk
organic δ13Corg record that is assisted by leaf-wax n-alkanes δ13Cn-alk
trend to identify the PETM; uses paleosol morphology, leaf-wax
n-alkanes δDn-alk and the chemical index of alteration without
potassium (CIA-K) of bulk sediments in paleosol B-horizons to
reconstruct paleoclimate; and reconstructs pCO2 using paleosol
carbonate δ13Cc and bulk organic δ13Corg values.

2 Geological background

The greater Green River Basin was in the Sevier foreland during
the Late Cretaceous and evolved into an isolated intermontane
basin during the latest Cretaceous-early Eocene Laramide orogeny
(Dickinson et al., 1988; DeCelles, 2004; Gao et al., 2016). The basin
is bounded by the Sevier thrust belt to the west, the Wind River
Range and Granite Mountains to the north, the Rawlins uplift and
Sierra Madre Mountains to the east, and the Uinta Mountains to
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FIGURE 1
Location of the study area and major structural features in the greater Green River Basin [based on Roehler (1992) and geologic map courtesy of USGS].
The black box represents the study area. a-a’ represents the measured section of the Fort Union Formation, b-b’ represents the measured section of
the Wasatch Formation.

the south (Figure 1). The samples used for analysis in this study
were collected along a ∼1430-m-thickmeasured section of the lower
Paleogene strata in the southern part of the basin, to the southeast
of the Rock Springs Uplift (Figure 1). The section consists of two
segments: the Fort Union Formation with a thickness of about
780 m, and the Wasatch Formation with a thickness of about 650 m.
Detailed description and in-depth sedimentological study of this
section have been conducted and published in our earlier work (Gao
and Fan, 2018).

The Paleogene strata in the greater Green River Basin consist of
three formations: the Paleocene FortUnion Formation and the lower
EoceneWasatch Formation, both deposited in predominantly fluvial
systems, and the overlying lower Eocene Green River Formation
deposited in fluvial and lacustrine environments (e.g., Dickinson
and others, 1988; Shuster and Steidtmann, 1988; Roehler, 1992;
Pietras and others, 2003; Gao and Fan, 2018). This study focuses
on the Fort Union and the Wasatch formations, to investigate
the recorded signals of the continental hydroclimate during the
Paleocene-early Eocene. On the sampled section of this study,
the Fort Union Formation is characterized by multiple fining-
upward sequences, with lithofacies changes from very fine-to
medium-grained, horizontally bedded (Sh), laminated (Sl), and
massive (Sm) sandstone to massive (Fm) and laminated (Fl)

mudstone, paleosol (Fp), and coal (C) in each sequence, typical of
a distal floodplain environment (Figure 2); the Wasatch Formation
conformably overlies the Fort Union Formation, and is featured
by stacked, thick or thin lenticular sandstone units with erosional
bases and trough-cross stratifications (St), ripples (Sr), or other
sedimentary structures (Sh, Sl, Sm), nested in fine-grained lithofacies
(Fm, Fl, Fp), interpreted to be frequently migrating river channels
over the floodplain in a braided river system (Figure 2) (Gao and
Fan, 2018). The fine-grained deposits of these two formations along
the sampled section contain large amount of paleosols, providing
the opportunity to build long isotope and element records for the
interpretation of early Paleogene continental climate.

The chronology of the greater Green River Basin relies mainly
on land mammal fossil assemblages and pollen biostratigraphy
(e.g., Roehler and Martin, 1987; 1992; Honey, 1988; Woodburne,
2004); paleomagnetostratigraphy and radiometric dating of
volcanic ash beds were only conducted to some intervals of the
Eocene strata stratigraphically above our section (e.g., Mauger,
1977; Machlus et al., 2004). North America Land Mammal ages
have been calibrated to absolute geologic time scale based on
paleomagnetostratigraphy and radiometric dating of ash beds in
other basins in Wyoming (e.g., Clyde et al., 1997). Mammal fossils
of Diacodon, Gelastops, Mixodectes, Paleotomus, Promioclaenus,
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FIGURE 2
Measured stratigraphic sections of the Paleocene Fort Union Formation and the lowermost Eocene Wasatch Formation (Gao and Fan, 2018, © Yale
University-AJS, used with permission). Section locations are shown in Figure 1.

etc., typical to the early Torrejonian land mammal stage (To2,
∼61.3–62.3 Ma), were found in the Fort Union Formation, ∼8 km
south of our studied locality (Rigby, 1980). Age-diagnostic fossils

were previously documented at several stratigraphic levels in other
measured sections of the Wasatch Formation near our studied
section (Roehler, 1992). These stratigraphic levels can be correlated
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to our section based on lithostratigraphic correlations. The presence
of Hyracotherium, Hyopsodus, Haplomylus, and Diacodexis, in the
main body of the Wasatch Formation in several localities places the
deposition to the earlyWasatchian stage (Wa0-Wa5,∼55.0–53.4 Ma).
The top of the main body of the Wasatch Formation is determined
to be older than ∼53 Ma because the presence of Heptodon,
Lambdotherium, andMeniscotherium in theNilandTongueMember
of the Wasatch Formation (e.g., Roehler, 1992; Tauxe et al., 1994),
stratigraphically above our studied interval, places the Member to
middle or late Wasatchian stage (Wa6-Wa7, ∼52.9–52.6 Ma).

3 Methods

Four types of data were collected to reconstruct the continental
hydroclimate during the LPEE in the greater Green River Basin,
including paleosol morphology observations documenting changes
in paleosol type; high-resolution bulk organic δ13Corg and low-
resolution leaf wax n-alkanes δ13Cn-alk and δDn-alk values for the
identification of PETM; coupled paleosol carbonate δ13Cc and bulk
organic δ13Corg values to reconstruct pCO2; and CIA-K of paleosol
B-horizons for the reconstruction of MAP.

3.1 Paleosol classification

The paleosol description and classification in this study are
mainly based on the field observations of soil texture and structure,
mottled color and mineral accretions. The B-horizon in the
soil profile is the key interest of this study, for its important
role in reflecting the drainage condition and assisting the pCO2
reconstruction. Several key features were used to identify the B-
horizons during our field examination of paleosols: 1) B-horizons
often display reddish, yellowish, or brownish colors due to the
accumulation of iron oxides or clay minerals; 2) B-horizons usually
exhibit distinctive ped structures, such as wedge-shaped peds
or slickensides; and 3) accumulated materials are often present
in B-horizons as evidence of illuviation, such as the shiny clay
films that form along the wedge-shaped peds or slickensides, the
iron oxide coatings, the pedogenic carbonate nodules, etc. (e.g.,
Mack et al., 1993; Retallack, 1997; 2001; Kraus, 1999; Daniels and
Haering, 2006; Kraus et al., 2013).

3.2 Carbon and hydrogen isotope analysis

Carbon isotope analysis in this study includes analysis of bulk
organic matter δ13Corg, paleosol carbonate δ13Cc, and leaf wax
n-alkanes δ13Cn-alk. Bulk paleosol and mudstone samples were
collected every 0.5–1.0 m from the floodplain facies throughout the
measured sections, and pedogenic carbonate nodules were collected
where available. Fresh bulk paleosol and mudstone samples were
collected after removing the surface layers to avoid any possible
contamination from recent organic material. Pedogenic carbonate
nodules were collected at a depth greater than 30 cm below the
paleosol surface in order to reduce the influence of atmospheric
CO2 on δ13Cc. Petrographic analysis and X-ray diffraction analysis
have been done to these pedogenic carbonate nodules in our

earlier study (Gao and Fan, 2018), and the results show that
these paleosol carbonates are dominated by low-magnesium calcite,
predominantly micritic, suggesting minimal diagenetic influence.

For δ13Corg analysis, the samples were examined under a
microscope and any obvious modern organic matter was removed
by hand picking. Samples were then powdered using a ceramic
mortar and pestle and weighted into open silver capsules. Carbonate
in the powdered samples was removed using hydrogen chloride
fumigation method. Samples were loaded into silver capsules and
wetted by adding one drop of deionized water. Open silver capsules
were placed in a sealed desiccator containing a beaker of 12 N
fuming HCl for at least 4 days, then dried in oven at 75°C for at least
12 h. Each silver capsule was then carefully placed in a tin capsule
and tightly packed and loaded into a Costech ECS 4010 Analyzer,
which was connected to a Delta V Advantage Mass Spectrometer
via ConFlo IV, at the University of Texas at Arlington. The isotope
ratios were calibrated using USGS 40, USGS 41, and the precision
of δ13Corg is better than ±0.2‰ (1σ) based on repeated analysis of
standards.The δ13Corg values are reported relative toVienna PeeDee
Belemnite (VPDB).

For δ13Cc analysis, the carbonate samples were powdered using
a ceramic mortar and pestle. Powdered samples were weighed and
loaded into sample vials. After flushing the vials using ultrapure
helium, dehydrated phosphoric acid was injected into the vials to
react with the samples at 70°C. The δ13C values of the resulted CO2
were analyzed using a Gasbench II and a Delta V Advantage Mass
Spectrometer at the University of Texas at Arlington. The isotope
ratios were calibrated using NBS-19, NBS-18, and the precision of
δ13C values is better than ±0.2‰ (1σ) based on repeated analysis
of standards. All the isotope values of carbonate were reported
relative to VPDB.

Based on the trend of δ13Corg data and potential PETM, six
paleosol samples were selected to analyze δ13Cn-alk and δDn-alk
at the Louisiana State University to verify the presence of PETM
in our record. These six samples include four within and two
outside of the interpreted PETM. Lipids were extracted from
30 to 60 g of powdered rock samples using Soxhlet extractors
with a solvent mixture of dichloromethane (DCM) and methanol
(MeOH) 2:1 (v/v) for over 48 h. Total lipid extracs (TLE) were
evaporated using a TurboVap II evaporator under a stream of
purified nitrogen. TLE was separated into compound classes using
∼4.0 g of pre-extracted, activated (@200°C for 2 h) silica gel. Organic
compounds in TLE were separated into apolar, intermediate, and
polar fractions by using 4 mL hexane, 4 mL DCM, and 4 ml
methanol, respectively. n-Alkanes abundances were determined
using a Thermal Trace 1,310 Ga Chromatography (GC)-flame
ionization detector (FID) fitted with a programmable temperature
vaporization (PTV) injector and a fused silica, TG-1MS column
(60 m long, 0.25 mm i. d., 0.25 µm film thickness). Samples were
carried by helium at a rate of 2 mL/min. GC oven temperature
was ramped from 60°C (holding for 1 min) to 320°C at 15°C/min
(holding for 20 min).

Measurements of compound-specific δ13Cn-alk values were
performed using a Thermal Trace 1,310 Ga Chromatography (GC)
coupled to a Thermo Delta V Advantage isotope ratio mass
spectrometer (IRMS) interfaced with a Thermo Isolink interface.
The GC column and carrier flow conditions were identical to above.
Compounds were separated on the GC with a temperature program
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from 60°C (held for 1 min) to 170°C at 14°C/min, to 300°C at
3°C/min, and then to 325 at 14°C/min with an isothermal holding
of 10 min. Carbon isotope ratio values were determined relative
to a reference, calibrated against Mix A6 (n-C16 to n-C30; Arndt
Schimmelmann, IndianaUniversity), and reported relative to VPDB
and with two standard deviations.

Measurements of compound-specific δDn-alk values were
performed using a Thermo Trace 1310 GC coupled to a Delta V
Advantage isotope ratio mass spectrometer (IRMS) interfaced with
an Isolink interface. The GC column and carrier flow conditions
were identical to carbon isotope analysis. Compounds were
separated on the GC with a temperature program from 60°C (held
for 2 min) to 170°C at 14°C/min, to 300°C at 3°C/min, and then to
325°C at 14°C/min with an isothermal holding of 10 min. The H3

+

factor (Sessions, 2001) was monitored daily prior to δD analysis
and was less than eight for the measurement periods. The drift of
the instrument was routinely monitored, and individual n-alkane
isotope ratios were corrected to n-alkane reference materials (Mix
A3, A. Schimmelmann, Indiana University, Bloomington). δDn-alk
values are reported relative to Vienna Standard Mean Ocean Water
(VSMOW) and with two standard deviations (Table 1).

3.3 pCO2 reconstruction

We followed Equation 1 that was presented in Cerling and
Harris, (1999) for atmospheric pCO2 reconstruction.

pCO2(ppmv) = S(z)
δ13Cs − 1.0044∗ δ13Cr − 4.4

δ13Ca − δ13Cs
(1)

In the equation, pCO2 is the concentration of atmospheric
CO2, S(z) is the concentration of soil-respired CO2, δ13Cs
is the carbon isotope composition of soil CO2, δ13Cr is the
carbon isotope composition of soil-respired CO2, δ13Ca is
the carbon isotope composition of atmospheric CO2. δ13Cs is
determined from the paleosol carbonate δ13Cc and paleosol
carbonate precipitation temperature using the temperature-sensitive
equilibrium isotope fractionation factor between calcite and CO2
Equation 2 (Romanek et al., 1992):

δ13Cs =
δ13Ccc + 1000
(11.98−0.12T)

1000
+ 1
− 1000 (2)

δ13Cr was traditionally represented by paleosol δ13Corg values
(e.g., Cerling, 1992; Retallack, 2009). However, several studies have
shown that bulk δ13Corg values in modern soils are comparable
to those found in surface litter, but they tend to increase with
soil depth (e.g., Torn et al., 2002; Wynn et al., 2005; Wynn and
Bird, 2007). Therefore, organic carbon in soil B-horizons, which
are typically sampled when working with paleosol carbonate, have
δ13Corg values higher than the average biomass, and the δ13Cr in
Equation 1 can be approximated by measured δ13Corg values minus
1‰ (Bowen and Beerling, 2004; Breecker, 2013). δ13Ca was −6.1‰
during the early Eocene (Tipple et al., 2010). S(z) is commonly
assumed as summer minimum soil-respired CO2 in this equation
because soil carbonates are likely to precipitate preferentially during
warm seasons (Breecker et al., 2009; Passey et al., 2010; Quade et al.,
2013; Hough et al., 2014). We use the value of 2,500 ppm for
S(z) as it is commonly used for the subhumid temperature and
tropical climates (Breecker et al., 2010).
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3.4 MAP reconstruction

Bulk paleosol samples from the B-horizons were analyzed for
major element concentrations using a Shimadzu EDX-7000 X-
ray fluorescence (XRF) spectrometer at the University of Texas
at Arlington. The reported weight percentages were calibrated
using three USGS standards: SDO-1 (Devonian Ohio Shale),
SBC-1 (Brush Creek Shale), and SGR-1 (Green River Shale)
(Supplementary Table S2). The weight percentages were then
recalculated to molar ratios, following Sheldon et al. (2002). Since
the intensity of chemical weathering of paleosols depends in part
on precipitation, Sheldon et al. (2002) developed an empirical
relationship (Equation (3)) relating the mean annual precipitation
(MAP) to the chemical index of alteration without potassium (CIA-
K). The error associated with the regression analysis is ±181 mm
(Sheldon et al., 2002; Sheldon and Tabor, 2009).

MAP(millimeters/year) = 221e0.0197∗CIA‐K; r2 = 0.72 (3)

CIA‐K = [Al2O3/(Al2O3 +CaO∗ +Na2O)] × 100 (4)

The chemical index CIA-K, which excludes potassium
(K), is derived from Equation 4. K is excluded in calculation
because diagenesis can yield elevated K concentrations in
paleosols (McLennan, 1993). CIA-K is calculated based on themolar
ratio of Al2O3, to the sum of Al2O3, CaO∗, and Na2O. CaO∗ is
the smaller value between CaO and Na2O to account for CaO
derived from the silicate fraction, excluding the carbonate fraction
(McLennan, 1993).

4 Results

4.1 Paleosol classification

4.1.1 Fort Union Formation
The floodplain facies in this formation contains many coal beds.

Figure 3a shows a typical succession that contains a coal bed in
the Fort Union Formation. Below each coal bed a sequence of
mudstone with color changes from light grey to dark grey toward
the coal is commonly observed, representing upward increase of
organic matter content. Above each coal bed is usually a short
sequence of tan or greyish mudstone, which gradually changes
upward into very fine- to fine-grained and laminated sandstone.
Beds with the presence of coals in this formation are classified
as histosols according to the definition that each coal originated
as a water-logged surface horizon containing a high concentration
of plant debris, called histic epipedon (Soil Survey Staff, 1975;
Buol et al., 1980; Mack et al., 1993).

4.1.2. Main body of the Wasatch Formation
Three types of paleosols are observed in this formation:

the calcic paleosol (Figure 3b), the green paleosol (Figures 3c–e),
and the red paleosol (Figures 3f–g). The calcic paleosols were
mostly found at about 80–100 m above the base of the Wasatch
Formation, coincident with the∼4‰negative CIE on δ13Corg record
(Figures 3, 4).The B-horizons of these calcic paleosols typically have
tan color with small, white and hard carbonate nodules, and lack

peds or slickenside structures, suggesting low precipitation and poor
drainage.The green paleosols and the red paleosols contain high clay
content and vertic features including wedge-shaped peds, hummock
and swale structure, and slickensides. The green paleosols are the
most prevalent in the main body of the Wasatch Formation, while
the red paleosols are mostly present in two segments of the section:
one is at 80–180 m above the formation base, and the other is in the
upper part of the section within about 100 m below the early Eocene
lacustrine facies. Carbonate accumulations can be found in the B-
horizons of both the green paleosols and red paleosols, while more
common and developed as nodules in the red paleosols.

The calcic paleosols found in this formation are classified as
calcisols based on their combined features of soil structure and
the presence of carbonate nodules. Since calcisols are commonly
formed in semi-arid to arid climate (e.g., Badía-Villas and del Moral,
2016; Elidrissi et al., 2018), the accumulation of calcisols here
might indicate a transient drying during the PETM. The green
paleosols and the red paleosols were classified to be ancient analogs
to vertisols, based on their mottled colors and vertic features (e.g.,
Mack et al., 1993; Nettleton et al., 2000; Driese et al., 2005).

4.2 Isotope record, reconstructed MAP,
and atmospheric pCO2

The δ13Corg values of the organic-rich pedogenic mudstone that
is usually accompanied with coal beds in the Paleocene Fort Union
Formation vary between −23.2‰ and −26.5‰, with an average
of −25.0‰ (Supplementary Table S1; Figure 4b). The δ13Corg values
of the paleosol B-horizons in the main body of the lower Eocene
Wasatch Formation vary between −24.0‰ and −29.4‰, with an
average of −26.3‰ (Supplementary Table S1; Figure 4b).

The δ13Corg values of the non-pedogenic mudstone samples
have similar variations as the δ13Corg values of paleosols. In
the Fort Union Formation, the δ13Corg values of non-pedogenic
mudstone samples vary between −22.8‰ and −26.1‰, with an
average of −24.5‰ (Supplementary Table S1; Figure 4b). In the
main body of the Wasatch Formation, these δ13Corg values vary
between −22.5‰ and −27.2‰, with an average value of −25.7‰
(Supplementary Table S1; Figure 4b).

At ∼70 m above the base of the Wasatch Formation, the δ13Corg
values show a transient drop of ∼4‰, and the CIE spans ∼70 m on
the record (Figure 4b). The δ13Cn−alk values in this interval show
a negative excursion on the order of ∼4‰–5‰ on long−chain
n−alkanes with 27, 29, 31, and 33 carbon atoms (Table 1; Figure 5),
δDn−alk values in this interval show increases of 30‰–50‰ (Table 1;
Figure 6). Another CIE of ∼2‰ is documented in the δ13Corg record
after the Paleocene−Eocene boundary, at the 490–590 m level above
the base of Wasatch Formation, and is older than ∼53 Ma based on
the biostratigraphic age constraint of our studied strata (Figure 4b).

Based on the well calibrated major element data (Table 2;
Supplementary Table S2), the reconstructed MAP throughout the
Paleocene and the earliest Eocene is generally high, in the range
of 800–1,500 mm (Table 2; Figure 4b). An extremely low value of
408 mm occurs at 168.8 m of Wasatch Formation, however, this
estimate is not accurate due to its high Na2O content (5.1 wt%)
compared to the other samples (<2.8 wt%). The elevated Na2O is
likely due to diagenetic salt, rather than a contribution from silicate.
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FIGURE 3
Field pictures and conceptual sketch of the four types of paleosol in this study. The simplified stratigraphic column of the studied strata is based on
Figure 2, and stars represent stratigraphic levels of the age constraints summarized in the text. (a) field picture of a histosol; (b) field picture of a calcisol
with soil carbonate nodules; (c) field picture of a green paleosol with (d) carbonate nodules and (e) peds structure; and (f) field pictures of a red
paleosol with (g) carbonate horizon. TFU: Fort Union Formation; TWm: main body of the Wasatch Formation; TWn, Niland Tongue of the Wasatch
Formation; TWc, Cathedral Bluffs Tongue of the Wasatch Formation; TG, Green River Formation. Field pictures (a,b) are from Gao and Fan (2018), © Yale
University-AJS, used with permission.
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FIGURE 4
Carbon isotope record and MAP estimates for the late Paleocene-early Eocene hydroclimate. (a) Carbon isotope record from paleosol carbonates in
the Bighorn Basin (Koch et al., 2003, © The Geological Society of America, used with permission); (b) δ13Corg record and MAP estimates (this study).
Red dots represent the δ13Corg values of paleosol samples, and black triangles represent the δ13Corg values of non-pedogenic mudstone samples.
Please note that the low MAP at 168.8 m of Wasatch Formation is due to elevated Na2O level, likely originating from diagenetic salt, and is therefore
not accurate.

FIGURE 5
Bulk organic δ13Corg values (a) and compound−specific leaf wax δ13Cn−alk values (b–e) of the six selected samples in this study are compared to a
record (f) in the Bighorn Basin (Baczynski et al., 2016).
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FIGURE 6
Compound−specific leaf wax δDn−alk values (b–e) in our study. Bulk organic δ13Corg values of the samples are also shown (a).

The other two samples at 405 m and 588 m of Wasatch Formation,
where Na2O content is greater than 2.0 wt%, also show low MAP
estimates. The atmospheric pCO2 during the early Eocene was
estimated to be in the range of 600–900 ppm from the six selected
paleosol samples in the Wasatch Formation (Table 3).

5 Discussion

5.1 Recognition of PETM

We identify CIEs in both the δ13Cn−alk and δ13Corg records near
the Paleocene−Eocene boundary in the greater Green River Basin
(Figures 4b, 5). The magnitude is on the order of 4–5‰, which is
consistent with, or smaller than those of CIEs of the PETM inmarine
and other continental records. Inmarine benthic foraminifera δ13Cc
record, the PETM is expressed as a ∼3‰ CIE (e.g., Zachos et al.,
2001). Continental records show that the CIE during the PETM
has variable magnitude, depending on the type of samples studied.
Such CIE records include a ∼6‰ drop based on studies of bulk
organic δ13Corg in the Paris Basin, France (Magioncalda et al.,
2001), a ∼6‰–8‰ drop based on studies of paleosol carbonates
δ13Cc in the Bighorn Basin (Bowen et al., 2001; Koch et al., 2003;
Abels et al., 2016), a ∼5‰ drop based on a study of mammalian
tooth enamel δ13C in the Bighorn Basin (Secord et al., 2012), and
a 4‰–5‰ drop based on studies of bulk organic δ13Corg and leaf
wax δ13Cn−alk in the Bighorn Basin (Baczynski et al., 2013; 2016).
The depositional duration of the ∼4–5‰ CIE in our record seems
also to match the duration of PETM in the Bighorn Basin. Our CIE
spans ∼70 m, aligning with the stratigraphic interval of PETM in the
Bighorn Basin, which varies between 40 m and 100 m depending
on the specific study location (Bowen et al., 2001; Koch et al.,
2003; Secord et al., 2012; Baczynski et al., 2013; 2016). Therefore,

we suggest that the ∼4–5‰ CIE in our record is the PETM. The
variations in CIE magnitude in different locations could reflect
differences in soil properties, the type of C3 vegetation (e.g., Cerling
and Quade, 1993), the mixing of carbon from different sources (e.g.,
autochthonous or allochthonous), and different degrees of organic
matter degradation (Baczynski et al., 2013; 2016).

The second CIE on our δ13Corg record, with a magnitude of
∼2‰, occurred after the PETM but before ∼53 Ma (Figure 4b).
This CIE most likely represents the ETM−2 hypothermal event. The
ETM−2 is the most pronounced early Eocene hyperthermal event
and is expressed as a ∼1‰ negative CIE in marine bulk sediment
records (Zachos et al., 2010). In the continental environment,
ETM−2 has been documented as a ∼3‰ drop in paleosol carbonate
δ13Cc in the Bighorn Basin (Abels et al., 2016). Although our
δ13Corg record does not show an ideal CIE that could precisely
represent the ETM−2, the timing and magnitude of this excursion
resemble those of the ETM−2, or a combination of ETM−2 and other
smaller hyperthermals that happenedwithin the next∼500 kyr of the
ETM−2 (e.g., Cramer et al., 2003; Lourens et al., 2005).

5.2 Humid LPEE and transient drying
during the PETM

Kraus et al. (2013) reconstructed the MAP in the Bighorn Basin
based on a ∼70 m thick interval of paleosols covering the PETM,
their results show that the MAP values in the pre− and post−PETM
intervals are generally high, in the range of 1,100–1,500 mm, and the
values dropped to 800–1,100 mm during the main phase of PETM.
However, our estimated MAP remains relatively stable, ranging
between 800–1,500 mm during the entire LPEE (Figure 4b). The
absence of a decrease in MAP during the PETM in this studied
section contrasts with records from other basins and the transient
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TABLE 2 Major elements weight percentages and calculated CIA−K and MAP.

Formation Meter level MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 Na2O CaO∗ CIA−K MAP

(m) wt% wt% wt% wt% wt% wt% wt% wt% wt% (mm)

Fort Union 573.0 1.5 14.0 46.0 1.4 6.7 0.4 2.6 0.1 0.1 98 1,519

Fort Union 573.5 2.5 16.5 70.6 3.3 0.4 0.6 3.1 0.4 0.4 92 1,367

Wasatch 7.0 1.7 12.1 57.4 2.2 4.6 0.4 4.7 0.1 0.1 97 1,508

Wasatch 72.0 3.0 11.6 68.0 3.0 3.5 0.4 4.5 1.0 1.0 77 1,012

Wasatch 87.0 3.1 14.4 60.3 4.6 1.1 0.6 7.8 0.9 0.9 82 1,121

Wasatch 87.3 2.6 13.5 58.8 4.3 1.0 0.6 6.1 0.6 0.6 87 1,224

Wasatch 91.3 3.1 10.1 63.3 2.1 5.7 0.4 3.4 1.1 1.1 73 928

Wasatch 92.0 2.4 13.3 76.6 3.4 0.9 0.5 3.3 0.5 0.5 88 1,269

Wasatch 115.4 1.7 7.0 40.3 1.6 10.3 0.2 1.3 0.8 0.8 72 911

Wasatch 132.5 3.1 14.5 62.1 4.0 1.0 0.5 5.8 1.2 1.0 79 1,058

Wasatch 168.0 2.8 11.1 69.5 2.4 1.8 0.5 3.7 1.0 1.0 76 997

Wasatch 168.8 9.2 7.9 45.2 1.8 8.1 0.3 2.5 5.1 5.1 31 408

Wasatch 207.0 3.4 14.0 73.3 4.0 1.3 0.5 4.2 1.5 1.3 74 960

Wasatch 212.8 3.7 11.5 64.3 2.7 4.0 0.5 4.2 1.5 1.5 69 862

Wasatch 246.8 2.4 11.1 74.0 1.8 1.0 0.4 2.7 0.5 0.5 86 1,221

Wasatch 303.3 3.4 12.3 66.7 2.7 2.1 0.5 3.3 1.4 1.4 72 912

Wasatch 366.5 2.7 12.8 69.4 3.0 1.2 0.5 4.7 0.6 0.6 86 1,209

Wasatch 390.5 3.3 12.5 62.6 2.8 3.2 0.5 4.3 1.2 1.2 75 974

Wasatch 403.5 4.1 11.8 55.0 3.1 6.8 0.4 4.9 1.8 1.8 65 806

Wasatch 405.0 4.3 10.2 53.5 2.5 7.1 0.4 4.3 2.0 2.0 60 718

Wasatch 406.0 2.3 12.7 70.4 2.9 0.7 0.5 4.6 0.5 0.5 88 1,257

Wasatch 408.5 3.6 11.8 71.3 2.6 2.3 0.5 3.1 1.3 1.3 72 924

Wasatch 417.0 3.7 12.1 54.2 3.2 6.4 0.5 5.1 1.4 1.4 71 906

Wasatch 448.0 3.2 9.7 59.2 1.3 6.5 0.4 2.3 1.3 1.3 68 853

Wasatch 448.5 3.0 8.1 49.5 1.2 9.7 0.3 1.8 1.2 1.2 66 816

Wasatch 454.5 2.3 14.3 54.6 2.1 2.8 0.6 6.9 0.6 0.6 87 1,240

Wasatch 460.5 1.2 2.8 56.2 2.1 3.6 0.5 3.3 1.2 0.2 54 650

Wasatch 469.5 2.8 11.8 65.4 2.0 5.7 0.4 3.1 0.9 0.9 79 1,055

Wasatch 472.5 2.7 11.8 58.7 2.3 6.9 0.4 3.4 1.0 1.0 77 1,018

Wasatch 499.5 1.1 11.5 65.7 1.8 0.3 0.6 8.3 0.0 0.0 100 1,593

Wasatch 500.0 2.0 16.0 73.7 3.4 0.6 0.6 2.5 0.2 0.2 96 1,467

(Continued on the following page)
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TABLE 2 (Continued) Major elements weight percentages and calculated CIA−K and MAP.

Formation Meter level MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 Na2O CaO∗ CIA−K MAP

(m) wt% wt% wt% wt% wt% wt% wt% wt% wt% (mm)

Wasatch 586.5 1.9 13.6 70.4 3.1 0.4 0.6 6.4 0.3 0.3 93 1,385

Wasatch 588.0 5.9 12.6 54.1 2.9 5.1 0.4 3.7 2.8 2.8 56 676

Wasatch 625.5 2.6 10.4 56.1 1.1 5.7 0.4 4.2 0.8 0.8 79 1,052

Wasatch 626.2 3.2 14.5 58.3 2.3 1.1 0.7 6.9 0.9 0.9 82 1,124

Wasatch 643.2 3.6 12.3 64.7 1.6 3.4 0.5 3.9 1.4 1.4 72 912

TABLE 3 Reconstructed atmospheric pCO2 based on isotopic analysis of paleosols.

Sample ID Meter level δ13Cc δ13Cr δ13Cs δ13Ca S(z) pCO2

(m) (‰) (‰) (‰) (‰) (ppm) (ppm)

WMB−n1 76.0 −9.2 −25.9 −17.4 −6.1 2,500 922

WMB−n2 80.0 −9.8 −25.4 −18.0 −6.1 2,500 646

WMB−n3 96.5 −9.4 −24.9 −17.6 −6.1 2,500 645

WMB−n4 102.0 −9.7 −25.5 −17.9 −6.1 2,500 694

WMB−n5 380.0 −8.1 −24.3 −16.3 −6.1 2,500 894

WMB−n6 425.0 −9.6 −26.3 −17.8 −6.1 2,500 892

drying observed in leaf wax δDn−alk and changes in paleosol
morphology in this study. For example, a dry PETM was also
suggested from a sedimentology study in the Axehandle Basin in
central Utah (Bowen and Bowen, 2008) and a leaf physiognomy
study in the Bighorn Basin (Wing et al., 2005). Several studies
have questioned the accuracy of MAP estimates based on CIA−K,
particularly for thinner paleosols (B horizon less than 1 m thick),
as they had less time for weathering and may not have a cation
distribution representative of precipitation (e.g., Adams et al.,
2011). The possibility that the low sampling resolution in our
record is responsible for the absence of decreasing MAP cannot be
completely ruled out.

The 30‰–50‰ increase in leaf wax δDn−alk values in our
record show transient drying during the PETM (Figure 6). Studies
of terrestrial plants and soils have suggested that leaf waxes are
refractory, and their δDn−alk values primarily reflect meteoric water
δD values (e.g., Sauer et al., 2001; Smith and Freeman, 2006). The
increase in δDn−alk values during the PETM most likely reflects
a combination of increasing meteoric water δD due to decreasing
precipitation amount, increasing soil evaporation, and reducing
hydrogen isotope fractionation between water and leaf wax during
climate drying. It has been suggested that soil evaporation enriches
deuterium in soil water and decrease the apparent fractionation
factor, especially in arid climate (e.g., Smith and Freeman, 2006).
The development of different types of paleosols throughout our
measured section further supports the inferred transient drying.
During the Paleocene, the floodplains were generally water−logged

and had histosols (coal beds) developed, indicating that the climate
was wet. During the early Eocene, paleosol types within the PETM
are different compared to those in the rest of the section. Within
the PETM, poorly drained red paleosols and calcisols developed,
indicating dry environment. Outside of the hyperthermal, the
floodplain deposition was dominated by well drained green
paleosols, indicating wet climate. Soil type representing wet
paleoclimate changed from histosols during the Paleocene to
green paleosols during the early Eocene, possibly reflecting a
change in ecosystem when climate became very hot during the
early Eocene.

The transient drying during the PETM may be explained by the
mid−latitude bypass mechanism, which was proposed to explain
the elevated runoff and deuterium−enriched precipitation in the
Arctic during the PETM (Pagani et al., 2006). Decreased meridional
temperature gradients during the PETM might have reduced
rainout of water vapor by synoptic eddies in the mid−latitudes,
and increased moisture delivery to the high latitudes, because a
decreased temperature gradient provides a smaller energy supply
for synoptic eddies (Pierrehumbert, 2002; Pagani et al., 2006). This
mechanism predicts temporally drier conditions during the PETM
than other times during the early Paleogene in the mid−latitudes,
and spatially drier conditions in the southerly sites than in the
northerly sites in Wyoming during the PETM (Bowen and Bowen,
2008). Bowen and Bowen (2008) found that the CIE in central
Utah was ∼2‰ smaller than the ∼6‰–8‰ drop in the Bighorn
Basin during the PETM, both determined from paleosol carbonates
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δ13Cc, and suggested that the smaller CIE could have been caused
by drier conditions. The speculative correlation of the PETM with
a ∼15−m−thick evaporite sequence deposited in the Flagstaff lake
system in centralUtah also supports a significant increase in regional
aridity during the PETM at this location compared to the Bighorn
Basin (Bowen and Bowen, 2008). The CIE magnitude in the greater
Green River Basin is consistent with that based on leaf wax δ13Cn−alk
in the Bighorn Basin (Baczynski et al., 2013; 2016), indicating no
evidence of southward aridification.

The general wet climate during the LPEE is consistent with
climatemodel predictions. However, themodel also predicts that the
PETM, with higher pCO2 levels compared to the rest of the LPEE,
should be wetter. By using the Community Climate System Model
(CCSM3) with atmospheric CO2 concentrations of 4×, 8×, and 16×
the preindustrial value, Winguth et al. (2010) demonstrated that
precipitation during the PETM slightly increases, and evaporation
minus precipitation slightly decreases in mid to high latitudes
with increased surface temperatures, and attributed the changes
to responses to CO2 radiative forcing (also seen in Sloan and
Rea, 1996; Shellito et al., 2003). This prediction is not supported
by the observed transient drying. The discrepancy between model
predictions and proxy data could arise from several uncertainties.
These include, but are not limited to, that model simulations may
overestimate CO2 radiative forcing, as our records show that the
pCO2 levels during the PETM were only 1–2 times higher, not at
least 4 times higher, than preindustrial levels; model simulations
may not fully account for the topography development in the
western U.S.A. during the early Paleogene; and seasonal distribution
of precipitation and potential biases in leaf wax records towards
growing season precipitation.

6 Conclusion

This study presents an extensive record of continental
hydroclimate responses to the warm late Paleocene−early Eocene
global climate, including the extremely hot PETM. At our site in the
greater Green River Basin, the reconstructed MAP during the entire
LPEE is 800–1,500 mm, which is wetter than present conditions.
The reconstructed atmospheric pCO2 during the early Eocene is
600–900 ppm. The PETM is marked by a ∼4‰ negative CIE in
our bulk organic δ13Corg record and a ∼4‰–5‰ negative CIE in
our leaf wax n-alkanes δ13Cn−alk record. During the PETM, the
leaf wax n-alkanes δDn−alk increased by 30‰–50‰, indicating
a phase of transient drying. Overall, our records show that the
continental hydroclimate in the greater Green River Basin during
the LPEE was generally warm and humid, but transient drying
occurred during the PETM. The humid LPEE climate promoted
formation of well drained green paleosols and water−logged
histosols. In contrast, transient drying during the PETM resulted in
the development of poorly drained red paleosols and carbonate−rich
calcisols. This study contributes to the growing body of knowledge
in understanding the continental hydroclimate responses to the
global warming during the LPEE.
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